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Abstract

In this thesis we look at the design and development of a Probabilistic Pro-
gramming Language (PPL) in Julia named Turing and the challenges of im-
plementing the Hamiltonian Monte Carlo (HMC) sampler inside the Turing
framework.

This dissertation starts with a review of three important fields behind the
project, which are Bayesian inference, general inference algorithms and prob-
abilistic programming. This review provides theoretical foundations of the
design of a universal PPL. Then some existing PPLs are reviewed, especially
Stan and the up-to-date version of Turing. It is shown that, compared with
Stan, Turing is more expressive and flexible in general.

After that, the design and implementation of the HMC sampler is given.
This part starts with the design of the compiler, in which a metaprogram-
ming technique called macro is used to support three probabilistic syntax
in Turing. Then the implementation of the standard HMC algorithm is dis-
cussed. In the Turing framework, two core ingredients of HMC, the target
density function and the corresponding gradient function, are not straight-
forward to evaluate, which are the two main challenges of this project. The
first issue is solved by building connections between the probabilistic program
and the corresponding energy function required by HMC using Bayes’ rule,
and the second one is accomplished by the use of Automatic Differentiation
(AD) through probabilistic programs.

Evaluations on the implemented HMC sampler have shown that the imple-
mentation is correct and the speed of the sampler is acceptable. Further
improvements in terms of the performance of the HMC sampler and the
functionality of Turing are proposed in the end.

The main novel contributions of this thesis are a workable HMC sampler
in Turing with acceptable performance as well as an updated version of the
compiler which supports this HMC sampler and the further development of
a Gibbs sampler combining HMC and PG.
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Chapter 1

Introduction

With machine learning becoming increasingly ubiquitous and important,
probabilistic modelling also becomes more popular. Probabilistic program-
ming is a state-of-the-art research area, of which the mission is to produce
a more flexible approach to probabilistic modelling in sense of defining and
learning models, and Julia is a new programming language especially devel-
oped for efficient scientific computing. Combing both of them, the Cam-
bridge University Engineering Department (CUED) established a probabilis-
tic programming project named Turing, a probabilistic programming lan-
guage (PPL) based on Julia. This M.Phi project is a part of this ongoing
PPL project.

In this project, the objective is to implement a new inference algorithm,
Hamiltonian Monte Carlo (HMC), in Turing. It involves developing a new
compiler which supports the new sampler using metaprogramming and im-
plementing the standard HMC algorithm in Turing, in the latter of which
gradient information used by HMC is computed by Automatic Differentia-
tion (AD) techniques. The final result of the project is a new compiler which
is compatible with all existing samplers and a workable HMC sampler with
acceptable performance in Turing.

The remaining of this dissertation starts with necessary background knowl-
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edge of this project in terms of three major topics, Bayesian inference, gen-
eral inference algorithms and probabilistic programming, along with some
motivations behind them in Chapter 2. Then in Chapter 3, related work
including some other existing PPLs (especially Stan) as well as the existing
infrastructure of Turing are introduced. In Chapter 4, the design and im-
plementation of the HMC sampler is discussed in detail. After that, some
experimental results of the HMC sampler in terms of validation of correct-
ness and evaluations of performance and robustness are given in Chapter 5.
Finally in Chapter 6, the dissertation finishes with a summary of this project
with current limitations of Turing discussed, and proposes some future works
to overcome these limitations.
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Chapter 2

Background

This chapter gives a brief review of three core components involved in this
project, which are Bayesian inference framework, general inference algo-
rithms and probabilistic programming.

2.1 Bayesian Inference

Bayesian inference uses Bayes’ rule to learn model parameters from some
given data. In particular, for a given model m with some unknown parame-
ters θ, Bayesian inference estimates the distribution of θ from observed data
D using Bayes’ rule (Equation 2.1)

p(θ|D,m) =
p(D|θ,m)p(θ|m)

p(D|m)

=
p(D|θ,m)p(θ|m)∫
p(D|θ,m)p(θ|m)dθ

,
(2.1)

where p(D|θ,m) is called the likelihood of parameters θ in model m, p(θ|m)

is named the prior probability of θ in model m and p(θ|D,m) is the posterior
probability of θ given data D in model m. In brief, p(D|θ,m) is just called
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the likelihood, p(θ|m) the prior and p(θ|D,m) the posterior.

Bayes’ rule cooperates the prior knowledge p(θ|m) with the likelihood p(D|θ,m)

obtained from data and updates the posterior knowledge about the parame-
ters p(θ|D,m). This obtained posterior is actually an updated prior and can
be used as the prior knowledge for further data.

With model parameters learnt, models can be used to test new data Dnew by
calculating

P (Dnew|D,m) =

∫
P (Dnew|θ,D,m)P (θ|D,m)dθ. (2.2)

A large prediction P (Dnew|D,m) indicates the model has a good prediction
performance on the data or new data fits the model well, and verse vice. This
could be used to either 1) test whether a model is satisfying by i) splitting
a dataset into training set and testing set, ii) training the model on the
training set and iii) testing the model on the testing set, or 2) test whether
some incoming data is from the same data set or not.

In addition, simpler models are usually preferred in the sense of that they
are more probable, which is called the Bayesian Ockham’s razor. Simpler
models can be chosen by comparing models using p(D|m) in Equation 2.1 as
a metric. The term p(D|m) here is called the marginal likelihood or model
evidence [1, 2].

A simpler model usually centres its model evidence within a small range
of data while a more complex model is more expressive so it spreads its
marginal probability more thinly over the data space [1]. Figure 2.1 gives an
illustrations of how the model evidence distributes differently for simple and
complex model. Here the x-axis represents the space of data, the range C
is the corresponding range of data D in the space, model m1 is the simpler
model and model m2 is the more complex one. It can be seen that the
marginal probability of m1 are more centred while that of m2 spreads wider.
Although model m2 can explain more data range than m1, for given data D,
m1 is more probable than m2 because the corresponding integral of model
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evidence over C is larger. This shows a situation where a more expressive
model can be less probable [1].

Evidence

D

P(D|m2)

P(D|m1)

C

Figure 2.1: Illustration of Bayesian Ockham’s Razor.

Thanks to that Bayesian inference makes it possible to learn model pa-
rameters from data by incorporating prior knowledge with likelihood and
sampling model parameters from the corresponding posterior distribution, it
owns three advantages over other inference methods. The first one is that
Bayesian inference works well when the distribution has multiple modes,
where optimisation methods that maximise the posterior distribution usu-
ally perform unsatisfactorily. Secondly, the use of prior knowledge can help
prevent models from overfitting into the data as well as help utilise some
useful real world knowledge in learning. For instance, it is shown that the
weights of some existing object recognition neural nets can be used as priors
to train a new recogniser on new dataset [3]. Thirdly, Bayesian inference
gives probabilistic interpretation of parameters and predictions. With un-
certainty in parameters known, the stability of the model can be told; with
uncertainty in predictions known, it is possible to train a model only on data
points which show high certainty.
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2.2 General Inference Algorithms

Inference means estimating model parameters from data. There are gener-
ally two categories of inference methods. The first category contains exact
methods including complete enumeration and exact marginalisation, and the
second one consists of approximate methods including deterministic approx-
imations and Monte Carlo methods.

Methods in the first category usually fail when distributions are intractable,
i.e. it is impossible to conduct these methods mathematically. However,
Monte Carlo methods can be used to do inference on any distribution, thus
they are also called general inference algorithms. As probabilistic program-
ming requires automatic inference of any probabilistic models defined by the
user, Monte Carlo methods are necessary in this project.

In the Turing project, there are mainly three inference algorithms involved1.
They are Sequential Monte Carlo (SMC), Particle Gibbs (PG) and Hamilto-
nian Monte Carlo (HMC), the third of which is the target algorithm to be
implemented in this M.Phi project. This section describes the theory behind
these three inference algorithms.

2.2.1 Sequential Monte Carlo and Particle Gibbs

Sequential Monte Carlo, which is also known as particle filtering (PF) or
particle smoothing in the Hidden Markov Model (HMM) framework, is a
set of simulation-based inference algorithms allowing us to approximate any
distributions sequentially. The aim of SMC is to estimate unknown quantities
from some observations, where the unobserved signal is modelled by a Markov
process and the observation is assumed to be conditionally independent given
the unobserved signal [4].

Specifically, the unknown quantity in the Markov process {Xk}k≥1 is charac-

1The fact is true up to the date when this dissertation is written and there may be
more samplers supported in Turing in the future.
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terised by the initial density

X1 ∼ µ(·) (2.3)

with its transition density being

Xk|(Xk−1 = xk−1) ∼ f(·|xk−1). (2.4)

By denoting xi:j = (xi, xi+1, . . . , xj) for i ≤ j, we have the probability of the
unknown sequence x1:n

p(x1:n) = p(x1)
n∏
k=2

p(xk|x1:k−1)

= µ(x1)
n∏
k=2

f(xk|xk−1).
(2.5)

Also, the conditional independence of the observation {Yk}k≥1 given the un-
observed signal is characterised by

Yk|(Xk = xk) ∼ g(·|xk). (2.6)

Therefore, the probability of observations given hidden states is

p(y1:n|x1:n) =
n∏
k=1

g(yk|xk). (2.7)

Monte Carlo Sampling Assume we are interested in estimating the prob-
ability density

p(x1:n|y1:n) =
p(x1:n, y1:n)

p(y1:n)
∝ p(x1:n, y1:n), (2.8)
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where n is fixed.

A Monte Carlo way to approximate this density is to sample a large number
of i.i.d random variable X(i)

1:n ∼ p(x1:n|y1:n) and then this density can be
approximated by

p̂(x1:n|y1:n) =
1

N

N∑
i=1

δ
X

(i)
1:n

(x1:n), (2.9)

where δ
X

(i)
1:n

(x1:n) is the delta-Dirac mass which holds

∫
A

δa1:n(x1:n)dx1:n =

1 if a1:n ∈ A ⊂ En

0 otherwise
. (2.10)

The Monte Carlo method works well when it is possible to sample from the
probability density p(x1:n|y1:n) and n is not large.

However, there are two problems of the MC method in practise.

1. For most of the problems of interest, we cannot directly sample from
p(x1:n|y1:n).

2. As n increase, the sampling process of this method becomes inefficiency.

These two problems can be tackled by using a Monte Carlo sampling method
called Sequential Importance Sampling (SIS), which is a sequential version
of Importance Sampling (IS) [5].

Sequential Monte Carlo

A SMC sampler is essentially a sequential IS sampler with resampling process
[6].

