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Abstract

A well-calibrated model guarantees that predicted probabilities closely match observed fre-
quencies. This report uses the calibration framework to assess the quality of uncertainty
estimates in Bayesian Neural Networks. Exact Bayesian Inference is intractable for these
models. Therefore, Variational Inference and MCMC methods are considered as approxi-
mate inference methods. We find that these methods only yield well-calibrated models when
the hyper-parameters are explicitly optimised for a calibration test rather than test accuracy.
Furthermore, this report introduces two novel algorithms for performingDropout Variational
Inference with a well-defined Evidence Lower Bound and a new stochastic acceptance test
with adjustable bias/efficiency tradeoff. We further observe that using Bayesian compression
methods during training improves calibration as well as test accuracy.
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Chapter 1

Calibration in Bayesian statistics

1.1 Introduction
The recent success of Deep Learning approaches has significantly increased the ability of
Machine Learning practitioners to perform difficult tasks using complex models which en-
code little prior information about the task at hand. Research in Neural Networks has pre-
dominantly focused on competing on a human level in tasks that were previously thought to
be impossible for a machine. For example, by beating the world champion in the game of
Go [61], transferring the style of an image [16], or learning to drive a car [32].

By now it is evident that Neural Networks perform on-par or even outperform humans in
many tasks. Still many real-life applications require more than a model which predicts the
most likely outcome. This becomes clear in critical domains like self driving cars or medical
diagnostics where poor predictions can result in significant losses. These applications also
require robust and reliable predictions with strong guarantees about the model’s uncertainty
[31].

The importance of using probabilities to express the uncertainty of a prediction has been
widely recognised in both classical statistics [10, 49] and in modern Machine Learning [14,
20, 22, 41]. Contemporary research nonetheless lacks a widely recognised benchmark for
the quality of predictive uncertainty.

Instead the quality of the uncertainty estimates is instead determined based on theoretical
grounds [23, 33, 42]; the model’s ability to generalise to test data or out-of-distribution ex-
amples [7, 15, 19, 39]; and assigning low probability to adversarial examples [41]. Although
all these justifications are important, none of these approaches provide direct evidence for
the quality of uncertainty estimates.

This report formalises the quality of uncertainty estimates by using the framework of
calibration [10]. The predictions of a model are said to be well-calibrated if the expectation
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over any random variable derived from these predictions matches the observed long-term
average. Sec. 1.3 will formalise this definition.

Calibration offers a powerful method for testing the quality of uncertainty estimates
because well-calibrated predictions can be interpreted as objective probabilities. In the
Bayesian framework a prediction must be considered subjective in the sense that predictions
depend on prior assumptions about the behaviour of a random process. Objective probability
follows the Frequentist interpretation of probability which states the probability of a random
event corresponds to its long term frequency. Sec. 1.3.1 will demonstrate how subjective
(Bayesian) and objective (Frequentist) probabilities can be related through the calibration
theorem which states that any subjective probability model must consider itself to be well-
calibrated.

Calibration has strong connections with other important topics in Machine Learning.
Recent work on Adversarial Examples shows that for neural classification models there is a
large subset of the input space in which the model makes false predictions with high con-
fidence [18]. The fact that these mistakes are made with high confidence can be seen as a
type of miscalibration. Another related subfield is AI Fairness which aims to reduce biases
against subpopulations in the data. Calibration can serve as a definition of fairness [37] and
is also a condition for a popular fair classification algorithm [54]. Furthermore, a model with
good uncertainty estimates can be used to automatically determine a good tradeoff between
exploration and exploitation in Reinforcement Learning by means of Thompson sampling
[7]. Current VI and sampling methods are unable to outperform simple linear approaches
in Thompson Sampling based RL [57]. This suggests the uncertainty estimates are not of
sufficient quality.

Previous work has already shown that modern Neural Networks are poorly calibrated
[20]. However, these results are limited to Neural Networks where the model parameters are
inferred usingMAP estimate. This report aims to give a more detailed overview focussing on
Bayesian methods. Bayesian Inference on Neural Network models can be performed using
MCMCmethods [1] and Variational Inference methods [25]. These approaches promise bet-
ter uncertainty estimates by approximating the posterior distribution of the model. Nonethe-
less, the effects the approximations have on the calibration properties of the resulting poste-
rior remain largely unspecified.

In the first place, this report motivates the use of calibration as a measure for the quality
of uncertainty estimates. Secondly, Chap. 2 and Chap. 4 respectively give a theoretical and
empirical analysis of the properties of commonly used VI and sampling methods. We find
that optimal generalisation does not always coincide with good uncertainty estimates and sig-
nificant hyper-parameter tuning is needed to make the tested approximate inference methods
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well-calibrated. Additionally, we find significant differences in the ability of these methods
to scale from simple toy problems to more complex tasks like MNIST and FashionMNIST.

This report describes a number of novel algorithms designed to obtain well-calibrated
Bayesian Neural Networks: Sec. 2.5 describes a way to combine Gaussian Dropout with
Bayes By Backprop to obtain a proper VI method with some degree of weight correla-
tion; Sec. 2.6.2 describes variational distribution that learns the scale of weights with a
separate variational variable which induces sparsity and improves performance; and finally
Sec. 2.7.2 introduces a algorithm for stochastic acceptance of MCMC proposals with an
adaptive bias/variance tradeoff. Furthermore, we observe an interesting connection between
compression and calibration. Sec. 2.6.3 describes how Variational Inference can be used to
prune weights and features from a network, and how this can improve both accuracy and
calibration.

1.2 Prediction based decisions
The quality of a model’s predictions is often assessed by analysing the outcome of some util-
ity function over a test set. The utility function 𝑈(𝑥, 𝑎) defines the utility of action/decision
𝑎 given that the outcome of the random variable 𝑋 = 𝑥. The optimal decision ̂𝑎 is found by
maximising the expected utility which is known as Bayes decision rule

̂𝑎 = argmax
𝑎

𝔼𝑝(𝑥) [𝑈(𝑥, 𝑎)] . (1.1)

Thus, given a distribution 𝑝(𝑥) the optimal decision w.r.t. some utility function 𝑈(𝑥, 𝑎)
can be computed.

Consider for example a classification problem where the utility of a prediction over
classes 𝜔𝑘 ∈ {𝜔1, … , 𝜔𝐾} is 𝑈(𝜔, 𝜔̂) = 1 if 𝜔 = 𝜔̂ and 𝑈(𝜔, 𝜔̂) = 0 otherwise. This
function is known as the zero-one utility. Using Bayes decision rule, the expected utility is
maximised for 𝜔̂ = 𝜔∗ the class with the largest probability. In this case the average utility
for the unobserved test dataset coincides with the classification rate.

The value of a model’s predictions depends on the utility function that is appropriate
for the application. Using a utility based benchmark gives only partial information about the
general quality of the model predictions. For example, using the zero-one utility function, or
equivalently the classification rate, limits the analysis to the predictive power of the model,
because the expected utility only depends on the certainty in the maximum likelihood class.

Consider for example a character recognition model. When such a model is used to index
the textual context of a large corpus of images a zero-one utility function might be justified.
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However, when the same character recognition model is used to read a bank check or a
doctor’s prescription one would certainly want to avoid a case where a model takes action
without the appropriate degree of confidence in its predictions.

An appropriate utility for a task quantifies both the reward of correct predictions and the
risk associated with misprediction. Maximising an arbitrary utility function does not only
depend on a model’s predictive power (low entropy) but also its ability to correctly estimate
the uncertainty in a prediction (well-calibrated). Once we have verified that a model’s pre-
dictions are well-calibrated and have low entropy, we can be confident that the model will be
useful and reliable for arbitrary decision making tasks depending on the predicted variables.

1.3 Measuring calibration
This section formally defines a calibration measure based on [10], generalised to the case
of random variables instead of random events. Consider the set of all random variables
ℬ𝑡 observed up to time 𝑡 ∈ [1, ∞). Such that ℬ𝑡 ⊆ ℬ𝑡+1 and a subjective probability
distribution over all random variables 𝑃 (ℬ∞).

An expectation 𝑋̃𝑡 is formed at 𝑡 − 1 about a random variable 𝑋𝑡 ∈ ℬ𝑡 observed at time
𝑡 based on all previously observed information 𝑋̃𝑡 = 𝐸𝑃 (𝑋𝑡|ℬ𝑡−1)(𝑋𝑡). Consider a selection
of time instances where 𝜉𝑡 = 1 if the time instance 𝑡 is selected and 𝜉𝑡 = 0 otherwise. Let

𝜈𝑡 =
𝑡

∑
𝑖=1

𝜉𝑖, 𝑝𝑡 = 1
𝜈𝑡

𝑡

∑
𝑖=1

𝜉𝑖𝑋𝑖, 𝜋𝑡 = 1
𝜈𝑡

𝑡

∑
𝑖=1

𝜉𝑖𝑋̃𝑖. (1.2)

The subjective distribution over the random variables {𝑋𝑡|𝜉𝑡 = 1} is said be calibrated
if

lim
𝑡→∞

𝑝𝑡 − 𝜋𝑡 = lim
𝑡→∞

1
𝜈𝑡

𝑡

∑
𝑖=1

𝜉𝑖 (𝑋𝑖 − 𝑋̃𝑖) = 0, if lim
𝑡→∞

𝜈𝑡 = ∞. (1.3)

These random variables are measurable at time 𝑡 if 𝜉𝑡 ∈ ℬ𝑡. Because 𝜉 is a constructed
variable it must be sampled as 𝜉𝑡 ∼ 𝑃 (𝜉𝑡|ℬ𝑡−1) to be measurable at time 𝑡. This implies

𝜉𝑖 = 𝑃 (𝜉𝑡|ℬ𝑡−1) = 𝑓𝑖(ℬ𝑡−1). (1.4)

The constraint on 𝜉 ensures that the calibration test cannot depend on the outcome of
the random variable. Otherwise it would be trivial to construct a failing calibration test for
any model. For example, consider a Bernoulli model with 𝑝 = 0.5 for the outcome of a fair
coin toss. Let 𝜉𝑡 = 1 for each case of heads 𝑋𝑡 = 1. Clearly, the calibration condition (1.3)
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would not hold even for a fair coin, despite the fact the model describes the random process
perfectly. Thus, only calibration measures with 𝜉𝑡 ∼ 𝑃 (𝜉𝑡|ℬ𝑡−1) and 𝜈𝑡 → ∞ are admissible.

The constraint 𝜈𝑡 → ∞ ensures that the selected sample is infinite large such that any
random fluctuations in the observations are averaged out (due to finite variance). In practise,
we cannot fulfil this constraint and we must resort to a hypothesis test to determine if the
equality can be rejected with a certain degree of confidence.

1.3.1 The calibration theorem
Let 𝛽𝑡 = 1/𝜈𝑡 if 𝜈𝑡 > 0 and 𝛽𝑡 = 0 otherwise. Furthermore, let 𝑍𝑡 = 𝛽𝑡𝜉𝑡(𝑋𝑡 − 𝑋̃𝑡). Recall
that 𝑋̃𝑡 = 𝔼𝑃 (𝑋𝑡|ℬ𝑡−1)(𝑋𝑡) and therefore 𝐸(𝑍𝑡|ℬ𝑡−1)) = 0. The variance of 𝑍𝑡 reduces to
the second moment

𝔼 [𝑍2
𝑡 ] = 𝔼 [(𝛽𝑡𝜉𝑡)2Var(𝑋𝑖|ℬ𝑡−1)] ≤ 𝐶𝔼 [(𝛽𝑡𝜉𝑡)2] , (1.5)

where the Var(𝑋𝑖|ℬ𝑡−1) is assumed to have a finite upper bound 𝐶 . Let 𝑈𝑡 = ∑𝑡
𝑖=1 𝑍𝑖

which is a martingale because 𝔼(𝑍𝑡|ℬ𝑡−1)) = 0. Note that 𝔼[𝑋𝑡𝑋𝑡+𝑖] = 0 for 𝑖 ≥ 1.
Therefore,

𝔼 [𝑈 2
𝑡 ] =

𝑡

∑
𝑖=1

𝔼(𝑍2
𝑖 ) ≤ 𝐶

𝑡

∑
𝑖=1

𝔼 [(𝛽𝑖𝜉𝑖)2] . (1.6)

The non-zero elements of the sequence (𝛽𝑖𝜉𝑖)2 are {1/1, 1/22, 1/32, … }. Consequently,

𝐸 [𝑈 2
𝑡 ] ≤ 𝐶

∞

∑
𝑛=1

1
𝑛2 = 𝐶 𝜋2

6 (1.7)

By the martingale convergence theorem [13, VII.8 Theorem 1], 𝑈𝑡 converges almost
surely. Kronecker’s lemma implies 𝛽𝑡 ∑𝑡

𝑖=1 𝜉𝑡(𝑋𝑡 − 𝑋̃𝑡) → 0 for every point where 𝑈𝑡 con-
verges [10]. Hence, the calibration condition (1.3) holds almost surely under the distribution
𝑃 (ℬ∞) if Var(𝑋𝑖|ℬ𝑡−1) has a finite upper bound and 𝜈𝑡 → ∞. The condition on the variance
of 𝑋𝑖 can be loosened to

𝔼 [𝑈 2
𝑡 ] =

𝑡

∑
𝑖=1

𝔼 [(𝛽𝑡𝜉𝑡)2var(𝑋𝑖|ℬ𝑡−1)] < ∞. (1.8)

The calibration theorem implies that a predictive distribution with finite variance over
an arbitrary random will be perfectly calibrated for every admissible calibration test under
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the expectation of the model. When an admissible calibration test fails, it must be concluded
that the model does not accurately reflect the true random process that generated the data.

Although simple in essence, the calibration theorem requires careful interpretation. The
fact that a model expects itself to be well-calibrated provides no guarantees for the quality
of uncertainty estimates. It also does not imply that probabilistic models are inherently cali-
brated. In fact, a deterministic model is just a special case of a probabilistic model for which
all predictions have zero entropy. Even such a model is subjectively well-calibrated although
it provides no useful information about uncertainty (unless it never makes an error).

The strength of the calibration theorem lies in the implication that no calibration is im-
possible to pass. Utility based benchmarks rarely have a known upper bound. For example,
if it is assumed that there is no ambiguity in digit classification then any error rate greater
than 0% on MNIST must be considered suboptimal. However, if there is some ambiguity in
the labels then even the true model will not attain a perfect classification rate. Once classi-
fiers get close to the point where ambiguity dominates the error rate, the risk of overfitting
the test set increases. Recent work suggest that Neural Networks trained on popular public
datasets are prone to overfitting the test set [55]. Calibration tests could help alleviate this
issue which is otherwise inevitable for popular benchmarks. In the first place, by providing
an additional metric for the quality of the model. And secondly, because as opposed to utility
based benchmarks, calibration metrics always have a well-defined optimum.

