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Abstract

This thesis examines the use of active learning for the task of handwrit-
ten text recognition in historical documents. Active learning is a machine
learning paradigm which enables the learner to select the data that is being
trained on. In domains where procuring annotated data is expensive but
there are large amounts of unlabelled data available, active learning can lead
to better models with the same annotation e↵ort. We apply di↵erent active
learning algorithms to the problem and note notable improvement over ran-
dom sampling. We discuss suitable distance measures for handwritten lines
and use them to improve active learning performance. We report annotation
cost saving up to 18% even with the simpler application of active learning.
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Chapter 1

Introduction

Recognition Systems for handwritten historic text documents are an emerg-

ing research topic. Currently, large amounts of these documents are being

published by on-line digital libraries worldwide in the form of raw digital

scans. Having transcriptions of these scanned images significantly increases

the usefulness of them since it allows indexing, easier access and faster read-

ing of them.

There are many challenges associated with the task of obtaining such tran-

scriptions, as the language is archaic, the optical input is distorted and

the writing styles are unusual and diverse. Traditional Optical Character

Recognition (OCR) techniques are not applicable since characters can not

be isolated automatically in these images. Instead holistic, segmentation-

free Handwritten Text Recognition (HTR) techniques have been developed.

These HTR algorithms share methods and concepts from the area of Auto-

matic Speech Recognition (ASR): such as Hidden Markov Models - Gaussian

Mixture Models (HMM-GMM), neural networks and N-Gram language mod-

els. These machine learning algorithms require a significant amount of human

annotated data to be trained on and their performance typically improves

with increasing amount of training data. Usually, there is a large amount of

unlabelled images, and a subset of those are selected randomly to be manu-

ally annotated and learn from. This methodology is called passive learning:
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a passive learner receives a randomly sampled data set from the underlying

population distribution and then learns a model. However, acquiring highly

quality annotated data is an expensive task in terms of time and labour

and is often the limiting factor for attaining better recognition performance.

Hence, it is particularly valuable to determine ways to make the best use of

the annotation budget available. Since there is a large collection of unlabelled

documents available, instead of randomly selecting them to be manually la-

belled we can choose elaborately those that we believe will be most useful

for the model to learn from. For example, some lines that are very similar

to ones that the model has already ”seen” and is good at recognising them,

will not be as useful as new lines that the model is uncertain about.

Active learning is a machine learning paradigm that attempts to achieve this

objective, of selecting the most informative examples from a pool of unla-

belled data for annotation. The ultimate motive of using an active learner is

to either reduce the annotation cost by achieving the same performance as

random sampling with fewer data, or, for a fixed annotation budget attain

better recognition performance.

Active learning, in general, can be valuable in domains where unlabelled data

are readily available, but obtaining training labels is expensive. The domain

for historical document HTR fits that description and thus we believe is

important to investigate its applicability and performance. Ultimately we

believe active learning can lead to better recognition models for historical

documents with the same amount of e↵ort and thus increase the uselessness

of such models for this task. Furthermore since to the best of our knowledge,

there has not been any work for active learning in HTR in any context,

there is an additional value in investigating some aspects of active learning

particular to this task.

The thesis is structured in five Chapters. Chapter 2 describes the baseline

HTR system we are using and the details of the particular dataset. It also

provides the necessary background for active learning in general. Chapter 3

discusses some of the available literature that is particularly relevant to this

work. In Chapter 4 we present the algorithms and procedures that we choose
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to adapt to the task of historical documents HTR which are then being used

to run experiments. Chapter 5 presents the results of these experiments

and some discussion on the results is being done. Finally in Chapter 6, we

summarise the findings, draws some conclusion, point some limitations and

propose areas for future work.
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Chapter 2

Background

In his section, we are presenting the necessary background that this work

builds upon. We first discuss some details about the particular dataset we

are using. We then describe the baseline handwritten text recognition system

and finally we are doing an overview of some general concepts in active

learning.

2.1 The Handwritten Text Recognition Task

2.1.1 The dataset

The dataset we are using for this task is the one provided for the English lan-

guage in the tranScriptorium project [2] and in particular for the ICFHR2014

Competition on Handwritten Text Recognition [3]. It consists of a large set of

manuscripts written by the renowned English philosopher Jeremy Bentham

(1748-1832). The Bentham collection has more than 80,000 documents, most

of them digitised.

From the digitised documents, only around 6,000 have been transcribed by

humans, which demonstrates the common phenomenon in tasks as these,

of the abundance of un-transcribed documents. The documents have been
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written by various writers: Bentham himself and his secretaries. Figure 2.1

shows a sample of two pages of documents from this collection.

The provided dataset comprises of 433-page images however the transcription

and recognition is done line-by-line. Thus each line has been extracted and

paired with its corresponding transcription. The line extraction was done by

a semi-automatic procedure by the dataset providers. Figure 2.2 shows an

example of three extracted lines in the provided format.

The 433 pages of the corpus contain in total 11,537 lines with nearly 110,000

words and a vocabulary of more than 9,500 distinct words. These are split

into a training, development, and test set, comprising of 350, 50 and 33-page

images respectively, which corresponds to 9,198 1,415 and 860 lines in each

set.

One of the peculiarities of this dataset is that the lines vary wildly in length.

Figure 2.3 shows the histogram of the lengths of the transcriptions of each

line. A significant number of lines have just one word. These are usually

numbers, section headers, or inserted words. As we will discuss later this

abnormal distribution of lengths has a particular importance in the context

of active learning.

As the writing varies significantly across di↵erent lines, before training the

recognition system, a number of preprocessing steps on the line images are

necessary. The preprocessing performed by the baseline system is the same

as the one performed in [4]. For each line, baseline estimation is performed

so that deviations from the horizontal writing line can be corrected. Fur-

thermore writing styles usually have di↵erent slants which is also estimated

and normalised for all lines. All lines are rescaled to have the same height

of 78 pixels while trying to preserve the aspect ratio. Finally, the variation

in the writing thickness due to di↵erent pens is removed. Some sample lines

from the dataset along with their corresponding normalised binary images

are shown in Figure 2.2.
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Figure 2.1: Two sample documents from the Bentham collection dataset

(a) ”satisfactory, as it appeared that they expected an assurance from the governor

(b) In such case the o↵ender shall be put

(c) ticularly fitted for circulation Taken from Bank Paper.