Importance Sampling Assuming that p(x1:n|y1:n) is difficult to be sam-
pled directly, IS draws samples X(i)

1:n from a so-called importance distribution
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q(x1:n|y1:n). This importance distribution is chosen to be easy to be sampled
from, and is usually the prior distribution p(x1:n). After samples are drawn
from the importance distribution, each of them is then weighted by

w(i)
n =

p(x1:n, y1:n)

q(x1:n|y1:n)
∝ p(x1:n|y1:n)

q(x1:n|y1:n)
, (2.11)

which is called the unnormalised importance weight.

Then, it is possible to use these weighted samples to approximate the expec-
tation of a function ϕ(·) under the target distribution by

Ep(x1:n|y1:n)(ϕ) =

∑N
i=1w

(i)
n ϕ(X

(i)
1:n)∑N

i=1w
(i)
n

(2.12)

For example, the mean of the target distribution can be computed by setting
ϕ(x) = x and applying Equation 2.12, which gives

E(X
(i)
1:n) =

∑N
i=1w

(i)
n X

(i)
1:n∑N

i=1w
(i)
n

. (2.13)

Sequential Importance Sampling Importance Sampling solves the prob-
lem of the target distribution being unable to be sampled directly, to further
improve the sampling efficiency, IS is adopted to be its sequential version,
which is described as follow.

Knowing that

p(x1:n) = p(x1:n−1)× f(xn|xn−1)

= µ(x1)
n∏
k=2

f(xk|xk−1)
, (2.14)

we can obtain X
(i)
1:n and w

(i)
1:n when we already have X(i)

1:n−1 at time n − 1
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by

1. Sample X(i)
n from f(·|X(i)

n−1) (or µ(·) if n = 1);

2. Set w(i)
1:n = (w

(i)
1:n−1, w

(i)
n−1 × g(yn|X(i)

n ));

3. Set X(i)
1:n = (X

(i)
1:n−1, X

(i)
n ).

This sequential way owns the property that, no matter how large n is, there
is always only one component Xn to be sampled at one time. In addition,
this algorithm can be easily parallelised and distributed to multiple com-
puters or processors, which means that the sampling speed can be further
accelerated.

Resampling Another problem faced by SMC is that as n increases, all
the mass of the target distribution will be concentrated on a few number of
samples, i.e. some of the particles have weights with large values while others
have weights close to 0.

The solution to this problem is to discard particles with low weights and
multiply particles with high weights.

Knowing that at time n, IS provides the approximation of p(x1:n|y1:n)

p̂(x1:n|y1:n) =
N∑
i=1

W (i)
n δ

X
(i)
1:n

(x1:n), (2.15)

where W (i)
n = w

(i)
n∑N

i=1 w
(i)
n

and is named the normalised weight.

When the distribution has its mass centred in a few number of particles,
it is resampled by sampling N times X(i)

1:n ∼ p̂(x1:n|y1:n) to build the new
approximation

p̃(x1:n|y1:n) =
1

N

N∑
i=1

δ
X

(i)
1:n

(x1:n) (2.16)

The criteria to perform resampling step can be set as the Effective Sample
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Size (ESS) of the samples being lower than a threshold, which is the way
Turing conducts. Also, these new resampled samples are proved to be ap-
proximately distributed to p(x1:n|y1:n) but statistically dependent [5].

Particle Gibbs

The PG method is a SMC based method that runs multiple passes of the
SMC algorithm, where each pass is conditional on the trajectory sampled at
the last run of the SMC sampler [7]. The conditioned on trajectory here is
known as a reference trajectory.

To describe the PG algorithm, let x1:T = (xb11 , x
b2
2 , . . . , x

bT
T ) be the reference

trajectory with ancestor indices b1:T . For initialisation, we sample xk0 ∼ p(x0)

for k 6= b1 and set πk0 = 1/M for all k, where M is the number of particles in
each particle set.

Now suppose we have a weighted sample from p(xt|y1:t) at iteration t < T ,
then each iteration of the PG sampling is conducted as below.

1. Sample akt ∼ Categorical(πt), ∀k 6= bt;

2. Sample xkt+1 ∼ p(xkt+1|x
akt
t ), ∀k 6= bt;

3. Set the weights as wkt+1 = p(yt+1|xkt+1) and normalise the weights by
πkt+1 = wkt+1/

∑M
i=1w

i
t+1 for all k sets.

Finally at iteration T , a single trajectory is selected by sampling the corre-
sponding indices k′ ∼ Categorical(πT ).

Thanks to the fact that PG uses x1:T as a reference trajectory in its SMC
pass, it holds an invariance property that the exact target distribution is
invariant, which ensures that PG is an unbiased sampling method [8].
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2.2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo2 is a Markov Chain Monte Carlo (MCMC) method
for generating samples from a probability distribution for which direct sam-
pling is difficult. It was originally devised by Simon Duane, A.D. Kennedy,
Brian Pendleton and Duncan Roweth in 1987 [4].

MCMC is a type of general inference algorithm which constructs Markov
Chain to generate samples from any distribution. Differently from the fact
that the SMC method models the posterior density p(Xk = xk|y1:n), MCMC
methods model the full posterior p(x1:n|y1:n), in which each sample in X1:n

are dependent on the previous one according to a Markov process. (Note
samples generated by SMC are independent on each other.)

The most popular MCMC algorithm is the Metropolis-Hastings (MH) method,
and the HMC method is an advanced version of MH method applied in con-
tinuous state spaces, utilising the gradient of the target distribution function
to accelerate the sampling process by reducing random walks [1].

Figure 2.2 gives an illustration of how HMC performs differently fromMH.

As you can see in this figure, for a given number of sample number (30 here),
HMC (in red) has a better exploration in the target distribution while the
MH method (in green) get stuck in a corner of the distribution.

Another interpretation of the quicker convergence of HMC is that HMC
reduces the correlation between consecutive samples by using a Hamiltonian
evolution depending on states and momentums, thus proposing states with
a higher acceptance criteria than the observed probability distribution [4,
9].

Metropolis-Hastings The MH method makes use of a proposal distri-
bution Q(x′;x(t)) dependent on the current state x(t) to draw samples for
the next state. This proposal distribution can be any fixed density which is

2Hamiltonian Monte Carlo is historically named as hybrid Monte Carlo in origin [1].
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Figure 2.2: Comparison between MH and HMC methods.

feasible to draw samples from, e.g. a Gaussian distribution.

When the new state x′ is proposed, depending on the probability ratio be-
tween the proposed state and the previous state

a =
P ∗(x′)Q(x(t);x′)

P ∗(x(t))Q(x′;x(t)
, (2.17)

the following rule is used to decide whether to accept the new state or
not:

• If a ≥ 1, the new state is always accepted;

• Otherwise, the new state is accepted with a probability of a.

Note that as samples are generated using a proposal distribution depending
on the previous state, samples generated by MH method are dependent on

13



each other. However, one can proved that the convergence of MH method,
which says with t→∞, the probability distribution of x(t) will be asymptotic
to P (x) = P ∗(x)/Z [1].

Use of Hamiltonian Dynamics For many systems, the probability dis-
tribution P (x) can be written in the form of

P (x) =
e−E(x)

Z
, (2.18)

where both E(x) and its gradient dE(x)
dx

can be evaluated.

This E(x) can be seen as the energy level of the corresponding system and is
called the energy function. In HMC, the state space x is also augmented by
an additional momentum variables p, and the sampling process then consists
of two steps, which are described below.

1. Randomise the momentum variable p, leaving x unchanged;
This can be done by drawing a new momentum p from the Gaussian
density exp[−k(p)]/Zk, where k(p) = pTp/2 is the kinetic energy. The
sample in this step is always accepted.

2. Change both x and p using Hamilton dynamics defined by

H(x, p) = E(x) + k(p). (2.19)

As the gradient of E(x) determines how p changes, p in fact determines
where x goes with the direction with the highest probability in the state
space, or mathematically

ẋ = p (2.20)

and
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ṗ = −dE(x)

dx
. (2.21)

The sample obtained in this step is accepted depending on the difference
in Hamilton dynamics

∆H = Hnew −Hold (2.22)

according to the MH rule:

• If ∆H < 0, the new state is always accepted;

• Otherwise, the new state is accepted with a probability of exp(−∆H).

These two proposals (x and p) are then used to create asymptotically samples
from the joint density below

PH(x, p) =
1

ZH
exp[−H(x, p)] =

1

ZH
exp[−E(x)] exp[−k(p)]. (2.23)

As this joint density is separable, the desired distribution (i.e the marginal
distribution of x) can be obtained by simply discarding p, which gives

P (x) =
e−E(x)

Z
. (2.24)

In terms of the time complexity, compared with MH, HMC lowers the time
complexity from O(N2) to O(N) by reducing the random walks [1].

2.2.3 Evaluating Inference Results

Samples generated from MCMC algorithms are correlated to each other, thus
the ′real′ sample size is reduced by autocorrelation. Also, because MCMC
methods are MC methods, there exist some estimation errors due to the
limitation of Monte Carlo approximation [10]. How ′useful′ these samples
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are can be determined by two metrics, which are Effective Sample Size (ESS)
and Monte Carlo Standard Error (MCSE).

Effective Sample Size ESS is a measure of how well a continuous chain
is mixing. For a give chain {xi}1:n, ESS is defined by

ESS =
n

1 +
∑∞

k=1 ρk
, (2.25)

where n is the total number of samples in the chain and ρk is the autocorre-
lation factor at lag k of the chain [11].

As ESS measures how many samples are effective in the chain, the larger this
value is, the higher the sampling efficiency. Different MCMC samplers can
be evaluated by generating the same number of samples and comparing the
ESS for each sampling results.

Monte Carlo Standard Error MCSE is an estimate of the inaccuracy
of MC samples. There are multiple ways to estimate MCSE, among which
the batch mean method proposed in [12] is believed to be the most popular
one.

The consistent batch means (CBM) is defined for n = ab iterations as

σ̂2
g =

b

a− 1

a∑
j=1

(Ȳj − ḡn)2, (2.26)

where Ȳj = 1
b

∑jb
i=(j−1)b+1 g(Xi) (for j = 1, . . . , a), ḡn = 1

n

∑n
i=1 g(Xi) and g

is any real-valued function [12].

Using the CBM, the MCSE is then estimated by

MCSE =
σ̂2
g√
n
. (2.27)
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As MCSE measures the inaccuracy of MC samples, a smaller value of MCSE
is an indicator of better sampling performance.

However, it has been argued that MCSE is generally unimportant when the
goal of inference is parameters themselves rather than the expectation of
parameters, in which case the ESS is would be a more important measure
[13]. As some models are interested in using the expectation of parameters
while some of them not, both MCSE and ESS will be used as performance
metrics in this project.