The calibration theorem further implies that identifiable models are well-calibrated [10].
For identifiable models the posterior converges towards a delta at the true model parameters
and the remaining uncertainty is due to the randomness of the data generating process. It
is thus sufficient for a well-calibrated model to assign some prior probability to the true
model parameters. For example, a Bernoulli model for a (possibly unfair) coin toss is well-
calibrated as long as some prior probability is assigned to the true probability of tossing
heads.



Chapter 2

Bayesian Neural Networks

This chapter gives an overview of the methods used to perform (approximate) Bayesian In-
ference on the parameters of a Neural Network. Sec. 2.1 shows how a Bayesian interpretation
of stochastic optimisation and regularisation methods can partially explain how Neural Net-
works are able to generalise despite the abundance of poor local optima by doing approximate
Bayesian Inference and sampling. Sec. 2.2 discusses Dropout Variational Inference methods
which formalise the Bayesian interpretation of dropout.

Sec. 2.3 introduces the Bayes ByBackprop algorithmwhich learns amean-fieldGaussian
approximation to the posterior. Sec. 2.4 derives an alternative Dropout VI method using
multiplicative Gaussian noise which allows for the amount of regularisation to be optimised.
However, Gaussian dropout lacks has various technical issues. Sec. 2.5 proposes a new, well-
defined Gaussian VI method which uses both multiplicative and additive Gaussian noise and
can be interpreted as a generalisation of both Gaussian dropout and BBB. Sec. 2.6 introduces
a novel VI method based on sparse priors and argues how compression can result in well-
calibrated model.

Sec. 2.7 discusses posterior sampling using MCMC methods and Sec. 2.8 shows how
samples from the posterior can be used to obtain an approximation to the posterior predictive.

2.1 Bayes by accident
Traditionally, SGD has been considered as an optimisation algorithm which converges to a
local optimum undermild conditions and step size annealing [58]. However, guaranteed con-
vergence does not explain how neural networks typically generalise well beyond the training
set despite the abundance of poor local optima. First of all the optimiser might get stuck in
one of the many saddle points or local optima that are far from the global optimum [9, 17].
Secondly, a sufficiently complex classification model can learn an arbitrary labelling for a
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finite dataset. Empirical evidence shows modern neural networks generalise well despite
being powerful enough to learn arbitrary labelings [68].

We draw inspiration from both optimisation and Bayesian literature in order to make
Bayesian Neural Networks well-calibrated. Research in Neural Net optimisation is primarily
concerned with convergence speed and generalisation. From a Bayesian perspective we are
primarily concerned with finding a good approximation of Bayesian inference. This section
highlights some cases where these two approaches overlap.

2.1.1 Stochastic optimisation
Recent studies attempting to explain the tendency of SGD to converge towards a good local
optimum have shown that neural networks do not simply memorise the training labels [40].
Furthermore, it has been observed that the loss surface around the optimum found using
SGD is typically flat [26, 33]. The flatness of a local optimum ̂𝜃 is defined as

𝐹 ( ̂𝜃) = ∫
𝜃∈Θ

exp (log 𝑝(𝑋, ̂𝜃) + (𝜃 − ̂𝜃)𝑇 𝐻(𝜃 − ̂𝜃)) 𝑑𝜃 = 𝑝(𝑋, ̂𝜃) (2𝜋)𝑀/2√|𝐻|, (2.1)

where 𝐻 = ∇∇𝑇 log 𝑝(𝑋, ̂𝜃). Note that a prior 𝑝(𝜃) is essential to avoid ambiguity
because any optimum can be made arbitrary sharp by rescaling or reparameterisation of 𝜃
[12]. The local flatness as defined in (2.1) is the approximate model evidence 𝑝(𝑋) for the
posterior found when using a Laplace approximation at ̂𝜃.

From the Bayesian perspective a flat optimum corresponds to a larger model evidence.
Such a model should therefore be preferred over a model with a sharper optimum or equiv-
alently less (local) evidence. A flat optimum is more robust in the sense that a small pertur-
bation of the model parameters only has a small effect on the log-likelihood.

Empirical evidence shows that SGD prefers flat optima in particular when the batch size
is small because of additional noise in the stochastic gradient [33]. When the step size 𝜖 is
constant, SGD behaves as a Markov Chain that approximately samples the posterior around
a local mode [45]. In the idealised case, the stochastic gradient noise is approximately Gaus-
sian due to the CLT and the covariance is proportional to the Fisher Information ℐ , assuming
that the posterior is approximately gaussian 𝑃 (𝜃|𝑋) ≈ 𝒩 ( ̂𝜃, ℐ −1/𝑁)1 due to the Bernstein-
von Mises theorem [1, 59]

1For simplicity it is assumed that 𝑃 (𝜃|𝑋) ∝ 𝑃 (𝑋|𝜃) or equivalently 𝑃 (𝜃) ∝ 1.
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𝜃𝑡 = 𝜃𝑡−1 + 𝜖 𝑁
𝑛 ∇ log𝑃 (𝑋̃𝑡, 𝜃𝑡−1)

≈ 𝜃𝑡−1 + 𝜖∇ log𝑃 (𝑋, 𝜃𝑡−1) + 𝒩 (0, 𝜖2 𝑁2

𝑛 ℐ ) ,
(2.2)

where 𝑋𝑡 is a mini-batch of size 𝑛 and 𝑁 is the size of the complete training set 𝑋. Note
that ∇ log𝑃 (𝑋, 𝜃𝑡−1) ≈ 𝑁ℐ ( ̂𝜃 − 𝜃𝑡). Using (𝑁ℐ )−1 to precondition the optimiser yields

𝜃𝑡 = 𝜃𝑡−1 + 𝜖 1
𝑛ℐ −1∇ log𝑃 (𝑋̃𝑡, 𝜃𝑡−1)

≈ 𝒩 (𝜃𝑡; ̂𝜃, ℐ −1) ,
(2.3)

where 𝜖 = 𝑛 such that the sequence 𝜃𝑡 are independent samples from the approximate
posterior. For an elaborate discussion on the stationary distribution of SGD with a constant
step size see [45]. Sec. 2.7 will discuss how SGD can be extended such that it samples
from the posterior in the general case, which allows for a Bayesian treatment of the model
parameters.

In practice, SGD is used to obtain a point estimate of the model parameters despite its
Bayesian interpretation. A small batch size and fixed learning ratemeans that a point estimate
is not necessarily approximating a posterior mode and is instead likely to be a sample from
a region of high probability or flat mode. However, SOTA neural network models typically
still overfit the training data and are consequently strongly miscalibrated without additional
regularisation [63].

2.1.2 Variational Inference
Traditional regularisation techniques like L2 regularisation correspond to defining a non-
uniform prior over the model parameters. Therefore, these techniques are consist with the
Bayesian treatment of uncertainty. In contrast, stochastic regularisation techniques like
dropout [63], multiplicative/additive Gaussian noise [35, 7], and batch normalisation [28]
cannot be encapsulated in the prior 𝑝(𝜃).

Stochastic regularisation injects noise into the output of hidden layers or the model pa-
rameters which is referred to as the local and global noise parameterisation, respectively.
For example, dropout can be implemented by drawing Bernoulli distributed random num-
bers 𝜀𝑖 ∼ ℬ(𝜀𝑖; 𝑝) and multiplying with either the outputs of hidden units 𝑧′

𝑖 = 𝜀𝑖𝑧𝑖 (local
parameterisation) or the row of weights that generated the output 𝑊 ′

𝑖 = 𝜀𝑖𝑊𝑖 (global param-
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eterisation). The two methods are equivalent when the batch size is 1. However, for larger
batch sizes the global method uses the same noise vector 𝜀 for each batch item. The local
parameterisation therefore has lower variance [35].

ELBO

Consider approximating an intractable posterior 𝑝(𝜃|𝑋) with the distribution 𝑞𝜙(𝜃). Fur-
thermore, assume 𝑞𝜙(𝜃) can be reparameterised as 𝑞𝜙(𝜃) = 𝑝(𝜃|𝜀, 𝜙)𝑝(𝜀), where 𝑝(𝜃|𝜀, 𝜙) =
𝛿(𝜃 − 𝑔(𝜀, 𝜙)). The objective ℒ(𝜙) is to minimise the KL-divergence between 𝑝(𝜃|𝑋) and
𝑞𝜙(𝜃):

ℒ(𝜙) = KL[𝑞𝜙(𝜃)||𝑝(𝜃|𝑥)] = 𝔼𝑞𝜙(𝜃) [log
𝑞𝜙(𝜃)

𝑝(𝑋, 𝜃)] + 𝐶. (2.4)

Stochastic optimisation requires an unbiased estimator for ∇ℒ(𝜙). However, the ex-
pectation depends of 𝜙, hence the derivative operator cannot be moved into the expectation
naively [7]. Using the reparameterisation in terms of 𝜀 yields

ℒ(𝜙) = 𝔼𝑝(𝜀) [log
𝑞𝜙(𝜃 = 𝑔(𝜀, 𝜙))

𝑝(𝑋, 𝜃 = 𝑔(𝜀, 𝜙))] . (2.5)

In this form the derivative can be moved inside the expectation and a mini-batch can
be used because the expectation is linear in the data. Thus, the unbiased estimator for the
gradient is

∇ℒ(𝜙) = 1
𝑛

𝑛

∑
𝑖=1

∇𝜙 [log 𝑞𝜙(𝜃 = 𝑔(𝜀𝑖, 𝜙)) − 𝑁 log 𝑝(𝑋𝑖, 𝜃 = 𝑔(𝜀𝑖, 𝜙))] , (2.6)

where 𝑋𝑖 is a randomly sampled training example and 𝜀𝑖 ∼ 𝑝(𝜀). If the KL divergence
w.r.t. the prior can be computed analytically an estimator with lower variance is

∇ℒ(𝜙) = 1
𝑛

𝑛

∑
𝑖=1

∇𝜙 [log 𝑞𝜙(𝜃 = 𝑔(𝜀𝑖, 𝜙)) − 𝑁 log 𝑝(𝑋𝑖|𝜃 = 𝑔(𝜀𝑖, 𝜙))]

+ ∇KL[𝑞𝜙(𝜃)||𝑝(𝜃)].
(2.7)

Variational Inference for Neural Networks using global reparameterisation was first pro-
posed using a factorised gaussian distribution [7]. A similar algorithmwithout reparameteri-
sation was introduced in [19] by using the characteristic function of the Gaussian distribution
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to derive unbiased estimators. Reparameterisation based estimators of the gradient are found
to have significantly lower variance in practise [14].

Minimising the KL of the variational distribution w.r.t. the posterior is equivalent to
maximising the Evidence Lower Bound (ELBO) [36]

log 𝑝(𝑋) ≥ 𝔼𝑞𝜙(𝜃)[log 𝑝(𝑋|𝜃)] − KL[𝑞𝜙(𝜃)||𝑝(𝜃)]. (2.8)

Based on the asymmetry of the KL divergences it has been argued that the reverse KL that
is minimised in VI only covers a local mode rather than approximating the entire posterior
[23]. Because the approximation of the posterior concentrates around a mode it is likely to
underestimate uncertainty [65]. However, the experiments in Chap. 4 will demonstrate that
for Bayesian Neural Networks the ELBO objective actually tends to significant underfit the
data.

Note that the summation in (2.7) is the same as the gradient of the maximum likelihood
objective if 𝑞𝜙(𝜃) is a constant in terms of 𝜙. Furthermore, the prior can be chosen in such a
way that ∇𝜙KL[𝑞𝜙(𝜃)||𝑝(𝜃)] coincides with the gradient of a traditional regularisation term
like L2. Therefore, stochastic maximum likelihood optimisation with L2 normalisation and
dropout can be interpreted as a form of Variational Inference [15]. Dropout Variational
Inference does not require additional parameters like Gaussian Variational Inference and is
able to encode some of the covariance in the weights of a single feature2.

2.2 Dropout Variational Inference
Consider the form of (2.7) for Dropout Variational Inference [14]. The approximate posterior
𝑞𝜙(𝜃) is defined as

𝜀𝑖 ∼ ℬ(𝜀𝑖; 1 − 𝑝𝑑𝑟𝑜𝑝,𝑖), 𝑝(𝜃𝑖|𝜀, 𝜙) = 𝛿(𝜃𝑖 − 𝜀𝑖𝜙𝑖), (2.9)

where 𝜃𝑖 is the set of weights such that the output of a hidden unit activation before
dropout 𝑧𝑖 = 𝑥𝑇

𝑖 𝜃𝑖. For a Bayesian Neural Network with a prior 𝑝(𝜃) = ∏ 𝑝(𝜃𝑖), the gradient
of the KL term3 in (2.7) reduces to

2A feature either means a convolutional filter for CNNs or a hidden unit in a fully connected layer.
3The KL divergence is ill-defined because the variational distribution consists of point masses and the prior

is a continuous distribution. In [14] it is shown that the gradient can be computed by defining the Bernoulli
distribution as 𝑝(𝜖) = 𝑝𝒩 (0, 𝜎2) + (1 − 𝑝)𝒩 (1, 𝜎2) with 𝜎2 → 0. However, this implicitly assumes that we
may take the gradient of a diverging limit.
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∇KL[𝑞𝜙(𝜃)||𝑝(𝜃)] = − ∑
𝑖

∇𝔼𝑞𝜙(𝜃𝑖) [log 𝑝(𝜃)]

= − ∑
𝑖

∇𝔼𝑝(𝜀𝑖)[log 𝑝(𝜀𝑖𝜙𝑖)]

= −(1 − 𝑝𝑑𝑟𝑜𝑝,𝑖) ∑
𝑖

∇ log 𝑝(𝜙𝑖).

(2.10)

From (2.10) it is trivial to find the the prior of a typical regularisation term and vice versa.
For example, a L2 weight penalty 𝛼 ‖𝜃‖2

2 /2 corresponds to a Gaussian prior

𝑝(𝜃𝑖) = 𝒩 (𝜃𝑖; 0, 1
𝛼

1
1 − 𝑝𝑑𝑟𝑜𝑝,𝑖 ) . (2.11)

Thus, optimising a Neural Network with dropout and some regularisation of the weights
can be interpreted as performing Variational Inference with a prior defined by (2.10).

2.2.1 alpha-divergence
The exclusiveKL-divergenceKL[𝑞||𝑝] used in the derivation ofVariational Inference favours
matching a small region around a posterior mode (zero-forcing) [23, 41]. In contrast, the in-
clusive KL-divergence KL[𝑝||𝑞] requires 𝑞(𝜃) > 0 when 𝑝(𝜃) > 0 otherwise KL[𝑝||𝑞] = ∞
(zero-avoiding). As a result 𝑞 must cover the entire posterior and is penalised for how well
it fits the posterior globally.