Figure 2.2: Sample line images and their binary normalisation, along with
their transcriptions
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Figure 2.3: Sentence length histogram

2.1.2 The recognition system

The baseline handwritten text recognition system we use in this project is

based on the speech recognition toolkit Kaldi [5]. Kaldi is based on recipes,

i.e pipelines of algorithms, that here have been adapted to work with image

sentences instead of speech utterances. In particular, for ASR the audio

waveform is split into 10-15 ms chunks known as frames and a fixed dimension

feature vector is extracted from each one of these. For the HTR task the lines

which have been normalised to fixed height are split into windows with three

pixel width, sequentially in the direction of reading order. The raw pixel

values of the normalised image are used as features, resulting to a feature

vector dimensionality of 234 (3*78) per window. The windows overlap by 1

pixel, i.e the feature extraction window is being shifted by 2 pixels at a time.

The length of the sequence of the feature vectors is dictated by the width of

the line image which due to the normalisation is almost directly proportional

to the length of the sentence in characters.
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The other parallel with ASR is regarding the recognition units. In ASR

the statistical models aim to predict a sequence of phonetic units known as

phones, where they can be context-dependent: di↵erent recognition targets

according to the preceding and following phone. In the HTR task the basic

units are characters and there is also the notion of context dependency in

terms of the previous and next character as we discuss next.

For the particular handwritten recognition task there are 91 character units

(alphanumerics and symbols). Since the way the characters are written

changes depending on the preceding and the following characters the recog-

nition is based on sequences of tricharacters. However there are 913 di↵erent

such context-dependent characters which would make the training infeasible.

Instead, the tricharacters are assigned to clusters based on their similar-

ity. Of course, tricharacters belonging to the same cluster have the same

central character. In this task the clustering usually results to around 350

context-dependent characters and the task for the optical model is to output

a sequence of probability distributions over these for each line image. The

optical model in the baseline system is a Long short-term memory (LSTM)

neural network. The LSTM is trained on the aligned tricharacter transcrip-

tions obtained from an HMM-GMM model.

The second part of the recognition system is the language model which is

trained on the corpus consisting of the training lines and assigns probabilities

to sequences of words. The particular system uses a 3-gram language model

which models sequences of words including the two preceding ones.

The decoder is then provided with a lexicon: the words that occur in the

training corpus and their character composition, the language model and the

probabilities of the optical model over tricharacters for each line-image col-

umn. The decoder then maps the sequence of characters to a sequence of

word hypotheses from the lexicon and assigns two scores to each word: the

probability of the word’s characters under the optical model and the proba-

bility of the word sequence under the language model. Even though Only the

highest scoring sentences are considered but, the number of di↵erent hypoth-

esised sentences is enormous. An e�cient way to represent a great number
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of alternative theories is in a graph, know as lattice. A lattice provides a

wider searching space than storing the N most likely sentences (N -best list)

and also avoids the drawback of representing many very similar hypotheses

in competing strings.

The recognition system training pipeline can be summarised in the following

stages:

• The raw images are binarized and normalized.

• From each sentence a sequence of windows with width 3px and

stride 2px are extracted.

• The linear transformed (PCA) raw features are used to train character

based HMM-GMM systems.

• We gradually add left and right context and delta features and

use LDA and MLLT for per book adaptation.

• The HMM-GMM model is used to train an LSTM that maps from

the sequence of raw pixels to the sequence of distributions over the

clustered ’tricharacters’ states

• A language model is trained on the corpus consisting of the training

lines

• The decoder gets scores from the LSTM optical model and from

the language model and produces lattices over di↵erent hypotheses

The recognition system is trained and the decoding is run in parallel on 32

cores. The training of the LSTM is done on a NVIDIA GTX 980 GPU.

Table 2.1 show some indicative running times with the available resources.

The decoding times are linear with the number of lines being decoded and

the LSTM training time is correlated with the number of training samples.

Runtime of the training and prediction (decoding) pipelines is of particular

importance in the context of active learning as we will discuss later.
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Pipeline Stage Duration
Data preparation 12 min.
Training stage 1
(PCA features, context-dependent GMM training) 38 min.
Training stage 2
(LDA+MLLT features, context-dependent GMM training) 15 min.
Decoding (LDA+MLLT, GMM) 54 min.
Training stage 3 (Speaker adaptive training) 8 min.
Decoding (SAT, GMM) 114 min.
Training stage 4 (LSTM training full dataset) 440 min.
Decoding 2000 lines (LSTM) 102 min.
Total 783 min.

Table 2.1: Training and prediction pipeline timings

2.2 Active Learning

In the previous sections, we presented the dataset that we are working with

and the recognition system that is available. The aim of this project is to

investigate how active learning can be used in this framework to utilise the

large amount of un-transcribed data in task like this and maximise the return

from the human annotation e↵orts. In this section we give a general overview

of this general machine learning framework.

Actively learning, also know as “query learning”, is a machine learning parad-

ing where the learner is allowed to choose the data on which it is trained on

with the purpose of performing better with a smaller amount of labelled,

training data. In contrast with passive learning where the performance is

purely determined by the model, active learning emphasizes the role of the

input selection.

In the most common setting, active learning is used to reduce the cost of

manual annotation for producing training data. As demonstrated in [6] an

increasing amount of training data almost invariably results to better gener-

alisation performance. However, not all potential training samples are of the

same usefulness toward that goal. The objective of an active learner is to se-

lect the most useful samples for annotation, such that for a fixed annotation
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cost attains better performance than if the samples were chosen randomly.

In a related manner, active learning can be useful for dataset compression,

whereby a large training set with already available annotations is reduced in

size in order to improve the training time [7].

In the most common setup of active learning know as pool-based, there is

small set of labelled data L and a large pool of unlabelled data U available.

The model is initially trained on the available labelled set, and we then select

one or more informative samples from the unlabelled pool for an oracle to

provide labels for and add them to L. The model is then retrained on the

new labelled pool, and the process is repeated until either we achieve a target

generalisation performance, or a fixed annotation budget is reached.

Ultimately we want to select those samples that once labelled and added to

the training data, minimise the expected generalisation error of the model

on future test samples. In [8], Cohn et. al propose a statistically optimal

framework to tackle this problem for the regression case. They construct

queries that maximise the error reduction by minimising the learners variance

exploiting the fact that for an unbiased learner they are equivalent. They

obtain a closed form solution for the case of Locally Weighted Regression

and Mixture of Gaussians Regression. However, a closed-form solution for

the expected variance for more complex models is intractable to compute.