2.3 Probabilistic Programming

Machine learning (ML) has become significantly important in recent year
with its applications to various areas, including automatic driving, gene pre-
diction and even playing the Go game [14]. One important approach to
machine learning is probabilistic modelling, in which researchers defines a
statistical model and extract information from data by doing inference on
the model. It is an iterative process, where a model is proposed, fitted to
some data and tweaked depending on its performance on the data. However,
deriving and developing specific inference algorithms usually require expert
knowledge in mathematics and computer science, which is challenging to re-
searchers who are not experts in these areas and impedes the wide-range
applications of ML in more specific fields.

Probabilistic programming languages are aimed to solve this problem by
providing a considerably flexible framework to define probabilistic models and
automating the model learning process using general inference algorithms.
This frees researchers from writing complex models by hand and enables
them to focus more on designing a suitable model by their insight.

In 2008, Goodman introduced an idea of a universal PPL that could ex-
press any generative non-parametric models, in which latent variables are
unbounded [15, 16]. However, this idea was not implemented before the
existing of Turing.
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There are mainly two challenges when achieving a universal PPL framework
in general, the first one of which is the development of efficient inference
algorithms and the second one of which is how to utilise existing program-
ming language infrastructure. In many PPLs, the second issues is tackled by
embedding PPLs into some existing programming languages to use as much
infrastructures as the ′master′ programming language has [16].

In the rest part of this section, how probabilistic models are represented
by probabilistic programs is firstly introduced, and then three probabilistic
models written in Turing and Stan (a popular PPL which also implements
the HMC algorithm) are provided as illustrations of how models are written
in practise. More concrete discussions on existing PPLs will be provided in
Chapter 3.

2.3.1 Approaches to Probabilistic Programs

In PPLs, a user needs to write his or her mathematical model as a proba-
bilistic program, which is essentially a computer program which describes a
probabilistic distribution.

There are generally three approaches to express a probabilistic distribution as
a program, which are the distributional approach, the randomised approach
and the hybrid approach. Distributional and randomised approaches are
inspired by work in [17] and popular in literature while the hybrid one is
recently proposed in [16].

The Distributional Approach

Distributional probabilistic programs are deterministic functions to the in-
puts. They define concrete mappings between inputs and the target den-
sity.

One example of distributional probabilistic is the joint probability function
of two inputs, e.g. θ and D in the example below
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f : (θ,D) 7→ π0(θ)gθ(D). (2.28)

In the Bayesian framework, this joint distribution could be the joint function
of the prior P (θ) and the likelihood P (D|θ).

Many existing PPLs including Stan, Infer.NET and WinBUGS takes this
approach [16].

The Randomised Approach

Randomised probabilistic programs are non-deterministic (randomised) func-
tions to the inputs. For instance, the function below defines a randomised
probabilistic program.

Listing 2.1: Exemplar Randomised Probabilistic Program
1 function f(a, b)

2 pdf = p_0(a)

3 z = rand() # draw a random value uniformly

4 return pdf += g(a, b, z)

5 end

As the density returned by the function f(a, b) depends on the random
value z, this function gives different returned values at each time it runs.

In the sense of that randomised probabilistic programs can generate data
from some underlying generative models, randomised programs are also called
data simulators [16].

The Hybrid Approach

Hybrid probabilistic programs are randomised probabilistic programs which
define distributional mappings

f̂ : (θ,D) 7→ π0(θ)gθ(D|z), (2.29)
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where z is drawn from some distributions which supports sampling.

The hybrid approach actually combines the determinised approach and the
randomised in the sense that it adds noise to the determinised function. This
approach is able to describe any models in the Bayesian inference framework
and is the approach taken by Turing.

As hybrid probabilistic programs evaluate some density functions with ran-
domised intermediate values, they are usually called noisy evaluators [16].

2.3.2 Exemplar Probabilistic Programs

This section lists three probabilistic models written in two PPLs, Turing and
Stan, as an illustration of how probabilistic models are expressed in practice.
These three models will also be used for experiments in Chapter 5.

Gaussians with Conjugate Priors

The first model is a univariate Gaussian model with conjugate priors. Con-
jugate priors are useful to construct posteriors that own the same form after
being updated by the Bayes’ rule [18].

Mathematically in a univariate Gaussian model with conjugate priors, data
points x ∈ D are modelled by

x ∼ Normal(µ,
√
σ), (2.30)

where σ ∼ InverseGamma(α, θ) and µ ∼ Normal(0,
√
σ).

Here in our example, the hyper-parameters of the inverse gamma distribution
are set as α = 2 and θ = 3.

Listing 2.2 shows how this model is written in Turing and Listing 2.3 gives
the corresponding code in Stan3.

3The Turing version of this model is available at the home page of Turing (https:
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Listing 2.2: The Gaussians Model in Turing
1 xs = [1.5, 2.0] # the data

2
3 @model gauss begin

4 @assume s ∼ InverseGamma(2, 3) # define the variance

5 @assume m ∼ Normal(0, sqrt(s)) # define the mean

6 for i = 1:length(xs)

7 @observe xs[i] ∼ Normal(m, sqrt(s)) # observe data points

8 end

9 @predict s m # predict s and m

10 end

Listing 2.3: The Gaussians Model in Stan
1 const gauss_data = [ # the data

2 Dict("N" => 2, "xs" => [1.5, 2.0])

3 ]

4
5 const gauss_str = " # data definition

6 data {

7 int<lower=0> N;

8 real xs[N];

9 }

10 parameters { # parameter

definition

11 real<lower=0> s;

12 real m;

13 }

14 model { # model definition

15 s ∼ inv_gamma(2, 3); # define the variance

16 m ∼ normal(0, sqrt(s)); # define the mean

17 xs ∼ normal(m, sqrt(s)); # observe data points

18 }

19 "

20
21 gauss = Stanmodel(name="gauss", model=gauss_str);

//github.com/yebai/Turing.jl) and the corresponding Stan version is written by
the student.
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According to [19], there is an exact inference result for this model. In Gen-
eral, for a Gaussian model with priors µ ∼ Normal(µ0, σ

2/k0) and σ2 ∼
InverseGamma(α, θ)4, the posterior means are

µ̄ =
k0µ0 + nx̄

k0 + n
(2.31)

and

σ̄2 =
2α + n

2α + n− 2

1

2α + n
(2θ +

∑
i

(xi − x̄)2 +
nk0
k0 + n

(µ0 − x̄)2). (2.32)

where n is the number of observations and x̄ is the mean of observations.

In our example, with n = 2, x̄ = 1.75, k0 = 1, α = 2 and θ = 3, this two
means are

µ̄ =
1× 0 + 2× 1.75

1 + 2
=

7

6
(2.33)

and

σ̄2 =
2× 2 + 2

2× 2 + 2− 2

1

2× 2 + 2
(2× 3 + 2× (

1

4
)2 +

2× 1

1 + 2
(
7

4
)2) =

49

24
. (2.34)

This exact inference result will be used to validate the correctness of the
HMC implementation in Section 5.1.

4This kind of priors is called Normal-inverse-Gamma (NIG) prior, which is a special
case of Normal-inverse-chi-squared (NIX) prior. [19] gives the expressions of posterior
means of NIX and the corresponding means of NIG is found by using the relation between
the scaled inverse chi-squared distribution and the inverse gamma distribution, which says
if x ∼ ScaledInverseChiSquared(ν, τ2) then x ∼ InverseGamma(ν2 ,

ντ2

2 ).
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Beta-Binomial Model

The second example is the beta-binomial model, which models data x ∈ D
as

x ∼ Bernoulli(p), (2.35)

where p ∼ Beta(α, β).

In our example, the parameters of the Beta distribution are set as α = 1 and
β = 1.

Listing 2.4 shows how this model is written in Turing and Listing 2.5 gives
the corresponding program in Stan5.

Listing 2.4: The Beta-Binomial Model in Turing
1 obs = [0, 1, 0, 1, 0, 0, 0, 0, 0, 1] # the observations

2
3 @model betabinomial begin

4 @assume p ∼ Beta(1, 1) # define the prior

5 for i = 1:length(obs)

6 @observe obs[i] ∼ Bernoulli(p) # observe data points

7 end

8 @predict p # predict of p

9 end

Listing 2.5: The Beta-Binomial Model in Stan (Julia Interface)
1 const betabinomial_data = [ # the observations

2 Dict("N" => 10, "obs" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1])

3 ]

4
5 const betabinomial_str = "

6 data { # data definition

7 int<lower=0> N;

5The Stan version of this model is adapted from the one at the home page of the Julia
interface of Stan (https://github.com/goedman/Stan.jl) and the corresponding
Stan version is written by the student.
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8 int<lower=0,upper=1> obs[N];

9 }

10 parameters { # parameter definition

11 real<lower=0,upper=1> theta;

12 }

13 model { # model definition

14 theta ∼ beta(1, 1); # define the prior

15 obs ∼ bernoulli(theta); # observe data points

16 }

17 "

18
19 betabinomial = Stanmodel(name="betabinomial", model=

betabinomial_str)

According to [18] there is an exact inference result for this model, which says
generally for a beta-binomial model with a prior Beta(α, β), the mean of p
is

p̄ =
α +N1

α + β +N
, (2.36)

where N1 is the number of 1s in D and N is the total number of observa-
tions.

Here in our example, withN1 = 3, N = 10, α = 1 and β = 1, this expectation
is

p̄ =
1 + 3

1 + 1 + 10
=

1

3
. (2.37)

Again, this exact inference result will be used to validate the correctness of
the HMC implementation in Section 5.1.

Logistic Regression

Logistic regression is a regression model where the dependent variable is
categorical, which was firstly introduced in 1958 [20, 21]. Specifically in
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our example, the label of data points xi ∈ D ⊂ R2 follows a Bernoulli
distribution

ti ∼ Bernoulli(y), (2.38)

where yi = f(β0 + β′xi) = 1
1+exp(−(β0+β′xi))

and ti is the true label.

Here the function f(x) = 1
1+exp(−x) is called the logistic function and logis-

tic regression is named because the probability is estimated by this logistic
function. Also in this model, ti and xi has a linear relationship with weight
vector β = (β1, β2)

′ and bias β0.

In the Bayesian framework, the the bias and the weight vector are given
Gaussian priors as

βi ∼ Normal(0, σ2). (2.39)

The value of σ determines the fitting level of our model by controlling the
magnitude of βi.

Listing 2.6 shows how this model is written in Turing and Listing 2.7 gives
the corresponding model in Stan.