Ideally, a controllable trade-off should be made between precisely covering a local, high
probability region of the posterior and approximately covering the posterior as a whole.
Therefore, consider instead the Amari’s 𝛼-divergence D𝛼[𝑝||𝑞] [2] which is defined as

𝐷𝛼[𝑝||𝑞] = − 1
𝛼(1 − 𝛼) (1 − ∫ 𝑝(𝜃)𝛼𝑞(𝜃)1−𝛼𝑑𝜃) , 𝛼 > 0. (2.12)

Amari’s 𝛼-divergence has the exclusive and inclusive KL divergence as limiting cases:

lim
𝛼→0

𝐷𝛼[𝑝||𝑞] = KL[𝑞||𝑝],

lim
𝛼→1

𝐷𝛼[𝑝||𝑞] = KL[𝑝||𝑞].
(2.13)

For Bayesian Neural Networks the integral in (2.12) has no closed form solution and is
approximated using a Monte Carlo estimate. When sampling from 𝑞(𝜃), the MC estimator
for (2.12) computes
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𝐷̃𝛼[𝑝||𝑞] = − 1
𝛼(1 − 𝛼) (1 − 𝔼𝑞(𝜃) [(

𝑝(𝜃)
𝑞(𝜃))

𝛼

]) (2.14)

The reformulation in (2.14) is exact for 0 < 𝛼 < 1. However, for the limit 𝛼 → 1, the
approximation yields

lim
𝛼→1

𝐷̃𝛼[𝑝||𝑞] = KL[𝑝∗||𝑞], 𝑝∗(𝜃) =
⎧⎪
⎨
⎪⎩

𝑝(𝜃) 𝑞(𝜃) > 0
0 otherwise

. (2.15)

Thus, the MC alpha-divergence generalises the inclusive KL if 𝑝(𝜃) and 𝑞(𝜃) are defined
on the same support4. For Dropout Variational Inference this condition clearly does not
hold in general because the support of 𝑞(𝜃) exists of a finite number of points whereas 𝑝(𝜃)
is typically dense.

Minimising the alpha-divergence 𝐷𝛼[𝑝(𝜃|𝑋)||𝑞𝜙(𝜃)] directly is difficult because it re-
quires an unbiased estimator of 𝑝(𝑋|𝜃)𝛼 which is only possible when using the full dataset
𝑋 or with product estimators like the Poisson estimator.

Alternatively, the alpha-divergence can be minimised locally which results in the loss
being linear in the likelihood terms. The local divergence quantifies the average impact that
a likelihood term 𝑝(𝑋𝑖|𝜃) has on the posterior. The local approximation originates from
the Expectation Propagation algorithm where all posterior factor {𝑝(𝑋𝑖|𝜃)}𝑖 and 𝑝(𝜃) are
approximated by a separate function 𝑞𝑖

𝜙(𝜃).
For Neural Networks this is unpractical because it is impossible to store a distribution

over the parameters for every example in the training set [23]. Therefore, a single function
𝑞𝑖

𝜙(𝜃) = 𝑞𝜙(𝜃)1/𝑁 is used for all factors instead. The objective reduces to

ℒ𝛼(𝜙) = − 1
𝛼

𝑁

∑
𝑖=1

log𝔼𝑞𝜙(𝜃) [(
𝑝(𝑋𝑖|𝜃)𝑝(𝜃)1/𝑁

𝑞𝜙(𝜃)1/𝑁 )

𝛼

]
. (2.16)

The loss function in (2.16) is known as the BB-𝛼 energy [23]. For dropout VI we cannot
immediately optimise (2.16) because the infinite entropy caused by the Dirac deltas in the
variational distribution 𝑞𝜙(𝜃) cannot be isolated from the finite density terms.

An approximation of (2.16) proposed in [41] is derived by introducing a reparameteri-
sation of the variational distribution

𝑞𝜙(𝜃) = 1
𝑍 ̃𝑞𝜙(𝜃) (

̃𝑞𝜙(𝜃)
𝑝(𝜃) )

𝛼
𝑁−𝛼

, (2.17)

4More precisely, the MC alpha-divergence generalises the inclusive KL when 𝑝(𝜃) = 0 whenever 𝑞(𝜃) = 0.
Hence, the measure 𝑑𝑝 must be absolutely continuous w.r.t. 𝑑𝑞.
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where 𝑍 is the normalisation constant of 𝑞𝜙(𝜃). Substituting (2.17) into the the BB-𝛼
energy (2.16) yields

ℒ𝛼(𝜙) = − 1
𝛼

𝑁

∑
𝑖=1

log∫ 𝑞𝜙(𝜃)1− 𝛼
𝑁 𝑝(𝑋𝑖|𝜃)𝛼𝑝(𝜃)

𝛼
𝑁 𝑑𝜃

= 𝑁 − 𝛼
𝛼 log𝑍 − 1

𝛼

𝑁

∑
𝑖=1

log∫ ̃𝑞𝜙(𝜃)𝑝(𝑋𝑖|𝜃)𝛼𝑑𝜃

= 𝑅𝛽[ ̃𝑞(𝜃)||𝑝(𝜃)] − 1
𝛼

𝑁

∑
𝑖=1

𝔼 ̃𝑞𝜙(𝜃)[𝑝(𝑋𝑖|𝜃)𝛼], 𝛽 = 𝑁
𝑁 − 𝛼 ,

(2.18)

where 𝑅𝛽[.] is the Rényi divergence [56] which is defined as

𝑅𝛼[𝑝||𝑞] = 1
𝛼 − 1 ∫ 𝑝(𝜃)𝛼𝑞(𝜃)1−𝛼𝑑𝜃. (2.19)

Just like the Amari’s 𝛼-divergence, the inclusive KL-divergence is a limiting case of the
Rényi divergence

lim
𝛼→1

𝑅𝛼[𝑝||𝑞] = 𝐾𝐿[𝑝||𝑞]. (2.20)

Because 𝑁
𝑁−𝛼 → 1 and 𝑞𝜙(𝜃) → ̃𝑞𝜙(𝜃) as 𝑁 → ∞, [41] proposes to approximate (2.18)

by

ℒ𝛼(𝜙) ≈ KL[𝑞𝜙(𝜃)||𝑝(𝜃)] − 1
𝛼

𝑁

∑
𝑖=1

log𝔼𝑞𝜙(𝜃)[𝑝(𝑋𝑖|𝜃)𝛼]. (2.21)

The approximation of the BB-𝛼 loss makes it possible to extend dropout VI to (local)
𝛼-divergences. The loss in (2.21) differs from the VI objective (2.5) only in the likelihood
term. For 𝛼 → 0, the BB-𝛼 loss (2.21) reduces to the VI loss (2.5). The loss in (2.21) can
be minimised by using SGD with either the local or global reparameterisation trick. Using
a MC estimate for the expectation does however lead to a biased estimator of the gradient.
Empirical results show that the bias is small compared to the variance [23].

For 0 < 𝛼 < 1 the solution found by BB-𝛼 can be interpreted as a trade-off between a
zero-forcing and zero-avoiding posterior approximation. Based on empirical observation of
the test accuracy for various 𝛼-divergences, it has been suggested that 𝛼 = 0.5 works well in
practise [23].
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2.2.2 Shortcomings
Dropout variational inference is found to be a simple and effective technique to reduce over-
fitting and improve test accuracy [15, 41, 46]. However, It has also been demonstrated that
Dropout VI can lead to pathological uncertainty estimates [52]. Dropout VI is unable to
model posterior concentration which makes its use problematic for applications where cali-
bration is critical5.

The lack of posterior concentration is best understood from a simple counterexample.
Consider the VI optimisation objective for a dataset 𝑋′ which consists of 𝑁 copies of the
original dataset 𝑋 and a (nearly) uniform prior. The new objective becomes

ℒ(𝜙) = 𝔼𝑞𝜙(𝜃)[ log 𝑞𝜙(𝜃)⏟⏟⏟⏟⏟
entropy

− 𝑁 log 𝑝(𝑋|𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
likelihood

]. (2.22)

The true posterior 𝑝(𝜃|𝑋) ∝ 𝑝(𝑋|𝜃)𝑁 and will thus concentrate around the mode(s) of
the posterior as 𝑁 → ∞. The entropy term for Dropout VI is constant and therefore ̂𝜙 =
argmaxℒ(𝜙) does not depend on 𝑁 . Hence, the posterior approximation will always try to
find themaximum likelihoodmodel that can be represented by the noisymodel irrespectively
of how concentrated the true posterior is. The only regularisation comes from the prior and
the variational distribution used in Dropout VI which cannot represent aMAP approximation
𝑞(𝜃) = 𝛿(𝜃 − ̂𝜃) because some probability mass is always assigned to 𝜃𝑖 = 0.

2.3 Bayes By Backprop
An alternative approach to Dropout VI is Bayes By Backprop [7] which aims to learn a fully
factorised Gaussian approximation of the posterior. Previous attempts to learn a Gaussian
approximation did not make use of reparameterisation trick [19] and were therefore not com-
petitive with Dropout VI due to large variance in the gradient estimate.

Note that a Gaussian distribution 𝜃𝑖 ∼ 𝒩 (𝜇𝑖, 𝜎2
𝑖 ) can be reparameterised as

𝜃 = 𝑔𝜙(𝜖) = 𝜖 ⊙ 𝜎 + 𝜇, 𝜖 ∼ 𝒩 (0, 𝐼). (2.23)

Using the ELBO objective (2.8) yields

log 𝑝(𝑋) ≥ ℒ(𝜙) = 𝔼𝜖∼𝒩 (0,𝐼) [log 𝑝(𝑋|𝜃) + log 𝑝(𝜃)
𝑞𝜙(𝜃)] . (2.24)

5More generally, the argument that follows holds for any family of distributions 𝑞𝜙(𝜃) where the entropy
𝔼[− log 𝑞𝜙(𝜃)] is invariant w.r.t. the variational parameters 𝜙.
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Various MC estimators can be used to obtain a stochastic gradient for the objective.
The simplest and most flexible approach is to use the global reparameterisation trick (2.23).
Alternatively, the prior can be restricted to a family of distribution for which the KL term of
the ELBO (2.24) can be computed analytically. The variance of the estimate can be reduced
further by using the local reparameterisation of the Gaussian noise

𝑧′
𝑗 = 𝜃𝑇

𝑗 𝑧 = 𝜇𝑇
𝑗 𝑧 +

√∑
𝑖

𝑧2
𝑖 𝜎2

𝑗𝑖 𝜖𝑗 , 𝜖𝑗 ∼ 𝒩 (0, 1), (2.25)

where 𝑧′ are the new activations before applying non-linearities and 𝑧 is the input of the
layer.

The main benefits of BBB is that the variational distribution has full support resulting in
a finite, well-defined ELBO and the adjustable noise which allows for the posterior approx-
imation to concentrate when the amount of data increases. A drawback of BBB is that no
correlation between weights is captured in the approximate posterior.

2.3.1 Pathological optima
The flexible entropy of BBB does not immediately result in well-calibrated Bayesian Neural
Nets. The optima found by BBB strongly depend on the initialisation of the variances and
the choice of prior. The effect remains largely undocumented but seems to be caused by the
KL term which is typically at least an order of magnitude larger than the likelihood term in
(2.24).

Optimisation of the ELBO objective tends to result in a posterior approximation with
too much variance leading to significantly underconfident predictions. This phenomenon
has been attributed to the bias in BBB and VI methods in general to learn a variational
distribution that overfits the prior and ignores the data, causing many weights to have zero
mean and variance close to the prior variance [64]. The experiments in Chap. 4 will show
that this effect has significant negative consequences for calibration.

2.4 Variational Gaussian Dropout
An alternative Gaussian variational distribution is multiplicative Gaussian noise which can
be interpreted as a variation of dropout. In Gaussian dropout the weights of each feature are
multiplied with Gaussian noise centred at zero

𝜃𝑖 = 𝜖𝑖𝜇𝑖 ∼ 𝒩 (𝜇, 𝜎2
𝑖 𝜇𝑖𝜇𝑇

𝑖 ), 𝜖𝑖 ∼ 𝒩 (1, 𝜎2
𝑖 ). (2.26)
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Note that the distribution over the weights is degenerate because the covariance matrix is
not full rank. The derivation of Gaussian VI that follows is based on [35]. It is important to
note that the derivation is by no means rigorous. It contains numerous technical issues [27]
and should therefore be treated as a intuitive motivation rather than a proof of correctness.

The variational entropy term is given by6

− 𝔼[log 𝑞𝜙(𝜃)] = ∑
𝑖

−𝔼𝜖𝑖[log 𝑝(𝜖𝑖)] + ∑
𝑗

log |𝜇𝑖𝑗| (2.27)

The prior for Gaussian Dropout VI is implicit. That is KL[𝑞(𝜃)||𝑝(𝜃)] is constant in 𝜇.
Consider the prior log 𝑝(𝜃𝑖𝑗) = − log |𝜃𝑖𝑗| + log(𝑐/2) for −1/2𝑐 < log |𝜃𝑖𝑗| < 1/2𝑐. The KL
term in the ELBO (2.8) reduces to7

− KL[𝑞(𝜃)||𝑝(𝜃)] = ∑
𝑖

−𝔼𝜖𝑖[log |𝜖𝑖|] + log 𝜎𝑖 + 𝐶 (2.28)

The term 𝔼𝜖𝑖[log |𝜖𝑖|] is intractable but can be well-approximated by a third order poly-
nomial 8 w.r.t. 𝜎2 [35]

− KL[𝑞(𝜃)||𝑝(𝜃)] ≈ ∑
𝑖

log 𝜎𝑖 + 𝑐1𝜎2
𝑖 + 𝑐2𝜎4

𝑖 + 𝑐3𝜎6
𝑖 , (2.29)

where the constants are given by

𝑐1 = 1.16145124, 𝑐2 = −1.50204118, 𝑐3 = 0.58629921. (2.30)

The variance of the multiplicative noise 𝜎𝑖 fulfils a similar function as the dropout prob-
ability in Bernoulli dropout. Additionally, a derivative of the ELBO w.r.t. 𝜎𝑖 can be com-
puted and it is therefore possible to let 𝜎𝑖 be a variational parameter as opposed to a hyper-
parameter.

6The density of 𝑞𝜙(𝜃) is taken w.r.t. the Lebesgue measure 𝑑𝜇, the line in the direction of the weight vector
going through the origin. Defining the density w.r.t. 𝑑𝜃, as appropriate, would cause the density to be ∞ on
the line defined by 𝜇. Consequently, the entropy term would diverge to −∞ similar to what was previously
observed in Bernoulli Dropout VI where it was denoted with Dirac delta functions.

