
Interpreting Uncertainty in Bayesian Neural Networks
Javier Antorán, ja666@cam.ac.uk

Bayesian Neural Networks (BNN)

•Parameter point estimates are substituted by probability distributions.
•Automatically balance goodness of fit and model simplicity.
•Uncertainty in the weights is translated into uncertainty in predictions.
Can uncertainty in BNNs help us better understand our data?

SG-HMC Approximate Inference

The true posterior over network weights, p(w|D), is intractable. Approx-
imate inference methods tend to present a trade-off between fitting the
data well and providing reliable uncertainty estimates. Drawing samples
with SG-HMC allows for both, [2].
Hamiltonian Monte Carlo introduces an auxiliary momentum vari-
able r and samples from the joint distribution: p(w, r|D) ∝
exp (log p(D,w)− 1

2rMrᵀ). Stochastic approximations to gradients are
computed using minibatches D̃. A friction term C is used to compensate
for the variance introduced by this stochasticity.

∆w = εM−1r
∆r = ε∇w log p(w, D̃)− εCM−1r + γ; γ ∼ N (0, 2(C−B) · ε)

The mass matrix M and gradient noise B are estimated during burn-in.
Expectations of functions parametrised by w can be approximated as:

Ep(w)[fw] ≈ 1
N

N∑
i=1
fw(i)

Decomposing Uncertainty

Irreducible or Aleatoric uncertainty can be quantified as Ha =
Ep(w)[H(y |x,w)]. It indicates that there are unobserved factors which
influence our targets or that our measurements are noisy. Model uncer-
tainty or Epistemic uncertainty can be measured as He = H(y |x)−
Ha. It can be reduced by observing more data, [1].
For a heteroscedastic regression scenario with a Gaussian distribution
over outputs, predictive variance can be decomposed as:
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Explaining Uncertainty with Counterfactuals

For input point x, we can answer
the question: "Why is this
datapoint aleatoric or
epistemic?" with a
counterfactual example. We
generate the counterfactual x0
using gradient descent with
respect to the entropy. A
Variational Autoencoder (VAE) is
used to constrain the space of
explanations: x0 = E[x|z0]:

∆ze = ∂

∂z
He; ∆za = ∂

∂z
Ha;

Figure: Gradients from the BNN are prop-
agated back to the latent space. Steps are
taken towards less entropic latent regions.

Figure: Latent trajectory (left) and normalised input space explanation (right) for the
aleatoric entropy of a single sample from the Boston housing dataset. ∆Ha = −1.2.

In the above example, two factors are principally responsible for the large
aleatoric entropy: the high the economic status of the population and
the low pupil-teacher ratio. Seeing this, we could draw the tentative
conclusion that birth rates should also be used as an input variable.

Comparison with Uncertainty Sensitivity Analysis

Sensitivity analysis computes gradients in input space: Sa(x) =
(
∂
∂xHa

)2.

Figure: Following the gradient in input space results in infinitesimal variations in latent
space (left). Small changes in input space result in a large entropy decrease (right).

Small changes in input space can greatly reduce Ha. This is analogous
to creating an adversarial example. The proposed method’s use of a
generative model ensures that our explanations are in-distribution.

Going from Local to Global Explanations

K-means clustering is applied to {∆x} = {x0 − x}. Each cluster’s
mean ∆x acts as a "prototypical point". The whole dataset is explained
through the uncertainty of a finite set of "prototypical points."

Figure: Subsample of all points’ latent trajectories (left) and latent projections of
clustered points (right). Clustering distances are based on ∆x, in input space.

Figure: Mean input variable changes for points in cluster 0. Uncertainty stems mainly
from: bounding rivers, radial highways, pupil teacher ratio and property tax rate.

Explaining Uncertainty in Images

Figure: A digit with high uncertainty (left). The explanation given by our method
(center). The same digit with reduced uncertainty (right). Note how the second
most probable class, 8, becomes less likely after the explanation is subtracted. The
explanation’s positive values resemble an 8 while its negative values resemble a 5.