Listing 2.6: The Logistic Regression Model in Turing
1 function f(x, beta) # Logistic function

2 return 1 / (1 + exp(-(beta[1] + beta[2:3]’ * x)[1]))

3 end

4
5 xs = Array[[1, 2], [2, 1], [-2, -1], [-1, -2]] # data points

6 ts = [1, 1, 0, 0] # labels

7
8 alpha = 0.25 # regularisation term

9 var = sqrt(1 / alpha) # variance of Gaussian prior

10 @model lr begin

11 beta = Vector{Dual}(3) # define a container for beta

12 for i = 1:3 # define priors

13 @assume beta[i] ∼ Normal(0, var)
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14 end

15 for i = 1:4

16 y = f(xs[i], beta) # compute label

17 @observe ts[i] ∼ Bernoulli(y) # observe data point

18 end

19 @predict beta # output beta

20 end

Listing 2.7: The Logistic Regression Model in Stan
1 const lr_data = [ # training data

2 Dict(

3 "N" => 4,

4 "xs_1" => [1, 2, -2, -1],

5 "xs_2" => [2, 1, -1, -2],

6 "ts" => [1, 1, 0, 0]

7 )

8 ]

9
10 const lr_str = "

11 data { # data definition

12 int N;

13 real xs_1[N];

14 real xs_2[N];

15 int<lower=0,upper=1> ts[N];

16 }

17 parameters { # parameter definition

18 real beta_0;

19 real beta_1;

20 real beta_2;

21 }

22 transformed parameters { # internal parameter definition

23 real<lower=0,upper=1> ys[N];

24 for (i in 1:N)

25 ys[i] <- 1 / (1 + exp(-(beta_0 + beta_1 * xs_1[i] + beta_2 *
xs_2[i])));

26 }

27 model { # model definition

28 beta_0 ∼ normal(0, 2); # priors

29 beta_1 ∼ normal(0, 2);
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30 beta_2 ∼ normal(0, 2);

31 for (i in 1:N)

32 ts[i] ∼ bernoulli(ys[i]); # likelihood

33 }

34 "

In addition, a Bayesian neural network with a single neuron is essentially a
logistic regression model. Therefore, this example can be also considered as
a simple Bayesian network with only one neuron shown in Figure 2.3.

x
w

t

w0

y
ϕ(t)

Figure 2.3: A neural network with one neuron.

As a neural net is usually trained using gradient descent (GD) methods,
it would be interesting to compare the predictions from these two meth-
ods.

In general, GD updates parameters by moving them towards where the cur-
rent gradient indicates. In our example, the update step is

β′ = β + αL(β), (2.40)

where α is the learning rate and L(β) is the loss function defined by

L(β) =
∑
i

ti log(y) + (1− ti) log(1− y) +
α

2
(β2

0 + β2
1 + β2

2). (2.41)

[1] indicates a relationship between the variance of Gaussian prior and the
learning rate of GD, which is σ2 = 1/α. Also, the ′leapfrog′ step size in
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HMC can also be chosen using the learning rate by ε =
√

2η [1]. These two
relations can be used to set parameters to make two methods comparable and
the experiment to compare Bayesian prediction against GD will be given in
Section 5.4.1.
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Chapter 3

Related Work

The concept of probabilistic programming is relatively newly emerging but
it does experience a nearly 20 years’ development history.

The first popular PPL is named WinBUGS in 2000, which can be used to
describe graphical models, and utilises a Gibbs sampler to do inference [22].
After that many PPLs with different inference algorithms were developed.
For example, Infer.NET from Microsoft makes use of message passing (2014);
Stan from the Stan development team uses HMC as the inference algorithm;
LibBi uses Particle MCMC (2013); and in 2014, Anglican, from Wood’s
group, consists various inference algorithms [16, 23, 24, 25].

This chapter gives more practical insight of how PPLs are implemented, and
is structured as follow. In Section 3.1, Stan is selected to be discussed in
detail as it also implements the HMC algorithm. Some features of Stan
mentioned here will be linked to its performance later in Section 5.2. Then
Section 3.2 will introduce the fundamental infrastructure of Turing in terms
of the basic architecture, key components and the flow of how a probabilistic
model is learnt.
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3.1 An Existing HMC Implementation - Stan

Stan, named after the mathematician Stanislaw Ulam, who is one of the
fathers of the MC method, is a C++ program to perform Bayesian inference
[26]. The first version of Stan was released in 2012 and now it has a large
and active development community as well as affluent documentations. There
currently exist several interfaces of Stan, including command line, R, Python,
Matlab, and Julia. Stan models can be defined in the host language as string
and the host language can then call the Stan compiler to compile defined
models into C++ programs [26].

To use Stan, a user defines a Stan program in its own syntax, which is similar
to BUGS and Jags in the sense that it allows a user to write a Bayesian model
in a convenient language whose code looks like statistics notation [22, 26, 27].
However, as the Stan program forces typings on variables, users also need
to define the type of data and model parameters as well as intermediate
parameters in the model, which makes model definition troublesome to some
extent.

After a Stan model is defined, it is then compiled to a C++ program and runs
along with data. Note that each time the model is amended, it requires to
be compiled again. The compiling takes relatively long time compared with
its fast sampling speed. As probabilistic modelling usually requires frequent
amendments of models, this is argued to be a disadvantage of Stan. Some
concrete compiling time of Stan programs will be given in Section 5.2.

The result output from Stan is a chain of samples of the posterior parameters
in the model generated by NUTS, which is an adaptive variant of the HMC
algorithm. As Stan supports only HMC, it cannot inference parameters in
discrete space [26]. In addition to samples, Stan also generates and outputs
useful statistics of samples such as mean, variance and ESS of the samples
by default.
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3.2 The Turing Infrastructure

Turing is an implementation of universal PPL ideas from [15] in Julia. In
Turing, a probabilistic program can be defined using some probabilistic op-
erations in a normal Julia program and this program can be executed by
some general inference engines to learn the model parameters automatically.
Generally speaking, compared with other PPLs which sacrifice expressivity
for efficiency, Turing has better expressivity and meanwhile maintains good
performance. This is thanks to the good performance of its master language,
Julia, the design of its compiler and the efficient inference algorithms it uses
[16].

Julia The programming language Turing based on is Julia, which is a
high-performance dynamic programming language. Historically for numer-
ical computing, theres was a dilemma where high level dynamic programs
are usually productive to write but slow to run therefore prototypes in such
languages have to be re-written to another language for speeding up [28].
However, as Julia is based on generic functions and utilises a rich type sys-
tem which simultaneously enables an expressive programming model and
successful type inference, it has both advantages in expressivity and speed
performance for a wide range of programs [29]. Here the first advantage
meets our expectation of PPLs being expressive and the second one ensures
our inference engines do not suffer from unsatisfying performance due to the
underlying programming language [28, 29]. Therefore, Julia is a desirable
programming language to build a PPL on.

As probabilistic programs are essentially Julia programs and Julia is rela-
tively expressive than other numerical programming languages, Turing also
inherits the advantage of satisfying expressivity of probabilistic models. As
you have seen in Section 2.3.2, compared with Stan, the syntax of Turing is
simpler and easy-to-read. Especially Turing saves lines of codes by freeing
users from defining the types of parameters in data and model as well as en-
ables the Turing program to interact with other functions in Julia. Also, as
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Julia is a dynamic programming language, Turing does not have the tedious
compiling process when each time a model is changed.

3.2.1 The Framework

There are two major components in the Turing framework, which are the
compiler and the samplers.

The compiler

In Turing, models are defined by a normal Julia program supported with
three probabilistic operations, @assume, @observe and @predict, wrapped in
a scope by @model (see Section 2.3.2 for some model examples). Section 4.1.1
will give the detail of the language design.

The defined model within @model will then be translated into a normal Julia
program by the compiler, passed to a sampler as an expression when the
sampling function sample() is called. The detail design of the compiler and
how each operation works will be given in Section 4.1.2.

The samplers

Turing supports multiple samplers by wrapping the parameters of an algo-
rithm into a specific type inherited from InferenceAlgorithm and wrapping
the concrete algorithm into a type inherited from Sampler. The correspond-
ing sampler will be automatically created by the sampling algorithm that
user defines in the sampling process.

Up to the time when this thesis is submitted, Turing supports four inference
algorithms, which are Importance Sampling (IS), Particle Gibbs (PG), Se-
quential Monte Carlo (SMC) and Hamiltonian Monte Carlo (HMC)1. These

1IS, PG and SMC are existing when the student joined the project. The student mainly
contributes to implementation of the HMC sampler in this project. In addition, the student
also re-written the IS sampling using the new data structure ParticleContainer,
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samplers can be constructed by calling the respective algorithms with corre-
sponding parameter(s) as follow

• IS: IS(n_samples)

• PG: PG(n_particles, n_iterations)

• SMC: SMC(n_samples)

• HMC: HMC(n_samples, leapfrog_size, leapfrog_number)

Among these four samplers, three of them, IS, PG and SMC, are particle
based methods, in which samples are represented as particles and each par-
ticle needs to run a separate copy of the program independently. In order to
improve sampling efficiency of these methods, coroutines, which is a similar
technique to subroutines, are used to execute programs in Turing.

Coroutines have two advantages over other multi-process methods, which
are

1. A coroutine can yield control multiple times during its execution and
the result can be required either at that point or later;

2. There is no need to manage locks in the use of coroutine as there is no
shared memory or concept of father processes [16].

This coroutine approach improves the sampling speed of IS and SMC to
a great extent, but it is only helpful for the HMC algorithm to a limited
extent. The reason is that in HMC each sample is dependent on the previous
one, which means the algorithm has to wait for the program related to the
previous sampling step to be finished. Luckily, within each iteration of HMC,
it still requires to run multiple programs in parallel when computing the
gradient information, where coroutines can still help speed up the sampling
process.

The HMC sampler is the one this project focuses on and the corresponding
design and implementation will be given in Section 4.2.

which is originally designed for the SMC sampler.
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Sampling a defined model

When a model is defined, inference could be done by calling a function sample

() with two arguments: a model and a sampling algorithm. This function
will create a global sampler object, link it to Turing and execute this sam-
pler.

For instance, if one would like to sample the Gaussian model gauss in Sec-
tion 2.3.2 using a HMC sampler for 1000 samples with ′leapfrog′ step size
and ′leapfrog′ step number being 0.5 and 15 respectively, the statement be-
low could be used.