7The ELBO is ill-defined due to the diverging entropy term which causes the bound to be uninformative
log 𝑝(𝑋) ≥ −∞. The diverging term is constant in the parameters and is therefore ignored such that we can
still derive an optimisation procedure and a finite objective.

8In [35] it is argued that −𝔼𝜖𝑖
[log |𝜖𝑖|] is strictly positive. However, more recent work has shown that this is

not the case [47]. Therefore, this approximation becomes increasingly poor as 𝜎 → ∞. A better approximation
is proposed in [47] which unfortunately could not be incorporated into the experiments because the flaw in [35]
was discovered in the final stage of the project.
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The dropout rate 𝑝𝑖 and multiplicative Gaussian noise 𝜎𝑖 can be related by matching
moments. Consider the dropout operation to be a mask 𝜖𝑖 ∼ ℬ(1 − 𝑝𝑖) and the activations
after dropout 𝑧′

𝑖 = 𝑧𝑖 ⊙ 𝜖𝑖/(1 − 𝑝). Computing moments of Bernoulli dropout yields

𝔼[𝑧′
𝑖 ] = 𝑧𝑖,

Var[𝑧′
𝑖 ] = 𝑧2

𝑖
𝑝𝑖

1 − 𝑝𝑖
.

(2.31)

Thus, a network with Bernoulli dropout masks ℬ(1 − 𝑝𝑖) has approximately the same
amount of stochastic regularisation as a Gaussian dropout network with 𝜎2

𝑖 = 𝑝𝑖/(1 − 𝑝𝑖)
[63].

In [35], a constraint on the injected noise 𝜎2 < 1 was used to avoid the variational
distribution from moving to full sparsity. Follow up research showed that the constraint was
necessary due to errors in the approximation of the KL term (2.29) [47].

2.5 Dropout-BBB
The BBB algorithm demonstrates how Variational Inference can provide a sound approxi-
mate Bayesian Inference technique which can be used in combination with Stochastic Gradi-
ent Ascent. Unfortunately, BBB often does not work as well as dropout VI methods [46]. In
contrast, Gaussian and Bernoulli dropout offer good generalisation performance in practise
but suffer from a degenerate ELBO due to a mismatching support with the posterior and
prior distributions. One possible bottleneck of BBB is the lack of weight correlation in BBB
because it uses a fully-factorised distribution to keep time and memory complexity linear in
the number of weights.

Thus, we aim to induce a full rank Gaussian distribution over the weights that has some
correlations. Furthermore, the variational distribution should allow for a linear parameteri-
sation in the number of weights, and linear time sampling and pdf evaluation. Most Gaussian
VI methods fail on one of these criteria. For example, BBB has no correlations, Gaussian
Dropout is not full rank, and more recent approaches like [44] do not allow exact linear pdf
evaluation.

Recall that the Gaussian dropout VI defines a degenerate Gaussian distribution over the
weights 𝑝(𝜃𝑖) = 𝒩 (𝜇, 𝜎2

𝑖 𝜇𝑖𝜇𝑇
𝑖 ). The covariance matrix can be made full-rank by adding a

diagonal matrix 𝒩 (𝜇, Σ = 𝛼2𝜇𝜇𝑇 + 𝐴) with 𝐴𝑖𝑖 = 𝜎2
𝑖 and 𝐴𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Thus, the Vari-

ational distribution over the weights consists of a mean which is multiplied with Gaussian
noise 𝜖 ∼ 𝒩 (1, 𝛼2) and independent Gaussian noise 𝒩 (0, 𝐴). The Variational distributions
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of BBB and Gaussian dropout are special cases of this distribution. Not however that the
ELBO is finite for 𝛼2 = 0 but diverges for |𝐴| → 0.

Sampling from this distribution is possible with both the global and local reparameteri-
sation trick

𝜃𝑗 = (1 + 𝛼𝑗𝜖(𝑚)
𝑗 )𝜇𝑗 + 𝜖(𝑎)

𝑗 ⊙ 𝜎𝑗 , 𝜖(𝑚)
𝑗 ∼ 𝒩 (0, 1), 𝜖(𝑎)

𝑗 ∼ 𝒩 (0, 𝐼), (2.32)

𝑧′
𝑗 = 𝜃𝑇

𝑗 𝑧 = 𝜇𝑇
𝑗 𝑧 +

√
(𝛼𝑗𝜇𝑇

𝑗 𝑧)2 + ∑
𝑖

𝜎2
𝑗𝑖𝑧2

𝑖 𝜖𝑗 , 𝜖𝑗 ∼ 𝒩 (0, 1). (2.33)

Evaluating the ELBO requires the log-likelihood of the weights

log 𝑞𝜙(𝜃) = −𝐷
2 log 2𝜋 − 1

2 log |Σ| − 1
2(𝜃 − 𝜇)𝑇 Σ−1(𝜃 − 𝜇), (2.34)

The inverse of the covarianceΣ−1 can be expressed analytically by the Sherman–Morrison
formula

Σ−1 = 𝐴−1 − ̃𝜇 ̃𝜇𝑇

1 + 𝛼 ̃𝜇𝑇 𝜇 , ̃𝜇 = 𝛼 𝜇
𝜎2 . (2.35)

Applying the matrix determinant lemma yields the log determinant of the covariance

log |Σ| = log |𝐴| + log (1 + 𝛼2𝜇𝑇 𝐴−1𝜇)

=
𝐷

∑
𝑖=1

log 𝜎2
𝑖 + log 𝛾, 𝛾 = 1 + 𝛼2

𝐷

∑
𝑖=1

𝜇2
𝑖

𝜎2
𝑖

(2.36)

Substituting (2.35) into (2.34) yields

log 𝑞𝜙(𝜃) = −1
2

⎛
⎜
⎜
⎝
𝐷 log 2𝜋 + log |Σ| − ([𝜃 − 𝜇]𝑇 ̃𝜇𝑖)

2

𝛾 +
𝐷

∑
𝑖=1

(𝜃𝑖 − 𝜇𝑖)2

𝜎2
𝑖

⎞
⎟
⎟
⎠

. (2.37)

Thus, the log likelihood reduces to an expression that can be evaluated in linear time
w.r.t. the number of parameters.

A disadvantage of this approach is that the multiplicative noise does not affect the addi-
tive noise (2.32). Sec. 2.6.3 defines an alternative approach which multiplies the activations
after additive noise by introducing additional model parameters.
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2.6 Sparse Variational Inference
Variational Inference was originally used for improving test accuracy and uncertainty esti-
mates. However, it can be equally useful for compressing a network such that it can be stored
using less memory or evaluated with less floating point operations [43, 47]. Sec. 2.6.1 in-
troduces the idea of compression priors which are meant to induce sparsity in the network
parameters. Sec. 2.6.2 and Sec. 2.6.3 introduces two VI methods which are designed to infer
a sparse distribution over the model parameters.

2.6.1 Compression priors
The scale invariant prior (2.29) is no longer necessary to cancel out the vanishing entropy
for weights close to zero because in this case the additive noise will dominate. Still a scale
invariant prior is appealing because a Gaussian prior 𝑝(𝜃) = 𝒩 (0, 𝜎2

𝑝) either causes the
weights to shrink for small 𝜎2

𝑝 or promotes large variances in the posterior approximation
due to the KL term in the ELBO (2.8).

Note that the scale invariant prior can be interpreted as an improper mixture of Gaussians

𝑝(𝜃) ∝
∞

∫
𝜎=0

1
𝜎 𝒩 (𝜃; 0, 𝜎2)𝑑𝜎 ∝ 1

|𝜃| . (2.38)

In this form (2.38) the scale invariant prior can be related to a family of sparsity inducing
priors [43]

𝑝(𝜃) =
∞

∫
𝜎=0

𝑝(𝜎)𝒩 (𝜃; 0, 𝜎2)𝑑𝜎. (2.39)

Various well known compression priors are special cases of (2.39). For example 𝑝(𝜎) =
0.5𝛿(𝜎 − 𝜎1) + 0.5𝛿(𝜎 − 𝜎2) with 𝜎1 ≪ 𝜎2 corresponds to a spike-and-slab prior which
was found to be an effective prior in the original work on the BBB algorithm [7]. If we let
𝑝(𝜎2) = Exponential(1) then 𝑝(𝜃) = Laplace(0, 1/√2).

Although conceptually simple, the spike-and-slab prior can be seen as a continuous re-
laxation of an 𝐿0 norm which becomes less smooth as 𝜎1 → 0. This makes training with
a spike-and-slab prior difficult due to strong non-convexity [48]. Therefore, we propose to
generalise the spike-and-slab by discretisation of the scale-invariant prior (2.38)



2.6 Sparse Variational Inference 21

𝑝(𝜎) = 1
∑𝑛

𝑖=1 𝜃−𝑇
𝑖

𝑛

∑
𝑖=1 (

1
𝜎𝑖 )

𝑇
𝛿(𝜎 − 𝜎𝑖), 𝜎1 < 𝜎2 < ⋯ < 𝜎𝑛 (2.40)

The regularisation term in (2.8) will be minimised by learning a distribution where
many weights have mean 0 and variance close to 𝜎1. These weights will have no signifi-
cant contribution to the output of the network and could therefore be pruned away. Prun-
ing/compression is not the goal of this work. However, we find that picking a prior naively
leads to a regularisation term that is at least an order of magnitude larger than the likelihood
term. In this setup the ELBO can often be maximised trivially by minimising the KL term
which results in a network that does not learn anything about the data.

Many weights in a well-trained neural network can be pruned away without affecting the
accuracy [11]. Thus, a smaller network will result in a smaller KL term such that maximi-
sation of the ELBO is more likely to be dominated by finding a good fit for the data.

2.6.2 Gauss-Gamma Variational Inference
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Fig. 2.1 A non-central Gauss-Gamma distribution (𝜇 = 1, 𝜎2 = 1, 𝛼 = 1, and 𝛽 = 1/2)
together with a Laplace and Gaussian distribution.

The decomposition in (2.39) can be taken a step further by considering the scale 𝜎2 and
the Gaussian noise as separate model parameters

𝜃 = 𝑥√𝑧, 𝑝(𝑥, 𝑧) = 𝒩 (𝑥; 𝜇𝑝, 𝜎2
𝑝 )𝒢 (𝑧; 𝛼𝑝, 𝛽𝑝), (2.41)
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where 𝜃 is no longer a model parameter and the variance 𝑧 is constraint to follow a
Gamma distribution. This parameterisation allows a rich family of priors. We will consider
only central priors 𝜇𝑝 = 0 which makes the variance of Gaussian distribution redundant
𝜎2

𝑝 = 1. For example, a Laplace prior 𝑝(𝜃) = Laplace(0, 𝑏) can be realised with 𝛼𝑝 = 1 and
𝛽𝑝 = 2𝑏2. The scale invariant is an improper limiting case with 𝛼𝑝, 𝛽𝑝 → 0.

A variational approximation can be defined as

𝑞𝜙(𝑥, 𝑧) = 𝒩 (𝑥; 𝜇, 𝜎2)𝒢 (𝑧; 𝛼, 𝛽) (2.42)

The Gauss-Gamma variational distribution (2.42) has an interesting sparsity property as
can be seen in Fig. 2.1which shows a non-central GammaGaussian distribution together with
a Gaussian an Laplace distribution. The distribution concentrates most of its weight around
zero even for non-central parameterisations. Thus, this variational distribution favours sparse
networks. A Gaussian or Laplace variational distribution is unable to capture a distribution
with non-zero mean with most of its mass around zero.

The reparameterisation of 𝜃 further allows an easy extension to group sparsity

𝜃𝑖 = 𝑥𝑖√𝑍𝑧𝑖, 𝑝(𝑥𝑖, 𝑧𝑖) = 𝒩 (𝑥; 0, 1)𝒢 (𝑧; 𝛼𝑝, 𝛽𝑝), 𝑝(𝑍) = 𝒢 (𝑍; 𝐴𝑝, 𝐵𝑝), (2.43)

where 𝜃𝑖𝑖 are the weights for a single feature or filter. The variational distribution is the
same as (2.42) with an additional Gamma distribution over 𝑍.

Gauss-GammaVI has a more flexible variational distribution compared to Dropout-BBB
and allows for the KL term to be expressed in closed form for any (sparse) prior of the form
(2.43). Unlike Dropout-BBB the multiplicative noise is treated as a separate model param-
eter. The over-parameterisation of Gauss-Gamma VI might result in worse approximation
despite the increased flexibility.

Gauss-GammaVariational Inference is related to groupBayesian compression [43]which
uses a Normal prior on the weights 𝑥 and a scale invariant or horseshoe prior on 𝑍 with a
Normal and Log-Normal variational distribution on 𝑥 and 𝑍, respectively.

2.6.3 Bayesian Compression
Recent work has shown that VI can be used to achieve competitive results on model com-
pression [47, 43]. Variational Inference methods in general and BBB especially suffer from
a bias towards fitting the prior (Sec. 2.3.1) which will lead to under-fitting of the training
data and poorly calibrated, underconfident models.
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Prior work has already shown that the uncertainty estimates in VI methods can be used to
prune weights or entire features the network without significant loss in training accuracy [7].
In [43] BBB is extended to work with group sparsity by multiplying the activation of each
feature 𝑦𝑖 with a factor 𝑧𝑖 with a scale invariant prior 𝑝(𝑧𝑖) ∝ 1/𝑧𝑖 and Gaussian variational
distribution. This VI method is similar to Gaussian Dropout VI. The differences are that
the multiplicative noise is considered a model parameter and the original network weights
are captured by a factorised Gaussian like in BBB. The VI distribution thus has full support
but is over-parameterised and uses the improper scale-invariant prior for the dropout mask
𝑧𝑖. This extension allows both weights and features to be pruned. Removing features is
especially useful because it makes evaluation of the model faster.

For BBB with a Gaussian prior, the variational distribution of most weights tend to fit
the prior perfectly. These weights do not contribute to fitting the data and instead only insert
noise into the activations of the network. We hypothesise that pruning can be used to improve
the calibration of networks by removing these weights and features that do not contribute to
fitting the data from the network. Additionally, the pruned network can be stored in less
memory and requires less computational resources to evaluate.