In the light of these limitations, in [9] they describe a Monte-Carlo approx-

imation of the expected future error. In particular for classification tasks

they estimate the expected cross-entropy loss, by sampling examples from

the unlabelled pool. However this approach, requires retraining the model

for each possible label of each sample. Although that can be tractable for

some classes of models like Support Vector Machines that support incremen-

tal retraining, and some classification tasks with a small number of classes,

it is a daunting task in the general case.

Since the optimal selection is intractable in practice, a plethora of active

learning methods that optimise alternative, sub-optimal criteria have been

developed and widely used. In these methods the selection of which samples
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to query for labels, is done based on metrics that assess how informative each

sample x will be for the model via some measure �(x).

One of the most common general algorithms for quantifying informativeness

is uncertainty sampling, where the samples being queried are those that the

model is most uncertain (least confident) about. The model that has been

trained on the labelled pool is used to make predictions for the samples in

the unlabelled pool. Then for the classification task the uncertainty measures

stem from the resulting probability distributions over the classes.

Such measures can be the least confidence (LC):

�(x)LC = 1� P (y = c⇤|x)

where c⇤ is the class wih the highest probability.

Another is the di↵erence between the posteriors of the most probable and

the second most probable labellings, know as margin (M):

�(x)M = P (y = c22|x)� P (y = c1|x)

Finally the Shannon entropy can be used to quantify uncertainty on the

prediction:

�(x)E = �
MX

i=1

P (y = c
i

|x) logP (y = c
i

|x)

The entropy of a random variable represents the information needed to en-

code the distribution of its outcomes. It is e↵ectively a measure of the flatness

of the distribution and is widely used as an uncertainty measure in machine

learning.

For sequence labelling tasks such as HTR where we only have scores for a

subset of possible transcriptions, the least confidence and the margin can be

calculated directly by using the scores of the most likely hypothesised sen-

tences instead for the probability of classes. The fact that the recognition
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scores are not probabilities will not a↵ect the ranking. However measuring

the entropy of distributions over sequences can have di↵erent interpreta-

tions. One can define the token entropy which is the average over the image

columns (or time frames) of the entropy of distributions over the characters

(or phones):

�(x)TE =
1

T
�

LX

t=1

MX

m=1

P (y
t

= m|x) logP (y
t

= m|x)

Taking the mean will discourage the selection of longer sequences which nat-

urally have more entropy. However it might be beneficial to promote longer

sequences and thus the total token entropy may considered:

�(x)TTE = T�(x)TE

Alternatively, we can measure the entropy of the sequence by considering

only the N best hypothesised whole sequences. We first have to normalise the

scores of the best hypotheses which only occupy a portion of the probability

mass, so that they sum to one.

In [10], Settles et al. compare the performance of the aforementioned uncer-

tainty measures and they conclude that the sequence performs best in most

of the considered tasks.

Another active learning framework that targets to select informative samples

is the query-by-committee approach. We have a committee of di↵erent mod-

els where each one them is trained independently on the same dataset. Each

member of the committee is then used to do predictions for the unlabelled

set. We consider the most informative query, to be the instance over which

the committee is in most disagreement about how to label. There are again

various ways to measure disagreement, such as vote entropy, Kullback-Leibler

divergence and others as described in [10].

Other criteria to compute informativeness in a very principled manner such

as Fisher Information, exist although they are intractable to compute for

14



larger models.

It has been argued that uncertainty sampling and QBC tend to select outliers

or noisy samples for labelling. Although the model may be very uncertain

about such samples is unlikely that the transcription of them will be helpful

in general. Thus along with informativeness some algorithms are also con-

sidering how representative of the data distribution the sample is. We will

describe such work in Section 3.

The conventional active learning techniques over-viewed above nominally se-

lect only a single data instance at a time for manual labelling and retrain the

model after every individual query. This can be prohibitive if the training

time of the model is high, and also requires an oracle to provide the labels

on-line, one at a time after each retraining. This is of limited use in a practi-

cal scenario which utilises services like the Amazon Mechanical Turk where

a lot of oracles can provide labels simultaneously [11].

Since single instance selection strategies require expensive retraining for each

instance labelled and cannot benefit from parallel labelling systems, many

approaches have been proposed to do multi-instance selection, commonly

known as batch mode active learning. Some researchers [12, 13] have simply

used single instance selection strategies like the ones describes above to select

more than one unlabelled instance at a time. For the case of uncertainty

sampling that would entail selecting the top k most uncertain samples each

time. However, this approach will not take into account the information

overlap between the multiple instances selected. For example if the model

is very uncertain about two samples that are almost identical, we will select

both for labelling although we could do better if we select only one of these

two, and a di↵erent one more diverse, even though we might be less uncertain

for it.

To account and adjust for this information overlap a lot of the algorithms in

the literature [14, 11, 15] introduce heuristic selection schemes based on some

distance measure between the samples. For this reason a significant part of

this project is to investigate such distance measure suitable for handwritten
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text.

I this section we gave an overview of some prominent approaches to active

learning in general. In the next Chapter we describe in more detail some

work which we believe is of particular relevance and applicability for the

HTR task, on top of which we build the rest of the work in this thesis.
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Chapter 3

Related Work

Although there have been some work on active learning for handwritten

character recognition [18, 19] to the best of our knowledge there are no results

for active learning in the task of handwritten text recognition. However as

we described in Section 2.1.2 HTR is remarkably similar to ASR. For ASR

there has been significant amount of research on active learners motivated

by the fact that obtaining labelling data is also expensive for speech, while

there is an abundance of un-transcribed audio.

Therefore in this section we review work that been done for speech recognition

and could be adapted to our task, along with some general active learning

work that we deem relevant and applicable.

In one of the first applications of active learning in ASR, Hakkani et. al

[12], implement a simple form of uncertainty sampling based on confusion

networks. They obtain confusion networks over words from the lattices and

use the posteriors as a confidence score for each word. Then they propose

di↵erent ways to combine the confidence scores for each word in the sentence

such as arithmetic averaging, or multiplying them to obtain a per utterance

uncertainty measure. Finally they select the k most uncertain utterances

for annotation and retrain. Their selected batch size k is 4000 which quite

large, and they do 12 iterations of incremental retraining. They report minor
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improvements in terms of WER against random sampling.

In [20] a very similar approach is followed but they use a di↵erent strategy

to combine the per word confidence scores in a per utterance score. In par-

ticular a voting scheme with a threshold is introduced where only the words

with confidence score above the threshold are contributing with score 1. Fur-

thermore, in their experiments they use a much small batch size of queries

per iteration, k = 400. They note a significant improvement over the results

in [12].