1 chain = sample(gauss, HMC(1000, 0.5, 15))

The return of sample() is the generated samples wrapped in a type called
Chain. Each sample in a chain is a Sample type that stores the weight2 and
value of the sample and the Chain stores all samples as well as the log model
evidence.

Chain is a general interface to fetch samples generated by all samplers in
Turing. It has some intrinsic implementations to make it easy to extract
inference results, e.g. samples are automatically weighted by their weights
during extraction.

Using the Gaussian model as an example, one could extract all weighted
samples of parameter s using a single indexing notation as below.

1 chain[:s]

3.3 MCMC Libraries in Julia

There are many MCMC packages available in Julia including SimpleMCMC.jl

, MCMC.jl and Mamba.jl 3. The first one supports doing inference on models
2Weights for non-IS based sampling algorithm like HMC are simply 1/n, where n is

the number of samples.
3SimpleMCMC.jl is available at \url{https://github.com/fredo-dedup/

SimpleMCMC.jl}, MCMC.jl is available at https://github.com/doobwa/MCMC.
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defined in a simple customised Julia expression using random-walk Metropo-
lis and HMC; the second one supports applying inference algorithms (MH,
HMC and slice sampling) on probability defined in the form of functions;
and the third one allows users to define models in its own type and applies
MCMC algorithms to them, which is similar to a PPL to some extent.

Here the package Mamba.jl also provides some convenient toolkits to diagnose
the MCMC sampling result by computing MCSE and ESS, and thus this
package is used in the experiment part of this project.

jl and Mamba.jl is available at https://github.com/brian-j-smith/Mamba.
jl.
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Chapter 4

Design and Implementation

This chapter provides information about the design and implementation of
the HMC sampler in Turing1, and is divided into two parts: the compiler and
the sampler. The compiler is responsible for translating probabilistic models
and the sampler is responsible for generating samples, which are discussed
in Section 4.1 and Section 4.2 respectively.

4.1 Automating Bayesian Inference

Turing automates Bayesian inference by firstly defining a probabilistic model
as a Julia program and then running this program using universal inference
engines. This program is basically a normal Julia program extended with
three probabilistic operations, namely @assume, @observe and @predict,
wrapped in a @model scope (see Listing 2.2, Listing 2.4 and Listing 2.6 in
Section2.3.2 for example). The design of the Turing language will be intro-
duced in Section 4.1.1.

1The master repository of the Turing project is at https://github.com/yebai/
Turing.jl. As the Turing project is still under development, implementation discussed
in this thesis can be different in the future. For this reason, the code of the HMC im-
plementation in this dissertation is stored in a separate branch, which is available at
https://github.com/xukai92/Turing.jl/tree/thesis.
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The probabilistic program is then be translated into a standard Julia pro-
gram by a compiler, which involves using the metaprogramming technique,
macro, in Julia. The translated program is essentially a noisy evaluators that
can evaluate the density of probability distribution the model defines. The
implementation of the compiler will be discussed in Section 4.1.2.

4.1.1 Language Design

Three probabilistic operations, @assume, @observe and @predict, are re-
sponsible for defining the prior probability, the likelihood and the priors to
be outputted by the sampler respectively.

In detail, these three operations are supported with the syntax below.

• @assume x ∼ D: declare that the (prior) variable x is drawn from the
distribution D.
Note: x will either be drawn from the distribution or be set using the
current value stored in the sampler.

• @observe y ∼ D: declare that the value y is observed to be drawn from
the distribution D.
Note: y is ought to have a concrete value in the current scope of the
program.

• @predict x: declare that which prior(s) declared by @assume (e.g. x

here) should be output from the inference engine.

Distributions here are declared in form of standard mathematical form, e.g.
Normal(0, 1) or Bernoulli(0.33)2.

Additionally, variables here can be annotated with additional arguments,
static and param, passed in the distribution, e.g. @assume mu ∼ Normal

(0, 1; static=true), to indicate their properties. In specific, these anno-

2The Julia package Distributions supports most of the common distributions.
However, due to the fact the distributions in the package are not differentiable, a wrapper
of common distributions are written by the student. This will be discussed in Section 4.2.2.
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tations are aimed to be used as below.

• static: if this argument is set, it means that the existence of the cor-
responding variable does not rely on other variables. Therefore the
variables exists in each execution of the program.
Note: When this argument is set to true and the distribution is dif-
ferentiable, the corresponding variable could be efficiently sampled by
samplers like HMC.

• param: if this argument is set, it means that the corresponding variable
can be treated as a model parameter.
Note: When this argument is set to true, the corresponding variable
could be efficiently sampled by samplers like SMC2.

This annotation feature is aimed to support a future Gibbs sampler, which
combines PG and HMC by sampling discrete variables by PG and continuous
variables by HMC respectively.

4.1.2 Compiler: Translating Operations using Macros

In general, a compiler translates one programming language into another.
Here the compiler in Turing translates probabilistic programs into normal
Julia programs by transforming the three probabilistic operations into normal
Julia statements. This transformation is achieved by a metaprogramming
technique in Julia called macro.

How macros work

Macros provide a way to include generated code in the final body of a pro-
gram. They can map a tuple of arguments to a returned expression. Differ-
ently from functions which are executed in runtime, macros are executed in
parse time [29, 30]. This allows programmers to generate and include pieces
of customised codes before the full program is executed.
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The macro change_op below illustrates how macros work and the difference
between macros and functions.

1 macro change_op(ex)

2 # Change the operation to multiplication

3 ex.args[1] = :*
4 # Return an expression to print the result

5 return :(print($(ex)))

6 end

This macro is aimed to change the operation of the input expression to mul-
tiplication. Giving an argument 1 + 2, it gives result as below.

1 @change_op 1 + 2 # call the marco

2 > 3 # the result of expression "print(1 * 2)"

Here, this macro takes an expression 1 + 2 as input and returns another
expression print(1 * 2) to be evaluated by Julia. This transformation is
impossible by using a function because, for functions, the expression 1 + 2

will be executed when being passed into the function and what the function
sees is only the result value 3. This means functions are not able to manip-
ulate incoming expressions in their routines thus macros are necessary for a
compiler.

The @assume macro

Using

1 @assume m ∼ Normal(0, 1; static=true)

as an example, the macro @assume will

1. Check if there is any additional argument static or param. If so, it will
do settings regarding to the argument, and discard this argument inside
the distribution expression, i.e. turning Normal(0, 1; static=true)

into Normal(0, 1).

2. The Distribution type will be converted to a custom wrapper called
dDistribution (differentiable distribution) by appending a letter ’d’ to
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the corresponding argument in the expression, i.e. turn Normal(0, 1)

to dNormal(0, 1).

3. The macro will return an expression which calls a function named
assume() depending on the type of prior, which is explained as be-
low.

If the prior is a single variable (like m in the example above), the expression
will become

1 m = Turing.assume(

2 Turing.sampler, # the sampler defined by the user

3 dNormal(0, 1), # the distribution

4 PriorSym(:m) # the prior identity

5 )

If the prior is an indexed array or a dictionary, such as priors[i] in the
first code block below, the expression will become the second code block
below.

1 priors = zeros(2) # initialise an array to store priors

2 for i = 1:2

3 @assume priors[i] ∼ Normal(0, 1)

4 end

1 m = Turing.assume(

2 Turing.sampler, # the sampler defined by the user

3 dNormal(0, 1), # the distribution

4 PriorArr(:(priors[i], :i, 1)) # the prior identity

5 )

Here the value 1 in the prior identity construction (Line 4 of the second code
block above) is the concrete value at a specific iteration of the loop (the loop
between Line 2 to 4 in the first code block above).

The aim of using types PriorSym and PriorArr is to pass an identity of each
prior so that they can be replayed by the HMC sampler specifically. Actually
this way of replay is not perfect and the replay issue will be specifically
discussed in Section 4.2.3.
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The @observe macro

Exactly similarly to @assume, @observe will firstly do settings according to
additional arguments, discard the annotation from distribution construction
and then turn Distribution into dDistribution. The difference happens
in the third step, where observe will pass the concrete value of the variable
observed to a function called observe().

For instance,

1 xs = [1.5, 2.0]

2
3 @observe xs[1] ∼ Normal(0, 1)

will become

1 Turing.assume(

2 Turing.sampler, # the sampler defined by the user

3 dNormal(0, 1), # the distribution

4 1.5 # the concrete value of observation

5 )

The @predict macro

Using

1 @predict m

as an example, if the value of m is 1.1 at the time when this macro is called,
the statement above will become

1 Turing.predict(

2 Turing.sampler, # the sampler defined by the user

3 :m, # the symbol of variable

4 1.1 # the current value of variable

5 )
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The @model macro

The macro @model wraps all the original and generated statements in its
scope into an expression ex, stores this expression in the Turing’s global
scope as

1 TURING[:modelex] = ex

and returns this expression.

4.2 Hamiltonian Monte Carlo in Turing

The general inference engine developed in this project uses the standard
HMC algorithm. In this section, the implementation of the HMC sampler
in Turing is given in detail, with how automatic differentiation works, both
generally and inside the sampler, explained in Section 4.2.2.

4.2.1 The Algorithm in Detail

According to theory of HMC in Section 2.2.2 and referring to a Octave version
of HMC from [1], the pseudocode code of HMC in Julia style in shown in
Algorithm 1.

Notice here in this algorithm, initial states are required. This is done by sim-
ply drawing samples from priors and using these samples as initial states.

In general, the algorithm in Algorithm 1 can be directly applied to situation
where the energy function and the corresponding gradient function are avail-
able. However, as a probabilistic program is not essentially a function but
a noisy evaluator, this algorithm cannot be directly applied to the Turing
framework. The way to evaluate the energy function will be discussed in this
section. Nevertheless, it is also not easy to get the gradient information from
the program, which is the main challenge of this project. The solution to
this challenge will be discussed in Section 4.2.2.
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Algorithm 1: The Hamiltonian Monte Carlo Algorithm
Data: sample number n, ′leapfrog′ step number τ , ′leapfrog′ step size

ε, initial state x, energy function E(), gradient function gradE()
Result: n samples

1 for i = 1 to n do
2 p = randn(length(x)); // draw momentum from Normal(0, 1)
3 oldH = p’ ∗ p / 2 + E(x); // record old Hamiltonian
4 oldx = x; // record old state
5 // Make τ ′leapfrog′ steps
6 g = gradE(x); // evaluate gradient
7 for t = 1 to τ do
8 p − = ε ∗ g / 2; // make a half step for momentum
9 x + = ε ∗ p; // make a full step for state

10 g = gradE(x); // evaluate gradient
11 p − = ε ∗ g / 2; // make a half step for momentum

12 end
13 // Decide wether to accept the proposal state or not
14 H = p’ ∗ p / 2 + E(x); // compute new Hamiltonian
15 dH = H − oldH; // compute the difference in Hamiltonian
16 if dH < 0 then
17 acc = true
18 else
19 if rand() < exp(-dH) then
20 acc = true
21 else
22 acc = false
23 end
24 end
25 if ¬acc then
26 x = oldx; // rewind if rejected
27 end
28 end
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It is worth to be mentioned that in each iteration the number of evaluation of
E(x) is O(1) (Line 3 and Line 14) and the number of evaluation of gradE(x)
(Line 6, and Line 10 in a τ times loop) is O(τ). So in the whole sampling
process these two complexities are O(n) and O(nτ) respectively.