In contrast to earlier work on compression, we prune the weights and features of the
network after each epoch. Chap. 4 will show that this leads to faster training and improved
results. We found it useful to quantify the amount of noise inweights and features as ”dropout
rates”. This is done by first reparameterisation a gaussian 𝑥 ∼ 𝒩 (𝜇, 𝜎2) as

𝑥 = 𝜇𝜖, 𝜖 ∼ 𝒩 (1, 𝛼2 = 𝜎2

𝜇2 ) . (2.44)

Note that 1/𝛼 is actually the signal to noise ratio of a normally distributed variable. The
dropout rate 𝑝𝑑𝑟𝑜𝑝 follows by matching moments with a dropout mask (2.31) which yields

𝑝𝑑𝑟𝑜𝑝 = 𝛼2

1 + 𝛼2 . (2.45)

The dropout rates for weights and features can be used to determine which parts of the
network are redundant. When pruning during training it is important to use a conservative
threshold like 𝑝𝑑𝑟𝑜𝑝 > 0.99. Once the network has converged, the threshold can be lowered
until the desired tradeoff between model size and accuracy is obtained.

2.7 Sampling Methods
Sampling methods offer an alternative approach towards inference in Bayesian Neural Net-
works. MCMC methods require little prior knowledge about the shape of the posterior and
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the architecture of the model. MCMCmethods aim to construct a Markov Chain with transi-
tion distribution 𝑝(𝜃𝑡+1|𝜃𝑡) with the stationary distribution being the posterior lim𝑡→∞ 𝑝(𝜃𝑡) =
𝑝(𝜃|𝑋).

To proof a Markov Chain has the posterior as its stationary distribution 𝑃 (𝜃|𝑋), it is
sufficient to proof the chain is ergodic and it satisfies detailed balance w.r.t. the posterior
[21]

𝑝(𝜃|𝑋)𝑝(𝜃′|𝜃) = 𝑝(𝜃′|𝑋)𝑝(𝜃|𝜃′) ∀ (𝜃, 𝜃′). (2.46)

Let 𝑞(𝜃′|𝜃) be any distribution. Then the log posterior ratio is defined as

Δ(𝜃′, 𝜃) = log 𝑝(𝜃′|𝑋)𝑞(𝜃|𝜃′)
𝑝(𝜃|𝑋)𝑞(𝜃′|𝜃) = −Δ(𝜃, 𝜃′). (2.47)

A Markov Chain is constructed by sampling a proposal state 𝜃′ ∼ 𝑞(𝜃′|𝜃) and accepting
𝜃′ as the next state with probability 𝑃𝐴 = 𝐴(Δ(𝜃′, 𝜃)) and 𝜃′ = 𝜃 otherwise. The acceptance
procedure implicitly yields a transition distribution

𝑝(𝜃′|𝜃) = 𝑞(𝜃′|𝜃)𝐴(Δ(𝜃′, 𝜃)) + (1 − ∫ 𝑑𝑞(𝜃′|𝜃)𝐴(Δ(𝜃′, 𝜃))) 𝛿(𝜃′ − 𝜃). (2.48)

The detailed balance condition w.r.t. the posterior (2.46) implies

𝐴(Δ(𝜃′, 𝜃))
𝐴(−Δ(𝜃′, 𝜃)) = 𝑝(𝜃′|𝑋)𝑞(𝜃|𝜃′)

𝑝(𝜃|𝑋)𝑞(𝜃′|𝜃) = exp(Δ(𝜃′, 𝜃)). (2.49)

Thus, there is a family of functions𝐴(Δ), defined by the constraint𝐴(Δ) = 𝐴(−Δ) exp(Δ)
and 0 ≤ 𝐴(Δ) ≤ 1 which can be used to construct a Markov Chain with the posterior as its
stationary distribution for an arbitrary proposal distribution 𝑞(𝜃′|𝜃) [60].

The acceptance function only requires the posterior probability ratio 𝑝(𝜃′|𝑋)/𝑝(𝜃|𝑋) =
𝑝(𝜃′, 𝑋)/𝑝(𝜃, 𝑋) which does not depend on the normalisation constant 𝑝(𝑋) and is therefore
tractable for many probabilistic models.

There exists a unique function 𝐴(Δ) maximising the number of accepted proposals and
consequently the sample efficiency

𝐴MH(Δ) = min(1, exp(Δ)). (2.50)

The optimal acceptance function 𝐴MH is known as the Metropolis-Hastings acceptance
function[21]. The sample efficiency of the Markov Chain also depends on the proposal
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distribution 𝑞(𝜃′|𝜃). Constructing an effective proposal distribution is non-trivial especially
when little is known about the shape of the posterior.

Note that theMarkov Chain does not need to be homogeneous. Instead theMarkov Chain
may consist of an infinite sequence of transition distributions {𝑝𝑡(𝜃′|𝜃)} where each tran-
sition (eventually) leaves the posterior distribution invariant lim𝑡→∞ ∫ 𝑑𝑝(𝜃|𝑋)𝑝𝑡(𝜃′|𝜃) =
𝑝(𝜃′|𝑋) as long as the the chain is ergodic. Thus, the posterior can be sampled by a mix
of proposal distributions and/or transition distributions that keep the posterior invariant by
some other means.

2.7.1 Hamiltonian Monte Carlo
The Hamiltonian dynamics can be used to define an effective proposal distribution for a
continuous posterior. Let 𝜋 ∼ 𝒩 (0, 𝑀) be an independent auxiliary random variable of the
same dimensionality as 𝜃. A sample from 𝑝(𝜃|𝑋) can be obtained from a sample from the
joint distribution 𝑝(𝜃, 𝜋|𝑋) = 𝑝(𝜃|𝑋)𝑝(𝜋) by simply discarding the auxiliary variable 𝜋.

The proposal 𝑞(𝜃′, 𝜋′|𝜃, 𝜋) = 𝛿(𝜃)𝑝(𝜋) leaves the posterior and 𝜃 invariant. Likewise,
simulating Hamiltonian dynamics with momentum 𝜋 and potential − log 𝑝(𝜃|𝑋) leaves the
posterior invariant

∇𝑡𝜋 = ∇𝜋 log 𝑝(𝜃, 𝜋|𝑋), ∇𝑡𝜃 = −∇𝜋 log 𝑝(𝜃, 𝜋|𝑋). (2.51)

Under mild conditions, alternating between simulating Hamiltonian dynamics for a finite
timespan 𝐿 and resampling themomentum 𝜋′ ∼ 𝑝(𝜋) is ergodic [51]. In practice, the simula-
tion of Hamiltonian dynamics can only be approximated using a time discretisation with time
step 𝜖. For small 𝜖, the MH acceptance probability approaches one Δ((𝜋′, 𝜃′), (𝜃, 𝜋)) ≈ 0
and the acceptance can be skipped. Reversible integrators like leapfrog are preferred be-
cause for such integrators 𝑞(𝜃′, 𝜋′|𝜃, 𝜋)/(𝜃, 𝜋|𝜃′, 𝜋′) = 1. Thereby eliminating one potential
source of error [51].

The Leapfrog integrator for HMC yields

𝜋 (𝑡 + 𝜖/2) = 𝜋′(𝑡) + 𝜖
2∇𝜃 log𝑃 (𝜃(𝑡)|𝑋),

𝜃 (𝑡) = 𝜃(𝑡) + 𝜖
2𝑀−1𝜋(𝑡 + 𝜖/2),

𝜋(𝑡 + 𝜖) = 𝜋′(𝑡) + 𝜖
2∇𝜃 log𝑃 (𝜃(𝑡)|𝑋),

(2.52)

where 𝜋′(𝑡) is the momentum after resampling. The HMC algorithm is a powerful tool
whenever the gradient of the posterior ∇𝜃 log𝑃 (𝜃|𝑋) can be computed efficiently.
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Stochastic HMC

The gradient in (2.52) cannot be replaced naively with a mini-batch estimate without intro-
ducing significant bias. Irrespective of the step size 𝜖, the entropy of the stationary distribu-
tion of HMC increases with 𝐿 for stochastic gradients [8].

The stochastic gradient noise affects the momentum updates in (2.52). When only a
single step is simulated 𝐿 = 𝜖, the Hamiltonian dynamics reduce to Langevin dynamics.
The mini-batch noise can then be made arbitrary small using a constraint step size annealing
scheme

∞

∑
𝑡=1

𝜖𝑡 = ∞,
∞

∑
𝑡=1

𝜖2
𝑡 < ∞. (2.53)

The same conditions are required to guarantee the convergence of SGD. The SGLD sam-
pler will eventually sample from the true posterior given (2.53) at the cost of increasingly
slow mixing [66].

More generally, Hamiltonian dynamics [8] with friction can be shown to leave the poste-
rior invariant when a stochastic gradient is used (with conditions 2.53). After discretisation,
the friction dynamics are equivalent to a simulation of a single step 𝐿 = 𝜖 of the original
Hamiltonian Dynamics and partial momentum refreshment

𝜋′(𝑡) ∼ 𝒩 (𝛼𝜋(𝑡), (1 − 𝛼2)𝑀) , (2.54)

where 𝛼 is the friction coefficient. When 𝛼 = 0 the Langevin dynamics sampler is ob-
tained again. The HMC sampler with partial momentum refreshment and stochastic gradient
is known as the SGHMC sampler [8].

In practice, letting 𝜖 → 0 to obtain unbiased samples is undesirable because the samples
become increasingly correlated. Typically, the step size is fixed when the bias has fallen
below an acceptable threshold. A simple heuristic is to measure the ratio of injected noise
and stochastic gradient noise [66]. However, this threshold is purely a heuristic and does
not give any guarantees about the convergence of the stationary distribution of the sampler
towards the posterior.

The covariance matrix 𝑀 can be chosen freely to pre-condition the sampler on the co-
variance of the posterior. For Bayesian Neural Networks a full covariance matrix is compu-
tationally intractable in memory and compute. A diagonal approximation of the covariance
also requires significant computational power in general [1]. Therefore, we limit ourselves
to the non pre-conditioned case 𝑀 = 𝐼 .
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2.7.2 Stochastic acceptance function
Asymptotically unbiased samplers can be obtained by letting 𝜖 → 0. However, slow mixing
makes such a step size annealing scheme impractical. Various methods have been proposed
to introduce a acceptance function into stochastic samplers which use uses only a subset of
the data to determine the acceptance probability [3, 4, 38].

Stochastic Metropolis-Hastings test

The MH acceptance function can be rephrased as the hypothesis test Δ(𝜃′, 𝜃) > log 𝑢 with
𝑢 ∼ 𝒰[0, 1). The hypothesis can accepted or rejected with some confidence threshold 𝛼
by estimating Δ(𝜃′, 𝜃) from a large enough sample 𝑃 (𝜃, 𝑋̃). The hypothesis test can be
performed approximately based on a student-t test assuming CLT [38] or using bounds
for finite samples without replacement [3]. The confidence threshold is easily met when
‖Δ(𝜃′, 𝜃) − log 𝑢‖ is large. However, in some cases the algorithm will require all 𝑁 data
samples [60].

Stochastic Barker test

Barker’s algorithm [5] is an alternative to MH which uses the cumulative density of the
logistic distribution which is the sigmoid function

𝜎(Δ) = 1
1 + exp(−Δ). (2.55)

The Barker acceptance function is equivalent to the test Δ + 𝜂 > 0 where 𝜂 is sampled
from the Logistic distribution. Motivated by the CLT, assume for some mini-batch the pos-
terior ratio is corrupted by additive Gaussian noise Δ̃ = Δ + 𝜅 with 𝜅 ∼ 𝒩 (0, 𝜎2). The
Barker acceptance test is then given by the decision boundary

Δ̃ + ̃𝜂 = Δ + 𝜅 + ̃𝜂 > 0, ̃𝜂 ∼ 𝑝( ̃𝜂) (2.56)

where 𝑝(𝜅 + ̃𝜂) = 𝑝(𝜅) ∗ 𝑝( ̃𝜂)9is again the Logistic distribution.
The Logistic distribution is well approximated by aGaussian distribution 𝜎′(Δ) ≈ 𝒩 (0, 𝜋2/3)

(using moment matching). Therefore, the injected noise can be approximated by [4]

𝑝( ̃𝜂) ≈ 𝒩 (0, 𝜋2/3 − 𝜎2), 𝜎2 ≤ 𝜋2/3. (2.57)
9Here ∗ denotes the convolution operator.
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A better approximation can be found by numerical optimisation [60]. The stochastic
Barker test is limited by the fact that the injected noise always increases the entropy due to
the independence of the mini-batch noise. Consequently, the total noise cannot approximate
a Logistic distribution when the mini-batch likelihood variance is large 𝜎2 ≫ 𝜋2/3.

Error bounds for acceptance tests

Stochastic acceptance functions introduce bias into the sampler by violating the acceptance
function constraint (2.49). Consider an acceptance function 𝐴𝜖 with bound error

min
𝐴0,𝜖 (|Δ𝐴𝜖(Δ)| ≤ 𝜖 ∀ Δ) , Δ𝐴𝜖(Δ) = 𝐴𝜖(Δ) − 𝐴0(Δ) (2.58)

where 𝐴0(Δ) is a proper acceptance function (2.49). The upper bound error 𝜖 in the
acceptance probability corresponds to an upper bound in the total variation distance10

𝐷𝑣[𝑆0, 𝑆𝜖] ≤ 𝜖
1 − 𝜂 , (2.59)

where 𝑆0 = 𝑝(𝜃|𝑋) and 𝑆𝜖 are the stationary distributions of the unbiased and biased
samplers, respectively [38]. The upper bound (2.59) depends on the rate of convergence of
the unbiased sampler

𝐷𝑣[𝑃 𝒯0, 𝑆𝜖] ≤ 𝜂𝐷𝑣[𝑃 , 𝑆0], (2.60)

where 𝑃 is an arbitrary distribution and 𝒯0 denotes the transition operator of the unbiased
MCMC sampler.

Now follows a proof of (2.59), which is a correction of the proof in [38]11. Recall (2.61)
defines the transition operator

𝒯𝜖(𝜃′|𝜃) = 𝑞(𝜃′|𝜃)𝐴𝜖(Δ(𝜃′, 𝜃)) + (1 − ∫ 𝑑𝑞(𝜃′|𝜃)𝐴𝜖(Δ(𝜃′, 𝜃))) 𝛿(𝜃′ − 𝜃). (2.61)

Consider the distance between a single step of the biased and unbiased sampler
10The total variation distance is defined as 𝐷𝑣[𝑝, 𝑞] = 1

2 ∫ |𝑝(𝜃) − 𝑞(𝜃)|𝑑Ω(𝜃), where 𝑝 and 𝑞 are Radon-
Nikodym derivatives w.r.t. the measure Ω.