Yu et. al in [15] proposed a unifying framework for both active and semi-

supervised learning based on the concept of maximizing the lattice entropy

reduction over the whole dataset. Heuristically, providing the transcription

for the least confident utterances can provide the most information to the

system and thus most of the standard active learning approaches select the

least confident sentences. However they argue that selecting the utterances

based solely on the confidence of the model can lead to the inclusion of outliers

and noise corrupted utterances. The inclusion of those will not be useful for

learning to transcribe other utterances rather than the included. However if

an utterance that is similar to many others is included even thought we are

less uncertain about it, it will be more beneficial. The core idea is to select

the utterances that can provide the most benefit for the recognition of the

utterances coming from the true data distribution which they consider to be

represented by the unlabelled pool of samples. So for each utterance they

estimate the total reduction in entropy over the whole pool, that would ensue

if a particular utterance was to be annotated. For this a distance measure

is necessarily to be defined between that utterance and all the others in the

pool. In this work they used the KullbackLeibler divergence (KLD) between

the two hypothesized lattices. The selection process however is a di�cult

optimisation problem as the inclusion of one sentence will a↵ect the selection

of others based on how similar they are. To accommodate for that after each

is sentence is included they adjust (reduce) the entropies of all the other

sentences in the pool according to how similar they are to the one selected.

In e↵ect this promotes diversity within the batch of selected utterances. They
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results they report are state of the are for active learning in ASR.

In [13] is being argued that the full lattice entropy is dependent on the ut-

terance length. They propose instead the entropy of the distribution over

the N-Best list of sentence hypotheses produced by a baseline ASR system,

to be used as the uncertainty measure. Furthermore for the representative

score of a sentence with respect to the data pool they use the average term-

frequency (TF) - inverse term frequency (IDF) similarity of the utterance

against all others in the pool. The informativeness and representativeness

scores are combined through multiplication. The selection of the sentences to

be annotated is then being done greedily without accounting for information

overlap within the batch. In the results presented the N-Best entropy on

its own shows an advantage against the full lattice entropy for pure Uncer-

tainty Sampling, however the incorporation of the representatives measure

resulted to only marginal improvement. Nevertheless this scheme is simpler

and computationally cheaper to implement than [15].

In general, recent state of the art active learning algorithms are comprised

of a distance measure, an uncertainty measure and a search scheme. In [11]

the general active learning problem is casted as an optimisation problem

by using a heuristically build objective, which can be optimised e�ciently

via sub-modular optimisation. Unlabelled instances are selected greedily by

maximising a heuristically constructed objective. The objective is comprised

from the uncertainty measure (entropy), the mean kernelized distance from

all the labelled points in the training set, and the minimum distance of the

candidate from the already selected points which quantifies the similarity

of an unlabelled point from the already selected set. Although the present

results for simple classification tasks we believe that this approach can scale

to be applicable to HTR and ASR.

The approaches described above aim to extend the well established single-

instance uncertainty sampling to batch mode active learning by using heuris-

tics. Such heuristics aim to select samples according to some of these criteria:

The samples should be informative for the recognition model [12, 20, 11, 13,

15] while being diverse enough so that their information overap within the
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batch is minimized [15, 11], and representative of the training set so outliers

and noise are avoided [15, 13].

Some work has been done to formalise batch mode active learning and avoid

use of heuristic measures. In [16] following a standard paradigm in semi-

supervised learning, a good classifier is defined as one that achieves high ex-

pected log likelihood of the labelled data and low entropy on the prediction

on unseen data (unlabelled pool). The former assures that the predictions

are correct, while the latter that the classifier can generalise. The proposed

instances at each iteration are obtained as the solution of an optimisation

problem. However, this approach requires searching over all possible label

configurations of the unlabelled set which is prohibitively expensive for prob-

lems with more than a few classes.

In the next chapter we take the ideas primarily from the most recent work in

active learning for ASR [13] and [15], and describe how they are applicable

in HTR. We also discuss some distance measures particularly for the HTR

task.
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Chapter 4

Design and Implementation

In this section we describe in detail the algorithms and the procedures we

use in this work for the task of active learning in HTR. We are looking at the

simpler uncertainty sampling with the N-Best list entropy, and then global

entropy reduction. As the later requires some sort of a kernelised distance

measure between handwritten lines, we discuss two such measures which are

deemed appropriate for it.

4.1 N-Best List Entropy

As mentioned in Sections 2.2 and 3, one of the best uncertainty measures

for the purpose of active learning is entropy. In the context of handwriting

recognition where there is a huge number of hypotheses, there are di↵erent

ways to measure entropy. Here we focus on the entropy derived from the

N-best hypotheses and describe in detail how to obtain it. From the lattice

L
i

of each sentence we obtain the N-Best paths. Each path is a candidate

transcription T
j

and is accompanied with a score from the language model

l
j

and a score from the optical LSTM model a
j

. The N-Best list is thus a

list of tuples {(T1, l1, a1) . . . (TN

, l
N

, a
N

)}. A combined score for each path is

simply the weighted sum of these two. In this work we only use a weight for
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the optical model to get the overall score as : s
j

= wa
j

+ l
j

. As the weights

are used to select the best path for calculation of the WER, we can tune it

by minimizing the error rate on the development set.

To form a valid probability distribution the scores of all N paths are nor-

malised to sum to one : p
j

= sjPN
n=1 sn

. Then the entropy of the N-Best list of

each line is defined as:

H
i

= �
NX

i=1

p
i

log p
i

The active learner selects for labelling the k lines with the highest entropy.

4.2 Global Entropy Reduction

As we mentioned in Section 3, a more state of the art algorithm which in ASR

tasks [15] showed very good performance is the global entropy reduction. It is

again based on entropy but it also uses distance information. This algorithm

approximates the total entropy reduction that is expected to occur by the

transcription of the utterance x
i

as:

E
⇥
�H t

i

⇤ ⇠=
N

t
uX

j=1

H t

j

exp(��d(x
i

, x
j

)) (4.1)

The summation is over all the samples in the in the unlabelled pool. For

utterances in the unlabelled pool that are close to x
i

according to the distance

metric, labelling of x
i

will result to a significant reduction in their entropy.

On the other hand, uncertainty for distant utterances will not be a↵ected

significantly.

Samples are selected in a greedy fashion, one at a time. The line with the

highest estimated entropy reduction, that has not been selected already, is

deemed the most informative and selected for transcription.
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After selecting the highest scoring x⇤, all the entropies are modified as:

H t+1
j

⇠= H t

j

�H t

j

exp(��d(x⇤, xj

)) (4.2)

and we repeat the calculation of the entropy reduction to select the next best

one. The purpose of the reduction step is to approximate the entropies that

would result if we actually trained a new model with the inclusion of x⇤, by

reducing the uncertainty of the samples in the pool proportionally to how

similar each one is to the transcribed. In [15] they adjust only a subset of the

entropies for those utterances that are su�ciently close to the selected one.