Evaluating E(x)

According to Section 2.2.2, there is a relation between energy and probability
as described by Equation 2.18, which can be written as

E(x) = − log(P (x)× Z), (4.1)

where P (x) is the posterior distribution P (θ|D) that we are interested in,
i.e. P (x) = P (θ|D).

According to the Bayes’ rule in Equation 2.1, we have

P (θ|D) = P (D, θ)/Z, (4.2)

where P (D, θ) is the joint probability of D and θ.

By plugging Equation 4.2 into Equation 4.1 with P (x) = P (θ|D), we have

E(x) = − log(P (D, θ)). (4.3)

That is to say, in the sense of that the only required information by the HMC
algorithm are the evaluations of E(x) and gradE(x), it actually only needs
to extract the log-joint probability and the corresponding gradient from the
probabilistic program.

Also, by assuming data point are conditionally independently drawn given θ
(x ⊥ x′|θ for any x, x′ ∈ D) and using the product rule, we have

45



log(P (D, θ)) = log(
∏
x∈D

P (x|θ)) + log(
∏
θi∈θ

P (θi|θ−i))

=
∑
x∈D

P (x|θ) +
∑
θi∈θ

P (θi|θ−i)
. (4.4)

That is to say, when we run the probabilistic program, we can compute
the corresponding log-joint probability by accumulating log-likelihoods and
log-priors.

Therefore, the evaluation of E(x) in Algorithm 1 can be achieved by two
steps

1. Run the model by accumulating log-probability from each statement;

2. Collect the negative log-joint accumulated by the model.

4.2.2 Computing Gradient Information using Automatic

Differentiation

As discussed in Section 4.2.1, the gradient function is not directly available
therefore it requires a way to find the gradient information, which is achieved
by Automatic differentiation in this project.

AD is a technique for calculating derivatives of any numeric function. Com-
pared with other techniques of finding gradient such as Numerical Differenti-
ation and Symbolic Differentiation, AD has advantages of being both efficient
and accurate [31]. Thus AD is used in this project to obtain the gradient
information of any probability distribution, which is the key ingredient of
HMC.

The core idea behind AD is a new type of numbers call dual numbers, which
will be introduced next, followed by an example and detailed application of
AD in Turing.
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Dual Numbers

The mathematics behind forward mode AD are dual numbers, which are
defined as formal truncated Taylor series in the form of

v + v̇ε. (4.5)

where v is called the real part and v̇ is called the dual part. Note that any
non-dual number v can be viewed as a dual number v + 0ε.

By defining ε2 = 0 on dual numbers, we have

(v + v̇ε) + (u+ u̇ε) = (v + u) + (v̇ + u̇)ε (4.6)

and

(v + v̇ε)(u+ u̇ε) = (vu) + (vu̇+ v̇u)ε, (4.7)

where we can see in both of them, the coefficients of ε have the same results
as what the symbolic differentiation rules give3.

This means that we can use dual numbers as data structures and evaluate
functions of dual numbers by

f(v + v̇ε) = f(v) + f ′(v)v̇ε, (4.8)

where both the real and dual part are passed.

Also the chain rule of differentiation holds, which is illustrated in Equation 4.9
below.

3Symbolic differentiation rules are d
dx (f(x) + g(x)) = d

dxf(x) + d
dxg(x) and

d
dx (f(x)g(x)) = ( ddxf(x))g(x) + f(x)( ddxg(x)).
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f(g(v + v̇ε)) = f(g(v) + g′(v)v̇ε)

= f(g(v)) + f ′(g(v))g′(v)v̇ε
. (4.9)

Here we can see the coefficient of ε in the second line of in Equation 4.9 has
the same form as the derivative of any composition of functions.

So far we assume we know f ′ and g′, therefore it is necessary to know the
gradient functions of some elementary functions in advance. In fact, the
development of AD is mainly about handling dual number operations under
elementary functions. Luckily, there is a package in Julia implementing dual
numbers operations called DualNumbers, which is used in the project.

In summary, we can use dual numbers as the basic data structure with el-
ementary functions implemented to support passing through dual numbers
according to Equation 4.6, 4.7 and 4.8. By this way, the derivative of any
function f() of interest is given by

df(x)

dx

∣∣∣∣
x=v

= epsilon-coefficient(dual-version(f)(v + 1ε)). (4.10)

Also notice, as long as there is no arithmetic operations done on dual num-
bers, AD can be applied to any program since the data structure is unchanged
and the differentiation will continue under the dual number operations.

In practise, when using AD to find the derivative of a function w.r.t a specific
variable (say a real number x), it is necessary to set this variable in dual form
with the dual part being 1, i.e. x+ 1ε, and then evaluate the function under
dual operations. This way of using dual numbers is called the forward mode
of AD and is the current implementation of AD in Turing.

The forward mode of AD requires n times evaluation of a program or a
function to get the derivatives of n variables. There is also another form
of AD, which is called the reverse mode. This way of AD requires only
one evaluation of target programs or functions to compute all the gradient

48



Table 4.1: Example of evaluating an expression with dual numbers.

Step Dual Number Evaluation
0 v0 = x 3 + 1ε
1 v1 = v0 − 1 (3−1)+(1−0)ε = 2+1ε
2 v2 = f1(v1)

, f1(x) = x2 and f ′1(x) = 2× x
(2)2 + 2× 2× 1ε = 4 + 4ε

3 v3 = −1
2
v2 −1

2
×4+−1

2
×4ε = −2−2ε

4 v4 = f2(v3)
, f2(x) = exp(x) and f ′2(x) =
exp(x)

exp(−2) + exp(−2) ×
(−2)ε = 0.135− 0.271ε

information at once, which is more complex but could potentially accelerate
the sampling of HMC. Stan uses this reverse-mode in its implementation of
AD [32].

Example

Assume we are interested in finding

df(x)

dx

∣∣∣∣
x=3

, (4.11)

where f(x) is an unnormalised Gaussian with mean 1 and variance 1:

f(x) = exp(−(x− 1)2

2
). (4.12)

We can evaluate f(x) with dual numbers using Equation 4.8 and Equa-
tion 4.9. The evaluation steps are shown in Table 4.1 with the corresponding
computational graph shown in Figure 4.1.

According to Equation 4.10, the target derivative is the coefficient of ε of v4
in Table 4.1, thus

df(x)

dx

∣∣∣∣
x=3

= −0.271. (4.13)
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v0 v1 v2 v3 v4x f(x)

Figure 4.1: Computational graph of evaluating the function in Equation 4.12.

For verification purpose, the symbolic differentiation result is calculated as
below.

df(x)

dx

∣∣∣∣
x=3

= exp(−(x− 1)2

2
)(−x+ 1)

∣∣∣∣
x=3

= exp(−4

2
)(−3 + 1)

= −2 exp(−2)

= −0.271

, (4.14)

It can be seen that it gives exactly the same result as AD.

Evaluating gradE(x)

By using the forward mode of AD, the evaluation of gradE(x) in Algorithm 1
can be achieved by four steps

1. Set the dual part of the variable we want to get gradient w.r.t to 1;

2. Run the model by accumulating log-probability from each statement;

3. Collect the dual part of the negative log-joint accumulated by the model
as the gradient;

4. Reset the dual part of the variable back to 0.
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Here in Step 2, it requires passing through variables in Dual type to the den-
sity functions from the Distributions package, which is unfortunately not
supported by the package. Therefore, a custom wrapper of the distribution
package, dDistritbuion, is written in the way that the density functions are
manually written by the student in normal Julia way and other functions
(like rand()) are passed to the corresponding ones from the Distributions

package. This is only a compromise to this issue and a more ideal way
is to give a patch to the Distributions package to make it support Dual

type.

4.2.3 The HMC Sampler

With all key components introduced in Section 4.2.1 and Section 4.2.2, it is
possible to show the implementation of the HMC sampler now.

To begin with, as introduced in Section 3.2, samplers in Turing are wrapped
by a type inherited from the Sampler type, including the corresponding al-
gorithm by a type inherited from InferenceAlgorithm.

For the HMC sampler, a type HMC is inherited from InferenceAlgorithm,
containing three attributes4:

• n_samples - number of samples (Int64)

• lf_size - leapfrog step size (Float64)

• lf_num - leapfrog step number (Int64)

and the sampler type HMCSampler is is inherited from Sampler, contain-
ing

• alg - the HMC algorithm (HMC)

• model - the model expression (Function)

• samples - an array to store concrete samples (Array{Sample})

4What inside the brackets for each attribute listed is the type of this attribute in Julia.
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• logjoint - log-joint probability of data (Dual{Float64})

• predicts - a dictionary to store outputs (Dict{Symbol, Any})

• priors - a dictionary to store values of all priors (Dict{Any, Any})

• first - a flag to tell if the program runs for the first time (Bool)

The HMC sampler has corresponding assume(), observe() and predict()

functions that are called in the translated probabilistic program, as well as
its main loop inside the run() function.

assume()

The first step of the assume() function is to produce priors, which performers
differently depending on the first flag. If the program runs for the first time,
priors will be drawn from the prior distributions, converted into a Dual type
and store in the dictionary priors; if it is not the first time, priors will be
fetched from priors, which is called the replay of priors. After that in the
second step, the value of prior will be used to compute the log probability
density, which is then accumulated to logjoint.

Here the replay of priors is done by using the corresponding symbols as keys
to store and fetch values to and from a dictionary. To be more specific, if
the prior is stored in a single variable (say s), the key will be :s; if the prior
is stored in some position within an array (say p[i]), the key will be p[1],
where i is converted to its concrete value when the prior is called (1 here).
The passing and conversion of prior variables is done by a costumed type
Prior, which determines the type of priors and constructs corresponding
sub-type of Prior (PriorSym for single variables and PriorArr for arraies or
dicionaries) in compiling time and convert the Prior to the corresponding
symbol in the runtime.