11The transition operator (2.61) used in the original derivation has an incorrect rejection term. The derived
bounds are not affected.
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𝐷𝑣[𝑃 𝒯0, 𝑃 𝒯𝜖] = 1
2 ∫ |∫ [𝒯0(𝜃′|𝜃) − 𝒯𝜖(𝜃′|𝜃)] 𝑑𝑝(𝜃)| 𝑑Ω(𝜃′)

= 1
2 ∫ |[Δ𝐴𝜖(𝜃′, 𝜃)𝑞(𝜃′|𝜃) − (∫ Δ𝐴𝜖(𝜃″, 𝜃)𝑑𝑞(𝜃″|𝜃)) 𝛿(𝜃′ − 𝜃)] 𝑑𝑝(𝜃)| 𝑑Ω(𝜃′)

≤ 1
2𝜖 ∫ [𝑞(𝜃′|𝜃) + 𝛿(𝜃′ − 𝜃)] 𝑑𝑝(𝜃)𝑑Ω(𝜃′) = 𝜖.

(2.62)

Let 𝑃 (𝑡+1)
𝜖 = 𝑃 (𝑡)

𝜖 𝒯𝜖 and let 𝑃 (0)
𝜖 be the initial distribution of the sampler. The triangle

inequality 𝐷𝑣[𝐴, 𝐶] ≤ 𝐷𝑣[𝐴, 𝐵]𝐷𝑣[𝐵, 𝐶], together with (2.60) and (2.62) yields

𝐷𝑣[𝑃 (𝑡+1)
𝜖 , 𝑆0] ≤ 𝐷𝑣[𝑃 (𝑡+1)

𝜖 , 𝑃 (𝑡)
𝜖 𝒯0] + 𝐷𝑣[𝑃 (𝑡)

𝜖 𝒯0, 𝑆0] ≤ 𝜖 + 𝜂𝐷𝑣[𝑃 (𝑡)
𝜖 , 𝑆0]. (2.63)

For 𝐷𝑣[𝑃 (𝑡)
𝜖 , 𝑆0] ≥ 𝜖/𝑟 with 0 ≤ 𝑟 < 1 − 𝜂, the biased sampler converges towards the

stationary distribution

𝐷𝑣[𝑃 (𝑡+1)
𝜖 , 𝑆0] ≤ (𝑟 + 𝜂)𝐷𝑣[𝑃 (𝑡)

𝜖 , 𝑆0]. (2.64)

Let 𝑡𝑟 be the first time instance for which 𝐷𝑣[𝑃 (𝑡𝑟)
𝜖 , 𝑆0] < 𝜖/𝑟 and note 𝑡𝑟 is finite due to

(2.64). Then for 𝑡 > 𝑡𝑟 also 𝐷𝑣[𝑃 (𝑡)
𝜖 , 𝑆0] < 𝜖/𝑟 because

𝐷𝑣[𝑃 (𝑡+1)
𝜖 , 𝑆0] ≤ 𝜖 + 𝜂 𝜖

𝑟 < 𝜖
𝑟 . (2.65)

The upper bound in (2.59) is obtained by taking the limit 𝑟 → 1 − 𝜂.
Unfortunately, the value of 𝜂 and therefore the upper bound is unknown in practice [38].

The upper bound does motivate the design of a sampler which minimises the maximum error
𝜖 in the acceptance function and maximises the convergence rate 𝜂.

Noise adaptive acceptance test

The MH hypothesis test is efficient when the variance of the posterior ratio 𝜎2 is large and
reduces to a full acceptance test when Δ̃ is arbitrary close to the decision boundary 𝑢. The
stochastic Barker test works well irrespective of the decision boundary. However, it can only
be used if 𝜎2 < 𝜋2/3 and might therefore require large batches in practise. Additionally, the
Barker acceptance function is less efficient which might increase the bias in the stationary
distribution due to slow convergence (2.59).
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Fig. 2.2 Stochastic acceptance functions for various values of 𝑠2. The acceptance probability
of the stochastic acceptance function ̃𝐴(Δ) (green) is shown together with the MH (blue) and
Barker (orange) acceptance functions.

Consider an inference task where it is assumed that the log likelihood ratio follows a
Gaussian distribution log𝑃 (𝑋𝑖|𝜃′)/𝑃 (𝑋𝑖|𝜃) ∼ 𝒩 (Δ𝑙, 𝑠2)where 𝑠2 = Var[𝑙𝑜𝑔𝑃 (𝑋̃𝑖|𝜃′)/𝑃 (𝑋̃𝑖|𝜃)]
and 𝑋̃ is a mini-batch of size 𝑛. The variance of the estimate 𝜎2 = 𝑁2𝑠2/𝑛.

The distribution of the sample variance depends on the proposed and current parameters
and is reversible

𝑝(𝑠2|Θ = 𝜃, Θ′ = 𝜃′) = 𝑝(𝑠2|Θ = 𝜃′, Θ′ = 𝜃). (2.66)

Let ̃𝐴𝑠2(Δ̃) be a stochastic acceptance function for an estimated posterior ratio 𝑝(Δ̃) =
𝒩 (Δ, 𝑠2)𝑝(𝑠2). The acceptance function condition (2.49) reduces to

𝔼𝒩 (Δ̃;Δ,𝑠2)[ ̃𝐴𝑠2(Δ̃)] = 𝔼𝒩 (Δ̃;Δ,𝑠2)[ ̃𝐴𝑠2(−Δ̃)] exp(Δ). (2.67)

The stochastic acceptance function ̃𝐴𝑠2(Δ̃, 𝑠2) is restricted to be of the form

̃𝐴𝑠2(Δ̃; 𝜃) = 𝑃 (Δ̃ + 𝜉 > 0), 𝑝(𝜉) = ∑
𝑖

𝑝𝑖(𝜃)𝛿(𝜉 − 𝜉𝑖). (2.68)
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The values of 𝜉𝑖 are fixed on a linear space and the vector 𝑝(𝜃) = Softmax(𝜃), where 𝜃
is optimised numerically using the objective

ℒ(𝜃) = ‖𝔼Δ̃[𝐴𝑠2(Δ̃; 𝜃)] − ̂𝐴(Δ; 𝜃)‖2 − 𝜆𝔼Δ,Δ̃[𝐴𝑠2(Δ̃; 𝜃)],

̂𝐴(Δ; 𝜃) =
⎧⎪
⎨
⎪⎩

𝔼Δ̃[𝐴𝑠2(Δ̃; 𝜃)] , Δ >= 0
̂𝐴(−Δ) exp(−Δ) , Δ < 0

.
(2.69)

The expectations in (2.69) are approximated by discretising 𝑝(Δ) and 𝑝(Δ̃|𝑠2) into finitely
many equally sized intervals. The error w.r.t. a proper acceptance function ̂𝐴(Δ; 𝜃) is re-
duced by an L2 norm while simultaneously penalising inefficient acceptance functions with
a weighting factor 𝜆.

Fig. 2.2 shows how the acceptance functions changes as a function of the noise 𝑠2. As the
noise vanishes the stochastic acceptance function reduces to the MH acceptance function.
The Barker test is almost optimal if the noise is slightly less than 𝜋2/3. The acceptance
function becomes less efficient as the noise increases.

2.8 Bayesian Dark Knowledge
The posterior predictive of a Bayesian Neural Network can be predicted using the samples
generated by SGHMC. Unfortunately, the estimator has high variance due to the complexity
of the posterior and the correlation between samples.

The Bayesian Dark Knowledge algorithm aims to reduce the variance of the posterior
predictive estimator by training a neural network to mimic the posterior predictive. Once
the network is trained, only a single forward pass through the model is needed to evaluate
the approximate posterior predictive [39]. This method is similar to student teacher training
in ensemble methods [24] where the posterior takes the role of the teacher and newly trained
neural network is the student.

The student model 𝑞𝜙(𝑦) is optimised by minimising the KL-divergence between the
posterior predictive 𝑝(𝑦|𝑋) and the student predictions

ℒ(𝜙) = KL[𝑝(𝑦|𝑋)|𝑞𝜙(𝑦)]
= −𝔼𝑝(𝜃|𝑋)𝑝(𝑦|𝜃) [log 𝑞𝜙(𝑦)] + 𝐶.

(2.70)

Typically the prediction 𝑦 is conditioned on some context or input 𝑥̂ in which case the
loss becomes an expected KL divergence over the input space
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ℒ(𝜙) = 𝔼𝑝(𝑥̂) [KL[𝑝(𝑦|𝑋, 𝑥̂)|𝑞𝜙(𝑦|𝑥̂)]]
= −𝔼𝑝(𝑥̂)𝑝(𝜃|𝑋)𝑝(𝑦|𝜃,𝑥̂) [log 𝑞𝜙(𝑦|𝑥̂)] + 𝐶.

(2.71)

Thus, minimising the KL divergence is equivalent to minimising the cross entropy. Be-
cause the student objective is to mimic the posterior predictive a small divergence is expected
to imply good calibration properties in practise. The inclusive KL divergence does however
assign a smaller loss to underconfident approximations compared to overconfident approxi-
mations. Consequently, a student network which is not complex enough to faithfully mimic
the posterior predictive is expected to produce underconfident predictions.



Chapter 3

Experiments

The experiments conducted as part of this work are summarised in this chapter. Sec. 3.1
describes the calibration plots used for diagnosing the calibratedness of the considered mod-
els. First we show the performance of the main algorithms in a toy regression task (Sec. 3.2).
Sec. 3.3 and Sec. 3.4 describe the performance of all methods described in Chap. 2 on the
MNIST and FashionMNIST tasks, respectively. Finally, Sec. 3.5 shows how online pruning
affects training, accuracy, and calibration.

All experiments and algorithms have been implemented in PyTorch [53]. This frame-
work was chosen because it supports GPU computation and Automatic Reverse-mode Dif-
ferentiation1. We did not make use of existence codebases for the implementations of the
described algorithms. This reduces the risk that differences in results are caused by imple-
mentation details or differences in the amount of effort taken to tune hyper-parameters.

All hyper-parameters were tuned by hand unless explicitly mentioned. Most experiments
took between one and two hours to execute on a single K80 GPU. Due to limited computa-
tional perform it was impossible to use a more methodical approach like Bayesian Optimi-
sation [62].

3.1 Calibration plots
This chapter uses a variety of approaches to empirically analyse the calibration properties
of probabilistic models. Despite the recent attention in the Machine Learning research for
calibrated and Bayesian uncertainty approaches, empirical evidence for the quality of uncer-
tainty is rarely provided.

1Reverse-mode differentiation is more commonly referred to as back-propagation in ML literature



34 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

observed
expected

(a) Bins

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

expected
observed

(b) ROC

Fig. 3.1 Example of a poorly calibrated Neural Net on MNIST

A simple check for the quality of uncertainty estimates is the expected vs. observed test
accuracy. The expected accuracy for a test set 𝑋 = {𝑥(𝑖)}𝑁

𝑖=1 is given by

1
𝑁

𝑁

∑
𝑖

𝔼[𝕀(𝜔(𝑖) = 𝜔̂(𝑖))] = 1
𝑁

𝑁

∑
𝑖=1

𝑝(𝜔̂(𝑖)|𝑥(𝑖)), (3.1)

where 𝕀(.) is the indicator function and 𝜔̂(𝑖) = argmax𝜔(𝑖) 𝑝(𝜔(𝑖)|𝑥(𝑖)) is the most likely
class of 𝑥(𝑖). The posterior predictive 𝑝(𝜔(𝑖)|𝑥(𝑖)) is intractable for VI methods on Bayesian
Neural Nets. Therefore, a MC estimate is used instead

𝑝(𝜔|𝑥) ≈ 1
𝑛

𝑀

∑
𝑖

𝑝(𝜔|𝑥, 𝜃𝑖), 𝜃𝑖 ∼ 𝑞𝜙(𝜃). (3.2)

For the experiments in this report 𝑀 = 30 was found to give good results with little
variance.

3.1.1 Calibration Bins
The method can be generalised by considering only the predictions in a certain interval. The
observed accuracy in an interval 𝑎 < 𝑝 < 𝑏 is defined as

𝐴(𝑎, 𝑏) =
∑𝑁

𝑖=1 ∑𝑀
𝑗=1 𝕀(𝜔(𝑖) = 𝑤𝑗 , 𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏)

∑𝑁
𝑖=1 ∑𝑀

𝑗=1 𝕀(𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏)
. (3.3)

Taking the expectation with respect to model predictions yields the expected accuracy
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𝔼[𝐴(𝑎, 𝑏)] =
∑𝑁

𝑖=1 ∑𝑀
𝑗=1 𝑝(𝜔𝑗|𝑥(𝑖))𝕀(𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏)

∑𝑁
𝑖=1 ∑𝑀

𝑗=1 𝕀(𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏)
. (3.4)

In order to determine of the expected accuracy significantly deviates from the observed
accuracy it is useful to consider the expected variance of the accuracy

Var[𝐴(𝑎, 𝑏)] =
∑𝑁

𝑖=1 ∑𝑀
𝑗=1 𝑝(𝜔𝑗|𝑥(𝑖)) [1 − 𝑝(𝜔𝑗)|𝑥(𝑖))] 𝕀(𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏)

(∑𝑁
𝑖=1 ∑𝑀

𝑗=1 𝕀(𝑎 < 𝑝(𝜔𝑗|𝑥(𝑖)) < 𝑏))
2 . (3.5)

Other authors [46] have plotted the observed accuracy as a line together with𝔼[𝐴(𝑎, 𝑏)] ≈
(𝑎 + 𝑏)/2, which approximates the true expected accuracy as 𝑏 − 𝑎 → 0. Most predicted class
probabilities in the image recognition tasks considered in this report are 𝑝 > 0.9 or 𝑝 < 0.1.
This causes the variance of the accuracy to be high for 0.1 < 𝑎 < 𝑏 < 0.9. Consequently,
the error bounds are essential for the interpretation of binned calibration plots even when a
large test set is available.

Fig. 3.1a shows an example of the expected and observed accuracy together with 95%
confidence bounds. The model is a single sample from the posterior of a CNN trained on
MNIST. The observed accuracy is significantly less than the expected accuracy in most con-
fidence ranges. Thus, this is an example of a poorly calibrated model.

3.1.2 Calibration ROC
ROC plots are a commonly used diagnostic for the quality of predictions for classification
tasks. A ROC plot shows the True Positive Rate (TPR) vs. the False Positive Rate (FPR)
as a function of positive classification threshold 𝜏. For a classification tasks with more than
two classes the positive case is considered to be correct classification and the negative mis-
classification

TPR(𝜏) =
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) = 𝜔̂(𝑖), 𝑝(𝜔̂(𝑖)|𝑥(𝑖)) > 𝜏)
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) = 𝜔̂(𝑖))
,

FPR(𝜏) =
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) ≠ 𝜔̂(𝑖), 𝑝(𝜔̂(𝑖)|𝑥(𝑖)) > 𝜏)
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) ≠ 𝜔̂(𝑖))
.