The distance threshold is selected such as the maximum change in entropy

is 10%. The process is repeated until k distinct samples have been selected.

Algorithm 1 summarizes the procedure.

Algorithm 1 Global Entropy Reduction algorithm

1: procedure GER

2: H[M] Array of entropies of unlabbelled samples
3: k  Batch size . The number of samples to be selected
4: U  {U} . The set of all available unlabelled samples
5: S  {} . The set of selected samples
6: for i=0 to k do
7: Calculate GER for all samples in U (Eq. 4.1)
8: x⇤  the sample with maximum GER not in S
9: Add x⇤ to S
10: Adjust all entropies in H[M] according to Eq. 4.2

The global entropy reduction requires two parameters to be set: �, the scale

of the distance for the calculation of the entropy reduction and the threshold

on distance below which to reduce the entropies. � controls how important is

the entropy of the considered sample vs selecting a sample that is on average

similar to others. Furthermore in the reduction stage it a↵ects the importance

of the distance in reducing the entropies of the neighbours of the selected

sample. For � going to infinity the algorithm it is equivalent to uncertainty

sampling as it will select samples based on their entropy only. Conversely

small values of � are going to lead in selection of samples that are most similar

to others in the pool, downplaying the importance of the uncertainty. During
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the reduction step it also controls the relative importance of selecting high

entropy samples vs selecting samples with no information overlap within the

same batch. The right value of � depends on the distribution of the pairwise

distances, the size of the batch of selected samples and the nature of the task.

The second parameter, the threshold below the entropies of the neighbours

of the selected sample are reduced it is of a smaller importance. It is devised

to counteract the e↵ect of small values of beta by not allowing entropy reduc-

tions to all of the samples, to prevent the entropies from becoming degenerate

in the selection.

In [15] they used the full lattice entropy with GER. However in this work we

use it with the N-Best list entropy as in [13] they argue it is a most e↵ective

measure of uncertainty.

In order to use global entropy we must first calculate the pairwise distance

between the unlabelled samples in the pool with under some suitable distance

measure. In the next two section thus we develop two such distance measures

which we believe they are suitable for the HTR task.

4.3 Dynamic Time Wrapping Image distance

Calculating distances between the unlabelled lines can be done on the pre-

dictions (lattices) of the recogniser as they do for example in [15] where they

use the KL divergence or on the feature space. In this discuss a distance

metric acting on the feature space and in the next one on the lattices. As

we discussed in Section 2.1.2 the recognition system treats the line images

as a sequence of feature vectors. Calculating distances between sequences of

varying length and speed cannot be done trivially. Simply summing the dis-

tances between each ith point in one sequence from the ith point in the other

it’s not well defined if the series are of di↵erent length and can be produce

counter-intuitive results if for example the sequences are identical but one of

them is slightly shifted.
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A common way to solve this problem and produce intuitive distances is Dy-

namic time Warping. It finds an optimal alignment between points of the

two time series by warping one of them, i.e stretching or shrinking the time

axis. The total warped path distance is the sum of the distances between the

corresponding samples. We seek the alignment path that minimizes it.

In particular, given two sequences x1 . . . xN

and y1 . . . yM and a distance

metric between two samples of the sequences : d(x
i

, y
j

) the DTW-distance

between them is D(N,M) and is obtained as the solution to the following

recurrence relation.

D(i, j) = min{D(i, j � 1), D(i� 1, j), D(i� 1, j � 1)}+ d(x
i

, y
j

)

The complexity of the dynamic programming solution is O(NM). As part of

the solution we obtain the alignment path of the two sequences: a sequence

of tuples: ((i1, j1), . . . , (iK , jK)) where K is the length of the alignment. The

determined distance can thus be as:

D(X, Y ) =
KX

k=1

d(x
ik
, y

jk
)

Is clear the the magnitude of the distance is a↵ected directly by the length

of the warping path and thus indirectly by the length of the sequences. This

is not always a desired property and thus to debias the distance we can

normalise by the length of the path K.

In order to avoid excessive compression or expansion of the time scales, a so-

called global continuity constraint is sometimes enforced [21]. This is done

by restricting the alignment path to be within a specific region as shown in

Figure 4.1b. This restriction has the the added benefit of speeding up the

computation of the alignment.
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(a) Alignment path of two time series.

The DTW distance is the sum of the ma-

trix entries along the path.

(b) Examples of global constraints: (a)

Sakoe-Chiba band; (b) Itakura parallel-

ogram.

Figure 4.1: The figures are extracted from [22]

In [21] they use DTW to do spotting of word images in historical documents

in the absence of a transcription. Given a template word image they calculate

the DTW distance with each word in the target corpus to find matches. To

do this they first do baseline o↵set correction, slant and skew normalisation

in each word to minimise intra word variability. Then for each word image

they a extract a series of 4-dimensional feature vectors for each column of

pixels. An image of M columns is thus represented as sequence x1 . . .xM

where xi = [x
i1, xi2, xi3, xi4]

T . The distance between two samples (columns)

of two images is defined as the squared Euclidean distance of the their feature

vectors:

d(xi,yj) =
4X

k=1

(x
ik

� y
jk

)2

The features extracted from each image column are widely used in the hand-

writing recognition literature and aim to retain as much information as pos-

sible to allow reconstruction of the written word.
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The first feature is known as projection profile and aims to capture the

distribution of ink along the vertical dimension. Is defined as the sum of

the intensity values in each column:

x
i1 =

r=78X

r=1

I
x

(r, i)� 255

where the image I
x

is binary with ink segments corresponding to maximum

intensity (255).

The second and third features capture the word profile. These features also

capture information about the ink distribution and they respectively record

in each column the location of the uppermost and lowermost pixel with ink.

To smoothen the word profiles for columns where there no ink pixels at all,

linear interpolation is being used: the two closest points where the word

profile feature values could be reliably determined are used to fill these gaps.

x
i2 = min{r : I

x

(r, i) > 0}
x
i3 = max{r : I

x

(r, i) > 0}

Lastly the number of transitions from ink to no ink sections in each column

constitutes the fourth feature. This aims to capture information about the

structure of the characters.