In fact this way of replay is not necessary in most of the scenarios because for
a normal probabilistic model the orders of priors being generated are always
the same in each time the program runs. In such senerios, a more simpler
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implementation to replay priors is to simply store them in an array in the
order of being called and fetch them in order as well. However, since Turing
allows users to use branches and loops when defining probabilistic programs,
the order of priors being called may differ if there are branches existing. In
such cases, this new implementation of replaying priors is useful.

In fact, this implementation still has problems when the container of priors
being more complex, e.g nested arrays or customised types. A more universal
approach to solve the replay issue is to combine these two methods above.
To be more specific, Julia can generate an ID for each macro it runs. The
IDs of macros can be used as keys to store the corresponding priors for each
statement in a dictionary. Additionally, the data structure inside each key is
designed to be a linked list. This allows priors defined in a loop to be stored
in the dictionary with the same key but different indices in a list. This way
of prior replay can support priors stored in any Julia container but has not
been implemented due to the limitation of time.

observe()

The observe() function simply computes the log density of the observed
data point and adds it to logjoint.

predict()

The predict() function stores the real part of priors to be predicted in
predicts. This makes sure that priors are only in Dual type within the
sampling process of HMC and all input/output (I/O) interfaces only interact
with real numbers.

run()

The main body of the sampler follows the algorithm description in Algo-
rithm 1 with initial states drawn from priors and E(x) and gradE(x) evalu-
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ated by the ways introduced previously in this section. One thing to mention
here is that the logjoint of the sampler needs to be re-set to 0 manually
at some point after each time the program runs. This is because the value
needs to be used after the evaluation of the program but also needs to be 0

before each evaluation.

Additionally, as the HMC algorithm implemented in this project is an un-
bounded version, the program would fail to run if the ′leapfrog′ step makes
a variable out of the domain of definition of the corresponding distribution.
For instance, the variance of a normal distribution should be greater than
0 otherwise Julia will give domain error when computing the density. This
issue is currently solved by a naive method, in which the HMC step is aban-
doned and restarts when such error occurs. However, if the parameters of
HMC is set with some extreme values (e.g. very large step size), the program
will fail nearly every time. Therefore, a threshold on the number of re-runs
is set and the HMC sampler will stop and give corresponding error prompt
if there are too many re-runs.

When the sampling is completed, the re-run number as well as the accept
ratio in the HMC algorithm itself, will be prompted to users to help users
evaluate the sampling result as well as tune the HMC settings.
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Chapter 5

Evaluation

This chapter is aimed to give evaluations of the HMC sampler implemented
in this project, in terms of correctness, performance and robustness, which
are shown in Section 5.1, Section 5.2 and Section 5.3 respectively. Also,
some more interesting experiments were conducted with findings given in
Section 5.4.

5.1 Validation of Correctness

In order to validate the correctness of the HMC implementation, the result of
three models in Section 2.3.2 obtained from the HMC sampler are compared
with that of the same models from other samplers in Turing and Stan. These
results are also compared with the exact inference result when available.

As the inference results are non-deterministic, in order to reduce the experi-
mental error, 100 chains were generated by each sampler and the correspond-
ing expectations of each variable were calculated and recorded.

Table 5.1 shows the inference results using different samplers (and exact
inference when available), and Table 5.2 gives the corresponding settings
samplers used.
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Table 5.1: Inference results of different samplers.

Sampler Gaussian Beta-binomial Logistic regression

s̄ m̄ p̄ w̄0 w̄1 w̄2

HMC 2.00 1.16 0.330 -0.0112 1.70 1.72
PG 2.02 1.20 0.313 -0.164 1.78 1.72
SMC 1.98 1.15 0.302 0.806 1.24 1.23
HMC (Stan) 1.98 1.15 0.330 -0.00283 1.71 1.72
Exact 2.0416̇ 1.16̇ 0.333̇ - - -

Table 5.2: Parameter settings of samplers in Table 5.1.

Sampler Parameter Gaussian Beta-binomial Logistic regression

HMC
N 1000 1000 5000
ε 0.55 0.1 0.1
τ 4 2 5

PG N 500 500 1000
τ 100 200 200

SMC N 1000 4000 5000

HMC (Stan)
N 1000 1000 1000
ε̄ 0.55 1.04 0.38
τ̄ 3.9 2.5 7.3
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It can be seen for all models tested, the inference results of the new HMC
sampler are consistent with those of others, which means the implementation
is valid.

5.2 Performance

In this section, the HMC sampler is firstly compared against other samplers
within Turing, and then against Stan.

5.2.1 Comparison within Turing

Samplers within Turing were given different parameter settings to perform
inference and the time used by samplers to generate samples with number
of samples varying for the three models in Section 2.3.2 are shown in Fig-
ure 5.1.
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(a) The Gaussian model.
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(b) The Beta-Binomial model.
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(c) The logistic regression model.
Figure 5.1: Time used by different sampling algorithms with number of samples varying for three models.



For the result of Gaussian model in Figure 5.1a, as you can see, SMC uses the
least time among all of the samplers while, generally speaking, PG and HMC
show similar speed. In fact, the time used by PG and HMC is dependent on
the parameters used by the algorithm: more particles and iterations in PG
slow the speed a lot and more ′leapfrog′ steps also lead to significant increase
in sampling time. Also, as PG is based on SMC, there is actually a relation
between the time used by PG and SMC: if the time used by SMC(n) is t, the
time used by PG(k, n) is kt.

In terms of the Beta-Binomial model in Figure 5.1b, similarly to the Gaus-
sian model, SMC is the fastest among all of the samplers. However in this
example, HMC shows faster speed than PG with the same settings.

Regarding the results of the logistic regression model in Figure 5.1c, one set-
ting of PG (in light blue) performs the best while all HMC settings performs
extremely badly. This is argued to be the drawback of the forward mode
of AD as the logistic regression model has more variables than the first two
models.

To emphasise, because the performance of both PG and HMC is highly de-
pendent on its parameter settings, it is difficult to draw precise conclusions
on the performance of HMC here. However, it can still be concluded from
these three figures that, generally speaking, the performance of the HMC
sampler is acceptable in the Turing framework.

5.2.2 Comparison against Stan

As the inference engine in Stan is also based on HMC, the inference result
from Stan can be used to compared with the HMC sampler in Turing. Note
that the HMC algorithm implemented in Stan is not the standard HMC but
a optimised version called NUTS.

As noticed in the previous experiments, the performance of HMC is highly
sensitive to the ′leapfrog′ step size ε and ′leapfrog′ step number τ , therefore
it would take a long time to tune these two parameters to achieve accept-
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Table 5.3: Comparison of HMC samplers in Turing and Stan (the Gaussian
model).

PPL s m
ε̄ τ̄ Time

MCSE ESS MCSE ESS

Turing 0.195 181 0.027 825 0.55 4 0.594s
Stan 0.106 356 0.046 378 0.55 3.9 0.180s

able sampling performance. Thankfully NUTS solves this problem by using
a recursive algorithm to build a set of likely candidate points that explores
the target distribution well, automatically stopping sampling process when it
starts to stuck and retrace its steps [33]. And empirically, NUTS can achieve
almost the same level of efficiency as well-tuned HMC algorithms without
any turning work for most of the models [33]. In addition, for some par-
ticular probabilistic programs with branches, as different HMC parameters
are needed for different branches, NUTS would outperform standard HMC
algorithm to a great extent.

As NUTS automatically sets ′leapfrog′ step size and ′leapfrog′ step number,
in order to get relatively reasonable results, in our experiments, models were
firstly learnt in Stan and the means of ′leapfrog′ step size and ′leapfrog′ step
number provided by the result from Stan were used as the parameters for
the HMC sampler in Turing when feasible1.

To compare the HMC samplers in Turing against that in Stan, the models in
Section 2.3.2 were used and inference were done with 1000 samples for 100
times for each model in each language. Generated samples were then built
into chains to compute MCSE and ESS by the Mamba.jl package.

The average statistics of corresponding inference results and parameters were
recorded for the three models, and are shown in Table 5.3, Table 5.4 and
Table 5.5 respectively.

The sampling efficiency, measured by the MCSE and ESS for 1000 samples,
1Some of the parameters used by Stan is not suitable for the HMC sampler in Turing

because Turing implements unbounded HMC. In some situations, large step size will cause
too many rejections from variables out of range.
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Table 5.4: Comparison of HMC samplers in Turing and Stan (the beta-
binomial model).

PPL p
ε̄ τ̄ Time

MCSE ESS

Turing 0.00106 208 0.1 2 0.235s
Stan 0.00653 459 1.0 2.5 0.172s

Table 5.5: Comparison of HMC samplers in Turing and Stan (the logistic
regression model).

PPL β0 β1 β2 ε̄ τ̄ Time
MCSE ESS MCSE ESS MCSE ESS

Turing 0.0488 903 0.0465 871 0.0449 895 0.55 5 1.25s
Stan 0.0728 558 0.0722 503 0.0709 515 0.55 5.4 0.215s

varies from model to model and even parameter to parameter. For the Gaus-
sian, Turing has better sampling efficiency for the parameter m but worse for
s. This is interesting in the sense that neither Stan nor Turing wins in both
and also indicates that some variables may be more sensible to the parameter
settings in Turing, which will be further experimented in Section 5.4.2. For
the beta-binomial model, Stan outperforms Turing with an obvious advan-
tage. For the logistic regression model, Turing shows better efficiency in all
three parameters. This loss of efficiency in Stan may be due to its imple-
mentation of NUTS, which automates the tuning process but sacrifices the
sampling efficiency to some extent. However notice that Turing still takes
longer sampling time and requires tuning in practise.

In addition to the difference caused by algorithms, Stan’s optimisation also
makes it faster. To be more specific, Stan’s implementation of HMC has two
significant advantages over the implementation in Turing. One is that Stan
uses the reverse mode of AD, which requires only one evaluation of the pro-
gram to evaluate the gradient of all variables. Another is that all numerical
computations in Stan are vectorised, which improve the fundamental running
speed.
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Table 5.6: Comparison between Turing and Stan (ESS per second)

Sampler Parameter Turing Stan Ratio (Stan/Turing)

Gaussian s 305 1977 6.48
m 1389 2100 1.51

SMC p 885 2269 2.56

Logistic Regression
β0 722 2595 3.59
β1 697 2340 3.35
β2 716 2395 3.34

In terms of the concrete time, Stan shows an obvious advantage over Turing,
with about 6 timers faster than Turing for the logistic regression model as
highest. However, as Stan actually needs to compile its model to C++ each
time the model changes, it will take a relative long time to run a new model
(or a newly-amended model). For instance, it takes 5.06s to compile the
Gaussian model in Stan (via Julia interface) to C++ program, 5.66s for
the beta-binomial model and 4.87 for the logistic regression model. Luckily
Turing does not have such a drawback, which means if the user iterates his
or her model very frequently, Turing would show its advantage.