(3.6)

The expected False and True Positive rates are given by



36 Experiments

𝔼[TPR(𝜏)] =
∑𝑁

𝑖=1 𝑝(𝜔̂(𝑖))|𝑥(𝑖))𝕀(𝑝(𝜔̂(𝑖)|𝑥(𝑖)) > 𝜏)
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) = 𝜔̂(𝑖))
,

𝔼[FPR(𝜏)] =
∑𝑁

𝑖=1 𝑝(𝜔̂(𝑖))|𝑥(𝑖))[1 − 𝑝(𝜔̂(𝑖))|𝑥(𝑖))]𝕀(𝑝(𝜔̂(𝑖)|𝑥(𝑖)) > 𝜏)
∑𝑁

𝑖=1 𝕀(𝜔(𝑖) ≠ 𝜔̂(𝑖))
.

(3.7)

A tradeoff between the TPR and FPR can be made based on the ROC curve, which can
be interpreted as a post-calibration procedure. Within the framework of Bayesian decision
theory such a tradeoff should be quantified in a utility function

𝑈𝑟𝑜𝑐(𝜔, 𝜔̂, 𝑎) = 𝑎 [𝕀(𝜔 = 𝜔̂) − 𝛽𝕀(𝜔 ≠ 𝜔̂)] , (3.8)

where 𝑎 = 1 is the action corresponding to positive classification. Maximising the ex-
pected utility yields the optimal decision policy

̂𝑎 = argmax
𝑎

𝔼𝜔[𝑈𝑟𝑜𝑐(𝜔, 𝜔̂, 𝑎)]

= argmax
𝑎

𝑎 [(1 + 𝛽)𝑝(𝜔̂|𝑥) − 𝛽]

= 𝕀 (𝑝(𝜔̂|𝑥) > 𝜏 = 𝛽
1 + 𝛽 ) .

(3.9)

Substituting the optimal policy (3.9) into (3.8) and considering the entire test set yields

1
𝑁

𝑁

∑
𝑖=1

𝔼𝜔(𝑖)[𝑈𝑟𝑜𝑐(𝜔(𝑖), 𝜔̂(𝑖), ̂𝑎)] = 𝔼[TPR(𝜏) − 𝛽FPR(𝜏)] (3.10)

In the Bayesian decision framework, a tradeoff between the TPR and FPR leads to a
classification threshold 𝜏 based on the expectations of the TPR and the FPR. If the uncer-
tainty estimates are poor, the Bayesian policy might be sub-optimal compared to the policy
based on the observed TPR and FPR. Consequently, it is beneficial for a classifier to have an
expected ROC curve that closely matches the observed ROC curve. This way a TPR/FPR
tradeoff can be made without the need of a validation dataset.

Fig. 3.1b shows an example of a calibration ROC plot which shows significantly over-
confident predictions. Another advantage of the calibration ROC plot is that systematic un-
derconfidence/overconfidence will accumulate which is not the case in the calibration bins
plot.
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3.2 Toy regression

4 2 0 2 4
100

75

50

25

0

25

50

75

100

(a) MAP

4 2 0 2 4
100

75

50

25

0

25

50

75

100

(b) HMC (ground truth)

4 2 0 2 4
100

75

50

25

0

25

50

75

100

(c) Dropout VI (𝛼 = 0)
4 2 0 2 4

100

75

50

25

0

25

50

75

100

(d) Dropout VI (𝛼 = 1)

4 2 0 2 4
100

75

50

25

0

25

50

75

100

(e) Bayes By Backprop

4 2 0 2 4
100

75

50

25

0

25

50

75

100

(f) Bayesian Dark Knowledge

Fig. 3.2 Bayesian Regression with uncertainty estimates
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Sampling, VI, and traditional MAP algorithms were used on a toy regression task equiv-
alent to the one used in [22, 39]. The dataset consists of 𝑁 = 20 points i.i.d. from
𝑝(𝑥) = 𝒰[−4, 4] and 𝑝(𝑦|𝑥) = 𝒩 (𝑦; 𝑥3, 9). The model used is a fully connected neural
network with a single hidden layer of 100 units with ReLU non-linearity. The output layer
contains a single layer used as the mean such that the likelihood is 𝒩 (𝑦; 𝑓(𝑥), 𝜎2) where the
variance 𝜎2 is a model parameter.

Fig. 3.2 shows the line of the generating function without noise 𝑦 = 𝑥3 and the posterior
predictive with 95% uncertainty bounds. Because the dataset is small, a HMC sampler with
Metropolis-Hastings step can be used to sample from the posterior. The uncertainty estimates
given by the HMC sample (3.2b) are considered to be the ground-truth for true posterior
predictive.

The MAP solution (3.2a) clearly fails to capture any meaningful estimate of uncertainty
outside of densely sampled regions. Dropout VI (Fig. 3.2c & 3.2d) approximates the true
uncertainty reasonably well. However, the type of 𝛼-divergence seems to have little effect
on the uncertainty estimates. The uncertainty estimates did not vary much with the dropout
rate. The default dropout probability 𝑝 = 0.5 worked well.

Bayesian Dark Knowledge (3.2f) produced uncertainty estimates that almost perfectly
match those of HMC. The uncertainty estimates are slightly underconfident as expected from
the inclusive KL loss. The network correctly learns to increase uncertainty as it extrapolates
further away from the training data but does not have the capacity to increase uncertainty
during interpolation between the larger gaps within the training set.

Bayes By Backprop (3.2e) learns reasonable uncertainty estimates similar to those of
Dropout VI. However, BBB did not converge unless the prior was set carefully and the vari-
ance was fixed to the true value 𝜎2 = 3. Fig. 3.3 shows the negative result obtained when
BBB is optimised with a learned variance which is similar to the results reported for BBB
earlier [22, 39]. When 𝜎2 is optimised as a model parameter the data term in the ELBO (2.8)
becomes too small compared to the regulariser term resulting in a variational distribution
that converges towards the prior.

Looking closely at the results for BBB reveals that the mean function is essentially a
piecewise function consisting of 4 almost linear pieces with smoothed out discontinuities.
Inspection of the hidden layer’s weight distribution reveals that ELBO optimisation forces
most of the weights to have a small mean with large variance and a large negative bias with
large variance causing the activations of these neurons to be zero with high probability and
the entropy of the variational distribution term to be large. The ELBO objective thus leads to
(over-)pruning of features/filters which was first observed in [64]. The ELBO increases due
to large variance in weights that cause no variance in the activation or output of the network.
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This result motivated the use of compression priors in subsequent experiments as these high
variance weights were found to destabilise training for more complex models.
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Fig. 3.3 Bayes By Backprop with trained noise
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3.3 MNIST

𝛼 Observed error (%) Expected error (%)
0 0.46 0.50
0.5 0.50 0.40
1.0 0.52 0.46

Table 3.1 Observed and expected test accuracies on MNIST for various 𝛼-divergences

Observed err. (%) Expected err. (%) 𝜏
Dropout (𝑝 = 0.35) 0.46 0.50
Dropout (𝑝 = 0.5) 0.44 0.73
Gaussian Dropout 0.81 0.74 0.33
BBB (compress) 0.79 1.4 0.25
BBB (constraint) 0.67 0.68 1
Dropout-BBB (compress) 0.86 0.98 0.25
Dropout-BBB (constraint) 0.61 0.56 1
Gauss-Gamma 0.52 0.63 0.01
Bayesian Compression 0.58 0.65 0.1
Bayesian Dark Knowledge 0.57 0.70
Bayesian Dark Knowledge (accept) 0.69 0.57

Table 3.2 Observed and expected test accuracies on MNIST

For MNIST a Convolutional architecture was used with two convolution layers with 32
and 64 output channels, respectively. After each convolution max pooling is used. The
output of the convolutions is fed into a fully connected network with a single hidden layer of
500 features. The ReLU activation function is used after each hidden layer in the network.
Tbl. 3.2 shows the test set error together with the expected error.

Despite the lack of posterior concentration (Sec. 2.2.2), Dropout VI is found to have the
lowest test error and an expected error that matches the observed error closely. Fig. 3.5a and
Fig. 3.6a show that themodel is almost perfectly calibrated for the given calibration tests. The
dropout rate was optimised such that the deviation between observed and expected error was
minimal. Dropout was only applied after the second convolutions and the fully connected
hidden layer. Because the dropout rates cannot be optimised using Gradient Ascend directly,
a grid search was performed with a granularity of 0.05. With the ”standard” dropout rate
𝑝 = 0.5 the model is underconfident (Fig. 3.7a & 3.7b).

Dropout VI was also tested using various 𝛼-divergences. The results are reported in
Tbl. 3.1. For 𝛼 > 0 the inferred model is overconfident whereas it is underconfident for
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𝛼 = 0. This result contradicts the intuition that approximating the inclusive KL should
result in a less concentrated approximation and consequently less confident approximations.
The calibration plots (Fig. 3.4) confirm that for 𝛼 = 0.5 and 𝛼 = 1.0 the inferred models is
slightly too confident for 𝑝 > 0.9 in particular.

Gaussian dropout was found to result in significantly underconfident predictions unless
the KL term is discounted by some factor 𝜏. This agrees with earlier observation that without
discounting the regularisation term Gaussian dropout tends to underfit the data [35]. In this
case 𝜏 = 1/3 resulted in fairly good results.

Training the original BBB algorithmwas found to be strongly sensitive to hyper-parameters
when calibration is concerned. The variance of the weights continues to increase leading to
underconfidence and poor generalisation. Unless the regularisation term is discounted, the
variances are initialised to a small value, and/or the training is stopped early.

(Dropout-)BBB was trained in two variations. A constraint version which used the fact
that the variance tend to stay small when the variances are initialised at a small value and
trained with SGD. The variances steadily increase during the 100 training epochs but does
not reach an optimum. When training with Adam or using a much larger step size for the
variances, the ELBO will be an order of magnitude larger but the model finds a very poor
fit of the data with low test accuracy as a result. Thus, the constraint BBB variant relies on
early stopping to keep the variational distribution from containing too much noise. The prior
for the constraint model 𝑝(𝜃) = 𝒩 (0, 10).

The compression variant does not constrain the optimisation and instead uses a KL dis-
count 𝜏 = 1/4 and compression priors to make sure a good approximation can be found
without relying on early stopping. The constraint approach does however show lower test
error and better calibration plots (Fig. 3.8c & 3.9c) compared to the unconstrained approach
with compression priors (Fig. 3.8a & 3.9a). The compression prior is defined according to
(2.40) with 𝜎 = {103, 102, 101, 100, 10−1, 10−2, 10−3} and 𝑇 = 0.1.

The Dropout-BBB yields a model with better calibration properties compared to BBB
(Fig. 3.8d & 3.9d). However, maximising the ELBO directly still results in too much noise
and unconfined predictions. Without compression priors or constraint optimisation themodel
did not learn to use dropout noise and simply increased the independent noise for (almost)
every weight. Using compression priors results in underconfidence (Fig. 3.8b & 3.9b) and
highest observed error of all methods.

We did not find a significant difference in performance between the local and global
parameterisation of BBB. However, the cost of sampling Gaussian noise for each weight far
outweighs the cost of computing the additional convolution or vector matrix product required
to determine the variance of an activation. Therefore, the reported results for (Dropout-)BBB



3.3 MNIST 43

use global parameterisation. For the compression variants the KL term cannot be computed
analytically. This further increases the performance gap between global and local because
the sampled weights is reused when sampling the regularisation term.

Gauss-Gamma VI is the best performing proper method although it requires significant
KL discounting 𝜏 = 0.01. Gauss-Gamma results in slightly underconfident uncertainty
estimates (Fig. 3.5c & 3.6c).

Bayesian Compression is competitive with Gauss-Gamma and outperforms Gaussian
Dropout andBBBvariants despite converging to a significantly smaller network (see Sec. 3.5).
The model predictions are slightly more underconfident (Fig. 3.5d & 3.6d) compared to
Gauss-Gamma with significantly smaller KL discount factor 𝜏 = 0.1.

Guass-Gamma VI and Bayesian Compression are the methods which could be success-
fully trained using the Adam optimiser [34] and have adaptive amounts of noise. The Adam
optimiser reweighs the gradients such that the amount of noise increases rapidly even when
the variance is initialised at a small value.

Sampling approaches using Bayesian Dark Knowledge performs slightly worse than the
dropout models but better than the Gaussian VI methods in terms of test accuracy and cali-
bration. First a sampler without acceptance function was simulated for 50 epochs to find a
good starting point for the Markov Chain. The student was trained in 100 epochs using all
samples from the Markov Chain. The binned calibration test (Fig. 3.5e) shows no significant
miscalibration. However, The expected test accuracy and ROC plot (Fig. 3.6e) shows that
the approximation of the posterior predictive is slightly underconfident.

Using a stochastic acceptance step did not result in better performance. The learning rate
had to be reduced by a factor 10 for samples to be accepted at a reasonable rate. Furthermore,
rejection causes the chain to move more slowly due to additional momentum updates. Con-
sequently, the sampler with acceptance step produces samples with much higher correlation.
This likely caused the student to mimic the behaviour of just a small region of the posterior.

We also considered the posterior predictive accuracy based on a MC estimate of the pos-
terior predictive. The sample consisted of the weights obtained after each training epoch.
The resulting posterior predictive estimate did not result in a competitive test error. The
uncertainty estimates are significantly underconfident without acceptance function and ex-
tremely overconfident with acceptance test.
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Fig. 3.4 Calibration bins for MNIST classification for various 𝛼-divergences
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Fig. 3.5 Calibration bins for MNIST classification
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(f) Bayesian Dark Knowledge (accept function)

Fig. 3.6 Calibration ROC plots for MNIST classification
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(b) ROC

Fig. 3.7 Calibration ROC for MNIST classification with Dropout VI (𝑝 = 0.5)
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Fig. 3.8 Calibration Bins for MNIST classification with BBB variants
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(d) Dropout-BBB (constraint)

Fig. 3.9 Calibration ROC for MNIST classification with BBB variants



3.4 FashionMNIST 49

3.4 FashionMNIST

Observed Error (%) Expected Error (%) 𝜏
Dropout (p=0.6) 8.4 8.1
Gaussian dropout (𝜎2 = 2) 8.6 8.0 0.5
Gaussian dropout (scale invariant) 8.8 5.1
BBB (compression) 9.0 9.9 0.5
BBB (constraint) 9.1 9.2 1
Dropout-BBB (compression) 8.7 8.9 0.5
Dropout-BBB (constraint) 8.1 8.3 1
Gauss-Gamma 7.8 7.5 0.02
Bayesian Compression 7.5 7.7 0.4
Bayesian Dark Knowledge 9.8 10.0
Bayesian Dark Knowledge (accept) 10.5 10.2

Table 3.3 Observed and expected test accuracies on FashionMNIST

FashionMNIST is a drop-in replacement for MNIST containing grayscale images of
clothing products in 10 categories. FashionMNIST is a significantly more difficult prob-
lem compared to MNIST and more closely resembles modern computer vision tasks [67].