Figure 4.2 shows the described extracted feature sequences for a sample line

image to demonstrate how they capture the handwriting profile. The raw

features are normalized in the [0, 1] range by using the minimum maximum

values across all columns of all lines before the distance calculation.

For the purposes of active learning we need to calculate all the pairwise

distances between the unlabelled sentences. For the present experimental

setup described in the next section, there are 9198 such line images and thus

we need to perform approximately 43 million distance computations. Even
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(a) Before decimation

(b) After decimation

Figure 4.2: Extracted feature sequences for a sample line image
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though the computations can be trivially parallelised, with the resources

available we cannot compute full DTW distances in a reasonable time-frame.

Even restricting the alignment path as mentioned above doesn’t give enough

improvement. We thus consider an approximate implementation of the DTW

proposed in [22]. This algorithm start from a coarse approximation of the th

wrap path and recursively projects it to a higher resolution and refines it. It

achieves finding the approximate solution in linear time which make it very

completive against exact DTW for longer sequences.

Furthermore, for a more drastic and direct speed-up we reduce the length of

the feature vector series by decimation. Each feature sequence is treated as

a time series and passed through an order 8 Chebyshev type I filter before

keeping one out out 4 consecutive samples. These reduces the length of each

sequence by a factor of 4. Unfortunately this comes with significant loss of

information particularly for the first feature (projection profile) which has

high variance. This is demonstrated in Figure 4.2.

Using the procedure described, the pairwise distances are computed in par-

allel using 42 CPUs which takes approximately 37 hours. The resulting

distances of some sentences are shown in Figure 4.3. In particular we show

six sample lines and their four nearest neighbours as calculated by the DTW

distance. We notice that for longer sentences (Figures 4.3a, 4.3b, 4.3d) is not

completely clear why the distances with the neighbours depicted are low, the

similarities are not completely obvious. For lines comprising of 1 word the

similarities are more apparent (Figures 4.3e, 4.3f) but still not without short-

comings (Figure 4.3c). Furthermore we note that even with the path-length

normalisation, the shorter lines have significant smaller distances with their

nearest neighbours than the longer ones. The path-length normalisation also

seems to introduce artefacts as demonstrated in Figure 4.3b where a line sen-

tence is assigned a very low distance from a one word line. Figure 4.4 shows

the histogram of the pairwise distances between all lines. Of course, the

distances are confined in [0, 1] as the features have been normalized and the

DTW distance is normalized by the length of the alignment path. However

the distribution is relatively sharp with most of the distances falling between
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0.18 and 0.4.
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

Figure 4.3: Six sample line line images (top of each subfigure), their corre-
sponding four nearest neighbours and their DTW distances

Figure 4.4: Histogram of all calculated pairwise DTW distances
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4.4 TF-IDF transcription distance

The DTW distance described in the section above acts on the image space.

However the uncertainty is being derived from the N-Best list hypotheses and

thus it is sensible to consider distance metrics based on these. Inspired by

the work in [13] we use the term frequency - inverse document frequency dis-

tance (TF-IDF) by treating each N-Best list of transcriptions as a document.

In particular from each sentence’s lattice we extract the 1000 best scoring

hypotheses in terms of clustered tri-characters and we consider them as a bag

of tokens. As discussed in Section 2.1.2 there are around 350 di↵erent such

context dependent character tokens which we treat as terms. Each N-Best

list is thus described by a 350 dimensional vector where each entry has the

TF-IDF score of the particular term (tri-character). The term frequency (tf)

is the normalized occurrence count of each term in the document, and the

inverse document frequency (idf) is a metric of the relative importance of

that term in terms of how common the term is in the whole corpus. The

N-Best list transcriptions of all the unlabelled lines comprise the corpus D.

The tf-idf score of each term is then defined as the product of two terms:

tf(term, d) =
#occurences of term in d

length of d

idf(term) =
|D|

1 + |{d : term 2 d}|

where |D| is the total number of lines in unlabelled pool and |{d : term 2 d}|
is he number of N-Best lists in which the term appears.

Having a vector representation of the lines transcriptions we can use any

suitable distance measure. Typically for tf-ifd representations the cosine

distance is being used:

d(xi,yj) = 1� xi
Tyj

|xi||yj|

As before to quantify the workings of the distance we are looking at the

32



Distance Transcription
0 0.000 thus signed and that accordingly that if the person to whose
1 0.250 ever signed by any other person than he who name it is that is
2 0.254 the time and that the amputation cured, and that a cure
3 0.257 be that it should amount to half a day’s Wages according to the ordi=

Table 4.1: Nearest neighbours of a sentence, when using the TF-IDF distance

closest neighbours of a few samples. Now only the transcriptions are being

considered and the neighbours are more intuitive as there is a significant

overlap in words even though we only take into account the context dependent

characters.

In the next chapter we will present the results from the procedures described

here. We first run uncertainty sampling with the N-Best List entropy and

then the global entropy reduction with two di↵erent distance metrics: DTW

and TF-IDF.
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Chapter 5

Experiments

5.1 Experimental Setup

To evaluate the performance of di↵erent active learning algorithms we use

the available training data to create two pools: one of labelled data and one

of unlabelled. The labelled pool consists of 10% of the data (920 lines) which

are randomly selected from the total and we use them to train an initial

model. The predictions (lattices) of the trained model for the unlabelled

pool along with the calculated pairwise distances are used to propose the

920 most informative samples within the unlabelled pool. A new model is

then trained on the original 10% lines plus the additional 10% proposed by

the active learner. In the next iteration the active learner proposes the best

920 lines samples out the remaining 80% and adds them to the previous 20%

of labelled data. This is repeated until we have a model trained on 90% of

the available data; at that stage there is not a choice of data as there are

exactly 920 samples left for the model trained on the full available dataset.

At each stage we calculate the WER that the current trained model achieves

on the development and test held out data. This is compared with the WER

that is achieved by adding the training data again in 10% increments but

selecting them randomly. This emulates the scenario where unlabelled data
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are incrementally in batches of 920 are given to an oracle for annotation

without any selection procedure; passively.

5.2 Uncertainty Sampling with N-Best list En-

tropy

The first algorithm we consider is Uncertainty sampling with the Entropy

calculated from the N-Best lists. At each iteration we train the model on the

current labelled pool and we use it to obtain the lattices for the lines in the

unlabelled pool. We then extract from them the N-Best lists and calculate

the entropy as described in Section 4.1. The unlabelled lines are then ranked

by the highest entropy and the top 920 of them are added to the labelled

pool for the next iteration. The size of the N-Best list we use was selected to

be a 1000 after a very coarse tuning. The optimal model scale for the scores

was set to 0.1 without tuning.