Taking the time into account, it is also worth the measure the sampling
efficiency by the number of ESS per second, which is shown in Table 5.6.

According to this table, Stan shows an obvious advantage in sampling effi-
ciency. Despite of the compiling time for models in Stan, Stan is concluded
to has a much faster HMC implementation than Turing. Some possible ap-
proaches to improve the sampling efficiency of the current HMC implemen-
tation in Turing will be discussed in Section 6.2.

5.3 Robustness

This section is to discuss how the HMC sampler performs differently with
the number of samples and variables increasing.
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Increasing the number of samples In order to evaluate how the sampler
performs with the number of samples increasing, three HMC results of differ-
ent models are taken from Figure 5.1 and put together in Figure 5.2. (Recall
that the HMC settings here are ε = 0.05 and τ = 2 for gauss, ε = 0.01 and
τ = 10 for beta, and ε = 1 and τ = 5 for lr.)
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Figure 5.2: Time used the HMC sampler with number of samples varying.

As you can see, the sampling time has a (roughly) linear relation with the
number of samples. This is satisfying because it shows that the performance
of the HMC sampler is stable when the number of samples increases. In
fact, this is the nature of the HMC algorithm as samples are consecutively
generated depending on their predecessors.

Note that the nature of SMC and PG does not have such property. Turing
improves their sampling time to be also proportional to the sample numbers
by the use of coroutines, which allows multiple particles to be simulated in
the same time.
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Increasing the number of variables In order to evaluate how the sam-
pler performs with the number of variables increasing, a set of toy models as
below with the number of priors M varying from 1 to 9 are used. Note that
the number of variables here is actually the number of priors and also the
dimensionality.

Listing 5.1: Toy Model for the Experiment of Varying Number of Variables
1 xs = [1.5, 2.0] # the observations

2 M = 1 # number of means, varying from 1 to 9

3 @model gauss_var begin

4 ms = Vector{Dual}(M) # initialise an array to store means

5 for i = 1:M

6 @assume ms[i] ∼ Normal(0, sqrt(2)) # define the mean

7 end

8 for i = 1:length(xs)

9 m = mean(ms)

10 @observe xs[i] ∼ Normal(m, sqrt(2)) # observe data points

11 end

12 @predict ms # ask predictions of s and m

13 end

The experiment was conducted by learning these models by the HMC sampler
for 10 times with n = 250, ε = 0.45 and τ = 5, and the average running
times were recorded. A plot showing how the sampling time changes with
the number of variables in given in Figure 5.3.

As you can see from the figure, the sampling performance of the HMC degen-
erates with the number of variables increasing, i.e. dimensionality increasing.
This is not a nature of HMC but the limitation of the implementation be-
cause MH based methods do not suffer from high dimensionality [1]. This
degeneration is believed to be caused by the use of forward mode of AD,
which requires n times running of the probabilistic program for a model with
n priors. This is not satisfying and possible approach to solve this problem
will be proposed in Section 6.2.
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Figure 5.3: Time used the HMC sampler with number of variables varying.

5.4 More Experiments

In previous sections, some interesting experiments are proposed to be con-
ducted. In specific, Section 2.3 mentions the comparison between a neural
net trained by GD and Bayesian approach, and Section 5.2 proposes a further
investigation into the difference influences of HMC parameters to different
priors. The results of these two experiments are given in this section.

5.4.1 Bayesian Inference versus Gradient Descend

It is interesting to compare the predictions from a Bayesian approach and
an optimisation approach. Figure 5.4 shows the predictions of the logistic
regression model (i.e. a neural net with a single neuron) from Turing and a
normal GD method.
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Figure 5.4: Predictions of the Single Neuron BNN from GD (decision bound-
ary in blue) and Bayesian approach (coloured contour for probability).

In this figure, the training data are the two red and two blue points, which
are labelled with 1s and 0s respectively. This prediction results illustrates
the advantages of the Bayesian approach mentioned in Section 2.1, which is
that the GD can only give hard prediction with its decision boundary while
the Bayesian prediction is not only soft but also provides the certainty of its
prediction.
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5.4.2 Sensitivity of Different Variables

In order to evaluate the sensitivity of different variables to the parameters of
the HMC sampler, a set experiments were done on the Gaussian model using
different settings of the HMC sampler. The corresponding result is shown in
Figure 5.5.

As you can see from this figure, the prior m is more sensible to the change of
parameters than s. This may be due to the nature of the prior distributions
they are drawn from. Also, the increase of s tends to stop early than that ofm
in Figure 5.5c, which indicates that there would be different optimal settings
for different variables in the same model. Also, compared with HMC that has
obvious gaps in ESS between s andm, the results of NUTS in Table 5.3 shows
similar ESS for both s and m. Both of these two findings indicate that the
NUTS algorithm has an advantage of automatically tuning the parameters in
the sampling process to balance the HMC move in different dimensions.
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(a) τ = 1
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(b) τ = 2
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(c) τ = 5

Figure 5.5: Sensitivity of s and m in the Gaussian model for different parameter settings of the HMC sampler.



Chapter 6

Summary and Conclusions

In conclusion, this M.Phi project successfully contributes a workable HMC
sampler to the Turing framework, with all the related design and implemen-
tation details given in this dissertation. Also, some evaluations were done
on the sampler to prove its correctness and measure its performance and
robustness.

The two main challenges of this project, computing the target density func-
tion and the corresponding gradient function for the HMC sampler, are suc-
cessfully solved. The first one is done by building connections between the
probabilistic program and the energy function required by HMC using Bayes’
rule, and the second one is accomplished by applying the forward mode of
AD through probabilistic programs respectively.

The final HMC sampler is workable and could be used in practise but there
are till some limitations, which will be discussed in Section 6.1. Also some
potential approaches to overcome these limitations will be given in Sec-
tion 6.2.
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6.1 Limitations

There are several limitations of the current HMC sampler, which can be di-
vided in two categories. The first category is about the sampling efficiency.
According to the evaluations given, this implementation of HMC has an ac-
ceptable sampling speed for most of the circumstances, which is similar to the
PG sampler and the SMC sampler in Turing. However, this implementation
has some potential flaws. One is that the performance of the HMC sampler
degenerates with the number of parameters increasing because it uses the
forward mode of AD. Another one is that, compared with the NUTS im-
plementation in Stan, the HMC sampler shows worse sampling efficiency in
cases where different settings are needed for different parameters. In addi-
tion, the sampling time used by the HMC sampler in Turing is still much
higher than that of Stan in general.

The second category is about the functionality of the current HMC sam-
pler. First of all, as the HMC algorithm can be only applied to continuous
spaces, inference of models with both continuous and discrete parameters is
not supported by the HMC sampler. Secondly, the parameters in the sam-
pler are unbounded. This will cause a situation where out-of-bound errors
occur, which is currently solved by rerunning the failed step. However, this
solution is inefficient and would fail in some circumstances. Thirdly, the
HMC sampler needs to be tuned for good performance, which is tedious and
time-consuming.

6.2 Future Work

There are several future tasks to be done to improve the performance of the
HMC sampler and the functionality of Turing, which are listed below.

Improving sampling speed
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• Optimise the fundamental implementation by getting rid of some du-
plicated calculations and object copying.

There are some duplicates of variables inside the HMC sampler.
For example, priors need to be copied from the container to local in
order to calculate the log density and the container of priors needs
to be copied using deepcopy() in order to prevent some exceptions.
However, these kinds of work could be potentially accomplished in a
better way with care.

• Implement the reverse mode of AD.

The reverse mode of AD could compute the derivative of all the
variables in one through, which could improve the performance, espe-
cially for large models with many parameters. Also, there is a variant
of forward mode of AD available, in which a dual number is extended to
contain multiple dual parts. This implementation is expected to have
better performance than the original forward mode but worse perfor-
mance than the reverse mode, and is also worth to be implemented as
a milestone.

• Vectorise the computation inside Turing.

As mentioned in Section 5.2, Stan improves its fundamental run-
ning speed by vectorisation, which could also be done in Turing. Cur-
rently in Turing, especially for the HMC sampler, vectors and single-
valued variables are processed separately. This improvement would
involve designing a consistent interface to support vectorisation within
Turing and with other involved packages. Also, the forward mode AD
also needs be replaced for this reason as it does not support vectors
directly.

Enhancing functionality

• Implement the bounded HMC sampler.

As the current implementation of HMC deals with out-of-bound

71



problems by simply re-run the corresponding HMC step, there are huge
time wasted when there are too many re-runs. This could be completely
avoided by a bounded HMC version. The implementation of this would
also involve re-designing the compiler to support definition of the bound
of variable in the program, or automatically extracting and setting
domain restrictions from the Distribution package somehow.

• Implement the NUTS algorithm.

As mentioned before, NUTS can free users to tune the parameters
of the HMC sampler without obvious loss of efficiency (and even has
better performance in some models with branches). This variant of
HMC is expected to be ultimately supported by Turing in the future.

• Implement a Gibbs sampler combing HMC and PG.

As HMC can only sample continuous variables (but with better
performance compared with PG), it is possible to build a sampler with
better sampling efficiency than pure PG sampler by combining HMC
and PG into a Gibbs sampler. In such Gibbs sampler, discrete variables
are ought to be sampled by PG and continuous variables are ought
to be sampled by HMC. This was already mentioned in Section 4.1.2
where supporting additional arguments annotated on variables is the
preparatory work for this Gibbs sampler.

• Make the Distribution package compatible with Dual type.

Currently there are only a limited number (10) of differential dis-
tributions (dDistribution type) in Turing. Two approaches could be
done to solve this issues. One is to continuously manually implement
more distributions in Turing and the ideal coverage is about 80% of
the Distributions package. However, this approach is not only te-
dious but less valuable in the sense that other developer cannot use
our dDistribution easily. Therefore another approach may be con-
sidered, which is to apply a patch to the Distributions package to
make it support variables in Dual type. This may face some difficulties
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but is worth to be done if there is more time because it can solve the
problem radically. Besides, it is also feasible to currently separate the
distribution references used by HMC and other samplers to make other
samplers works on the Distributions package independently.

• Implement the replay of priors in more universal way.

In Section 4.2.3, a universal way to replay priors is proposed, which
is worth to be implemented to make Turing support priors defined by
any possible Julia data structure or type.
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