Due to the increased complexity, the convolutional layers where increased to have 64
and 128 channels, respectively. The results on the test set can be found in Tbl. 3.3. Despite
the similarity of the two tasks, the calibratedness of the various algorithms is significantly
different for FashionMNIST. Even though all algorithms use the same architecture there is
a significant spread in observed error (7.5 − 10.5).

Dropout VI with tuned dropout rate results in a good test accuracy. Unlike the MNIST
task, the dropout rate could not be increased until predictions were no longer overconfident.
For dropout rates 𝑝 > 0.6 the training procedure quickly becomes unstable. Consequently,
even for well-tuned dropout rates the model is still significantly overconfident (Fig. 3.10a &
3.12a).

Similar behaviour is observed for Gaussian dropout which again results in overconfident
results. We found that it is useful to introduce additional regularisation by adding some de-
pendency on scale into the prior. This was done by multiplying the scale invariant prior with
an L2 penalty 𝑝(𝜃) ∝ exp(𝜃2/2𝜎2)/𝜃 with 𝜎2 = 2. Despite the rather large gap between the
observed (8.6%) and expected error (8.1%), the calibration bins (Fig. 3.10b) and calibration
ROC curve (Fig. 3.12b) indicate a well-calibrated model. Thus, overall the model is not
well-calibrated but the bias does not concentrate at predictions of a certain confidence or
affect the tradeoff between the True and False Positive Rate. Using the scale invariant prior
the model is severely miscalibrated (Fig. 3.12).
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Both variants of BBB are unable to outperform dropout VI in terms of classification ac-
curacy. Constraint BBB is well-calibrated (Fig. 3.13c & Fig. 3.14c) when the initialisation
and training is tuned for calibration. The compression variant of BBB suffers from under-
confidence (Fig. 3.13 & Fig. 3.14a).

Constraint Dropout-BBB is the best performing BBB variant on FashionMNIST in terms
of test error. The uncertainty estimates are of high quality (Fig. 3.13d & Fig. 3.14d) after
explicit tuning of the initialisation. Compression Dropout-BBB outputs slightly underconfi-
dent predictions (Fig. 3.13b & Fig. 3.14b).

Gauss-Gamma VI attains competitive test accuracy compared to the best performing
method and is well-calibrated (Fig. 3.10c & 3.11c) with some overconfidence when the KL
is significantly discounted 𝜏 = 0.02. The large discounting that is needed can be attributed
to over-parameterisation and the use of Adam as an optimiser which again lead to a quick
increase in the amount of injected noise during training.

Bayesian Compression is the best performing inference method on FashionMNIST with
a test error of 7.5%. Using a KL discount factor 𝜏 = 0.4, the is slightly underconfident
(Fig. 3.10d & 3.11d). Thus, Bayesian Compression yields a well-calibrated model with the
lowest test accuracy and least amount of KL discounting.

We were unable to reach a test accuracy with Bayesian Dark Knowledge that is compet-
itive with VI methods. A sampler without acceptance function results in slightly undercon-
fident predictions (Fig. 3.10e & 3.11e). With acceptance function, the observed accuracy
reduces further and uncertainty estimates become overconfident (Fig. 3.10f & 3.11f).
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Fig. 3.10 Calibration bins for FashionMNIST classification
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Fig. 3.11 Calibration ROC plots for FashionMNIST classification
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(b) Calibration ROC

Fig. 3.12 Calibration of Gaussian Dropout with scale invariant prior
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Fig. 3.13 Calibration Bins for FashionMNIST classification with BBB variants
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Fig. 3.14 Calibration ROC for FashionMNIST classification with BBB variants
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Fig. 3.15 ELBO, test error, and compression rate during training of online Bayesian Com-
pression for MNIST classification

Online Bayesian compression was performed by pruning the weights and features with
a dropout thresholds of 0, 99 and 0.95, respectively. Additionally, weights were only pruned
if 𝜎 ≥ 0.5𝜎𝑝 where 𝜎𝑝 is the prior standard deviation. The compression rate of a network is
defined as the ratio of the original number of weights over the non-zero weights of the pruned
network. In the last 50 epochs the threshold for feature compression is reduced linearly from
0.95 to 0.05.

Fig. 3.15a shows that the compression rate starts to increase within the first few training
epochs even though the ELBO and test accuracy are for from reaching a local optimum.
Fig. 3.15b shows that the ELBO only increases marginally due to pruning and that the pruned
weights and features were thus simply fitting the prior distribution. Both the expected and
observed accuracy are slightly higher for online pruning compared to Bayesian Compression
without pruning (Fig. 3.15c). The result is surprising when we consider that only 3% of the
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original weights are kept in the final network. The pruned architecture has 26 filters in both
convolutional layers and 50 hidden units in the fully connected layers. The fully connected
features seem to be pruned more aggressively which can be explained by their increased
connectivity which makes it more expensive to maintain such features.
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Fig. 3.16 ELBO, test error, and compression rate during training of online Bayesian Com-
pression for FashionMNIST classification

For FashionMNIST similar patterns are observed. Only 1.5% of the original weights
are kept and the pruned architecture consists of 41 and 27 filters in the convolutional layers
and 40 hidden units in the fully connected layers. Interestingly, the second convolutional
layer now has fewer features compared to the first layer. Such a choice would be uncommon
for human engineered networks because typically the number of features is increased to
counterbalance the reduction of information caused by pooling.

Fig. 3.16c shows that online pruning results in significantly better test accuracy and sim-
ilar calibration. This suggest that the positive effect of online pruning becomes more pro-
nounced as the network scales in size.



Chapter 4

Discussion

In the first place, this report aims to motivate the use of calibration as a direct metric for
the quality of uncertainty estimates. Therefore, we will reflect on the advantages of these
diagnostics and propose some potential improvements. Secondly, the experiments described
in this report show the calibration characteristics of various Bayesian Inference methods.
This chapter reflects on the performance, bottlenecks, and potential for future improvement
of these methods.

4.1 Calibration tests
Calibration test can be performed using any random variable for which the model can predict
the outcome, and on arbitrary subsets of the data (Sec. 1.3). It is therefore difficult to make
general statements about the calibratedness of amodel on arbitrary calibration tasks. Instead,
the appropriate tests can be constructed based on the properties good uncertainty estimates
should have depending on the context. For example, the ROC calibration test was designed
to facilitate an application where a tradeoff must be made between true positives and false
negatives.

The conducted experiments did not include post-calibration methods. The weakness
of these methods is that they assume a limited definition of calibratedness. Usually these
methods transform the binned probabilities such that perfect calibration is obtained on the
binned calibration test [20, 50].

A potential focus for future research would be to define more general calibration tests.
One way to achieve this is to learn a calibration test. This way both the selection procedure
(1.4) and the random variable of interest would be parameterised. The parameterised cali-
bration test should then maximise some definition of poor-calibration on a finite test sample.



58 Discussion

The problem of generalising calibration tests is similar to the Fairness gerrymandering
problem. In this case a selection procedure is used to find a subpopulation which suffers
most from some pre-defined negative bias [30]. In fact, miscalibraiton itself is commonly
used as the measure of unfairness [37].

A topic for future research could be to determine whether models that are well-calibrated
perform better on tasks where good uncertainty estimates are essential. For example, Rein-
forcement Learning algorithms using Thompson Sampling, and detecting out-of-distribution
or adversarial examples.

4.2 Variational Inference
The Variational Inference methods considered in this research share the ELBO as their ob-
jective. However, the characteristics of the obtained posterior approximation differ signifi-
cantly.

Dropout VI has a constant entropy term resulting in efficient and robust training. How-
ever, the dropout rates must be tuned carefully as the approximation will not automatically
increase concentration around a sharper mode (Sec. 2.2.2). It is further observed that for
complex tasks, the training procedure can stop to converge when the dropout rate is increased
too much, despite the fact that the model is still overconfident.

Gaussian Dropout does have a flexible variational distribution with trainable entropy.
However, the variational distribution does not share the same support as the posterior. The
ELBO diverges for both Bernoulli and Gaussian dropout VI and it is therefore non-trivial to
what extend these methods are truly approximate Bayesian Inference methods. See [29] for
a detailed analysis on the shortcomings and behaviour of Dropout VI methods.

BBB and the variations discussed in this report offer an alternative to Dropout VI with
a well-defined ELBO and full support. Using the ELBO objective (2.24) naively results in
underconfident models. Good calibration is only achieved when the we carefully tune the
optimisation procedure, initialisation, and introduce some discount factor for the KL term.

Sparsity inducing priors are found to have a positive impact on calibration, generalisation,
and training stability. In fact, pruning during training is found to have a positive impact the
calibration and test accuracy by reducing the amount of weights that do not help fitting the
data. Using Bayesian Compression we can prune entire features which also reduces the
computation requirements of the model which consequently speeds up training.

VI methods designed to exploit the redundancy of modern neural networks improve both
accuracy and calibratedness. However, sparse variational distributions like Gauss-Gamma
are empirically found to require significant regularisation discounting to work well. A much
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simpler approach is to use pruning for weights with a small signal-to-noise ratio or dropout
rate which is also found to require much less KL discounting in order to work well. In fact,
when some underconfidence is permissible, Bayesian Compression with online pruning can
be used with little extra tuning.

4.3 MCMC methods
We derived stochastic gradient HMC methods with an optional acceptance function with an
adjustable tradeoff between efficiency/bias (Sec. 2.7.2). These methods allow for (nearly)
unbiased but correlated sample to be obtained by annealing the step size to zero or by using
an acceptance step with little bias. However, accepting all proposals in a stochastic HMC
sampler with fixed step size resulted in better performance approximations of the posterior
predictive. Thus, for Bayesian Neural Networks the autocorrelation of the sample is the
bottleneck for obtaining a finite ensemble that is representative of the posterior predictive.

Although it proved useful to empirically show that variance is the bottleneck for well-
calibrated MCMC approaches, the considered tasks might not demonstrate the full potential
of the proposed stochastic acceptance function. Future research could focus on problems
with smaller datasets and less complex models. The considered tasks also did not allow the
proposed acceptance test to be compared to alternatives because existing acceptance tests
require too large batch sizes to run experiments forMNIST or FashionMNIST in a reasonable
amount of time.

Bayesian Dark Knowledge significantly improves the test accuracy and speed of infer-
ence for samplingmethods. The student consistently outperformed an ensemble of networks,
based on the weights at the end of each training epoch, in both test accuracy and calibration.
Even though the finite ensemble of posterior samples requires 100 times as much compute
and memory during inference.

A disadvantage of training student network is its tendency to produce underconfident pre-
dictions. This might be explained by the inclusive KL loss (2.71) used to train the student. In
the student-teacher literature, various alternative losses have been proposed. For example, in
[24] it is proposed to scale the logits of both teacher and student with a temperature parame-
ter. However, in our experiments adjusting temperature was found to have a unstable effect
on the calibration properties. More recently, discriminator networks have been used as a loss
for the student in knowledge distillation [6]. A discriminator could potentially learn to dis-
tinguish the teacher and student based on their different levels of confidence. Consequently,
end-to-end optimisation of the student could promote matching the level of confidence for
the teacher and the student.



60 Discussion

Another area for improvement is the input distribution 𝑝(𝑥). We followed the same ap-
proach as [39] by adding Gaussian noise to the original training set. Alternatively, a more
realistic distribution 𝑝(𝑥) could be used based on a pre-trained VAE or GAN. Some experi-
ments with a GAN based input distribution distribution were conducted. However, this let
to a further increase in underconfidence of the student. This suggest a more complex input
distribution is only worthwhile when the loss function is first improved to penalise undercon-
fidence. More elaborate experiments will be needed to determine the interaction of Bayesian
Dark Knowledge with the input distribution.

4.4 Conclusion
The presented work shows how the quality of uncertainty estimates cannot be taken for
granted even when a model exhibits the ability to generalise well to unseen data. Calibra-
tion tests form a well grounded framework for assessing the quality of uncertainty estimates.
A major difficulty lies in the the choice of an appropriate calibration test. Nonetheless,
we find that most calibration tests sketch a similar image: Most approximate Bayesian in-
ference methods cause either significant underconfidence or overconfidence in the model’s
predictions. In fact it is often sufficient to consider the difference in expected and observed
accuracy to diagnose a poorly calibrated model. If the SOTA in calibration improves how-
ever, more specific or even adversely trained calibration tests might be useful to acquire even
stronger guarantees about the quality of predictions.

Variational Inference provides a scalable solution for obtaining well-calibrated models.
Bernoulli Dropout VI is found to be surprisingly robust when the dropout rate is optimised for
calibration. However, Bernoulli and Gaussian Dropout have technical issues which makes
it difficult to interpret them as proper Bayesian Inference methods. BBB provides a sound
alternative where the amount of noise is part of the variational parameterisation and should
thus not have to be chosen by the ML researcher. Unfortunately, we find that BBB suffers
from significant underconfidence when trained naively.

Various techniques to reduce underconfidence where considered: compression priors,
more expressive variational distributions like Dropout-BBB and Gauss-Gamma, and on-
line pruning. All of these methods improve test accuracy. We do however find that hyper-
parameters must be tuned explicitly for calibration in order to get optimal results on calibra-
tion tests for all of these methods. The most robust approach is online pruning which only
requires a small amount of KL discounting and has the additional benefits of faster train-
ing and providing a model that is both compressed and well-calibrated. On larger tasks like
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FashionMNIST, Bayesian Compression with online pruning also results in the highest test
accuracy.

On small problems samplingmethods can be used to approximate the posterior predictive
well. Bayesian Dark Knowledge offers a powerful tool to compress the posterior predictive
into a single network allowing fast and well-calibrated inference on small tasks. The bias of
stochastic gradient HMC samplers is negligible compared to the variance or autocorrelation
in the produced sample for the parameters of a BayesianNeural Network. However, sampling
methods and Bayesian Dark Knowledge in particular are unable to compete with Variational
Inference methods on more complex tasks.

In conclusion, this report has motivated the importance of empirically testing the quality
of uncertainty estimates. Calibration tests provide a powerful way to identify bottlenecks
in Bayesian Neural Networks and approximate inference methods. Sparsity inducing VI
methods and compression in conjunction with carefully chosen priors can help to perform
Bayesian Inference at scale with well-calibrated models as a result.
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