Figure 5.1 compares uncertainty sampling with the random sampling ap-

proach in terms of WER achieved in the test and development sets. It’s

evident that uncertainty sampling performs quite favourably. The annotated

dashed lines in the plots correspond to the gains in two di↵erent use cases

of active learning. The horizontal lines show the percentage of data that we

save to achieve a particular target WER when using active learning. This

translates to savings in annotation cost. Similarly, the vertical lines show

the improvement in WER that uncertainty sampling achieved for a fixed

annotation budget. The maximum savings in annotation data occurs when

targeting for 29% WER : with uncertainty sampling it is achieved with 29%

less training data. Similarly the maximum improvement in WER is observed

when we use 50% of the data where we note a 4.4 percentage points reduction.

Although it is standard in the active learning literature for ASR to show the

WER as function of the number of training utterances used for the purposes

of comparing it with random sampling or other approaches, we believe that
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for the handwritten recognition task viewing it as a function of the total

number of words is more fair. This is mainly due to the fact that annotation

costs of handwritten texts are proportional to the number of words rather

than the number of lines. In particular for this dataset where as discussed

in Section 2.1.1 the length of the lines vary wildly such normalisation is

important. For example we saw that uncertainty sampling achieves 29%

WER with 29% less lines than random sampling. However that will not

necessarily translate in 29% annotation cost savings since as we shall see the

higher entropy lines which are selected by uncertainty sampling have more

words.

Motivated by this discussion, Figure 5.2 shows the WER for random sampling

and uncertainty sampling as a function of the percentage of the total words

contained in the training set that was used in each iteration. We notice that

although uncertainty sampling still performs clearly better the di↵erence is

less pronounced. In particular the maximum annotation savings costs are

now 16% where as the maximum reduction in WER for a fixed annotation

budget is 2.2 percentage points. Looking at the distribution of entropies in

Figure 5.3 is clear that in particular one-word sentences and to a smaller

extend the 2 word ones can have much lower entropies. Thus uncertainty

sampling won’t select most of the very short sentences until very late, which

leads to an increased number of words for the same number of lines against

random sampling. The entropies presented in that Figure 5.3 come from the

lattices generated by the model trained on 10% data. In theory the entropies

should change as we train with more data and obtain a better model. It is

interesting to investigate how an increasing amount of training data a↵ects

the entropies estimated and thus the ranking of the proposals. This is of

particular importance since it can a↵ect the batch size of the queries and

lead to computational savings. As we mentioned in each iteration we rank

all samples in the unlabelled pool, select the top 920 and move them to the

labelled pool. So for example if with the entropies calculated on the first

iteration the samples ranking in 921-1840 are similar to those ranking 1-920

on the second iteration we could save one retraining and query the top 1840
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samples from the first iteration directly. In the next section and in particular

in Figure 5.8 we show that in fact the entropies change significantly and there

is a loss in performance of active learning with larger batch sizes.

It is reasonable to expect that especially in the early iterations where the

amount of data is limited, active learning will select sentences for transcrip-

tion that will expand the vocabulary. This is because out of vocabulary words

will never be recognised correctly and so it is reasonable to be presented by

new words rather than get more instances of the same word. Figure 5.4

shows how the size of vocabulary grows with the amount of training data.

Indeed it is evident that active learning adds new words much faster than

random sampling. In particular, 60% of the training data contains 90% of the

vocabulary when selected by uncertainty sampling whereas when randomly

selected only 71% of the vocabulary has been seen.

One point to note is, that it is not easy to do a direct comparison with the

performance curves reported in the literature for active learning within the

ASR tasks. The reason being is that in these tasks they have used enough

training data to reach a plateau in the WER. The amount of data needed to

reach that plateau with active learning vs with random sampling is used as

a metric. Even in that case though the results can vary depending on how

many additional data they used past the plateau point. However in our case

is clear that the error rate improves significantly for random sampling even

with the last addition of data at 90%. This indicates that there is significant

room for more training data before we reach the plateau. The fact that the

increase in the vocabulary size in Figure 5.4 continues to grow linearly up to

the last stages, corroborates this fact. New words are being encountered with

same rate even though we have added almost all data. For this reason a direct

comparison with other work is di↵erent domains it would lack consistency.

Using our limited size training set we notice that the e↵ectiveness of adding

labelled data proposed by the active learner depends on what“training stage”

the model is. Figure 5.5 shows the reduction on the WER achieved by the

addition of each batch of 920 training samples as proposed by uncertainty

sampling against the random sampling. We observe that active learning
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gains its advantage in the early rounds where it achieves significant reduction

over random sampling, which is probably expected as the most informative

samples are added early. After around 40% of the data have been added

the reductions are similar until the final round where the active learning

proposal become worse as only less informative samples are still in the pool.

What’s interesting however is that the final addition of the last 10% of data,

results to a significantly higher improvement than the previous proposals of

the active learning. This signifies that the last 10% or so of samples with

the lowest entropy that are added last, were actually more informative than

the previous 20% with higher entropies. As mentioned above those very low

entropy lines are actually those consisting of one word. Although in the

entropy sense thy are less informative, transcribing them lowers the WER

quite significantly, presumably because the test sets also contain such lines.

We believe that the observed behaviour of diminishing returns of active learn-

ing towards the last few additions of data is related to our experimental setup.

In particular the unlabelled pool of candidates shrinks too quickly because

we emulate it with the labelled training set. In a real scenario the amount

of unlabelled lines would be significantly larger than the total annotation

budget and thus the total number of candidate queries would be much larger

even in the latter stages.
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(a) Test Set

(b) Development Set

Figure 5.1: Performance curves of uncertainty sampling with N-Best List
Entropy by considering the number of training lines
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(a) Test Set

(b) Development Set

Figure 5.2: Performance curves of uncertainty sampling with N-Best List
Entropy by considering the number of training words
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Figure 5.3: N-Best List Entropies of the sentences in the unlabelled pool.
Evaluated from the lattices produced from the model trained on 10% of the
data.

Figure 5.4: Size of vocabulary as a function of the percentage of the training
lines used

Figure 5.5: Reduction on the WER achieved by the addition of each batch
of 920 training samples.
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5.2.1 Global Entropy Reduction

In this section we investigate the results produced by an adaptation of the

more sophisticated active learning algorithm proposed in [15] and over-viewed

in Section 4.2. Global Entropy Reduction (GER), along with the entropy de-

rived from the predictions from the trained model, uses distance information,

in an attempt to avoid querying outliers and noise and also to avoid infor-

mation overlap within the queried samples. The distance metric we are use

using for these experiments is the DTW distance on image features developed

in Section 4.3. The experiments performed are the same as for uncertainty

sampling previous section and we aim to directly compare the two active

learning algorithms.

As discussed in Section 4.2, global entropy reduction is sensitive to two pa-

rameters that need tuning. We first tune �, the scaling of the distance in the

exponential. However since the runtime of training the recognition system is

high, we do a first coarse tuning by looking at the first iteration, how similar

the queried samples are with those of uncertainty sampling. As mentioned

we want large enough � so the entropy is not being ignored but small enough

for the queries to be su�ciently di↵erent. The table below shows the per-

centages of overlap in queries from global entropy reduction with uncertainty

sampling as � is varied.

Value of � 20 30 40 50 60 70 80 90

Overlap with Unc. Samp. (%) 5.6 5.6 5.6 8.0 23.3 65.5 93.4 98.8

Following the reasoning mentioned above it is clear that the value of � should

be between 60 and 70. We thus run the global entropy reduction with � equal

to 60, 62.5, 65, 67.5 and 70 to propose 920 unlabelled samples. We then train

the recognition system with each of these proposed sets added to the initial

10% of the data and select the beta which resulted to the minimum WER.

The value of � that resulted to the minimum WER was 67.5 which we use

for all the subsequent experiments.

The global entropy reduction algorithm with the DTW distance is compared

against the random sampling approach and uncertainty sampling for the test
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and development sets, following the same procedures as before. As before we

can consider the number of lines that the training set contains (Figure 5.6)

or the number of words (Figure 5.7).

We notice that GER with DTW distance performs only slightly better than

the simple uncertainty sampling and the overall curves are very similar. The

advantage of GER is more evident in the development set. This could be due

to the fact that the tuning of � is done based on the development set, although

the tuning is so coarse that the discrepancy may well be due to di↵erences

in the two set-sets. This di↵erence in the two sets is corroborated by the

fact that in all our experiments (Figures 5.1, 5.2, 5.6, 5.7) the advantage of

both active learning algorithms over random sampling is more pronounced

in the test set. Although the WERs for random sampling are approximately

the same, active learning performs better in the test set. This di↵erence in

improvements between the two sets can be as high as 1 percentage point. It

is not apparent to us what causes this discrepancy between these two sets.

Since GER performs so similarly to N-Best list is interesting to look at how

the lines being added on each iteration compare between the two active

learning algorithms. The table below show how much the 920 proposed lines

overlap between the two algorithms as well as how similar the total training

sets are in each iteration. We notice that although the queries from the

GER and uncertainty sampling are significantly disjoint, the di↵erence in

the overall training sets is fairly small especially for the later iterations. This

signifies that although the top 920 selected examples might be disjoint the

overall ranks that the two algorithms assign are not that di↵erent. This is

exacerbated by the fact that we use a small training set to emulate the large

pool of unlabelled candidates.

Training data (%) 10 20 30 40 50 60 70 80 90

Overlap in batch (%) 100.0 53.9 35.5 23.8 26.1 28.6 30.2 36.0 48.0

Overlap in total (%) 100.0 77.0 72.6 78.4 84.0 88.1 92.0 93.9 97.0

Lastly we look at the e↵ect of the batch size in the performance of the two

algorithms. Instead of selecting the best 920 candidates on each iteration

44



we select the best 2760 (30% of the available data). The curves in Figure

5.8 are with respect to the number of words contained in the data. We see

now that the performance of both active learning algorithms deteriorates and

they struggle to compete against random sampling particularly in the first

iteration. This is mostly because the initial model trained on only 10% of the

data is too weak to produce entropies accurately reflecting the uncertainty.

Also, with a larger batch size in theory GER should benefit against uncer-

tainty sampling as it uses the distances to account for information overlap

within the batch which is more important for larger batches. However the

di↵erence between the two is again too small to accurately to reliably make

any conclusive statements about that.

We also tried to use GER with the TF-IDF distances described in Section

4.4 but the initials results were disheartening so we didn’t pursue it further.

It could be that better tuning was needed but in the time available we could

not find any configuration that worked better than than uncertainty sapling

with N-Best list entropy.
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(a) Test Set

(b) Development Set

Figure 5.6: Performance curves of active learning with Global Entropy Re-
duction by considering the number of training lines
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(a) Test Set

(b) Development Set

Figure 5.7: Performance curves of active learning with Global Entropy Re-
duction by considering the number of training words
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(a) Test Set

(b) Development Set

Figure 5.8: Performance curves of active learning with an increased batch
size of the proposals by considering the number of training words
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Chapter 6

Summary and Future Work

This thesis explored the use of active learning for the HTR task in historical

documents.

We presented the particular dataset we are working with and the recognition

system we are using. Di↵erent active learning approaches were discussed

along with the fact that only a few of those are applicable to HTR primarily

due to the long training times and the complex nature of sequence classifica-

tion models. Although there has been no previous work on active learning for

HTR we note the similarities with ASR and draw from research in that area.

Most prominent active learning algorithms require an uncertainty measure as

a minimum and more sophisticated ones introduce a pairwise distance met-

ric. For the uncertainty measure we deemed N-Best list entropy as the most

appropriate and investigated its performance in the context of uncertainty

sampling. We noted noticeable improvement in terms of annotation expen-

diture savings for a target WER and achieving better performance with a

fixed annotation budget. We proposed looking at the total number of words

used for training as a more subjective means of evaluating the active learning

performance in the context of HTR tasks.

The results show that albeit its simplicity, uncertainty sampling could have

a real impact on the field of historical document recognition leading to im-
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proved recognition performance with the same resources. Further tuning,

particularly of the size of the N-Best List used for the entropy calculation

could improve the results further. One of the limitations of our experimental

setup, stems from the fact that we use the labelled set to emulate the unla-

belled pool. As we mentioned the size of the available training set is small

for this task and thus emulating active learning with it potentially under-

estimates the benefits. It would be nice to test this approach either in an

actual use-case-like setup, where selected lines are coming from a large pool

of unlabelled instances which we incrementally query until we reach satis-

factory performance, either use a significantly larger train set that saturates

the WER performance to emulate this, to the same e↵ect.

We then investigated a more sophisticated approach for active learning know

as global entropy reduction. We proposed a DTW based distance metric

acting on the the image space to be used and also experimented with a TF-

IDF distance based on the transcription output. We found that with the

DTW distance GER managed to improve over uncertainty sampling, albeit

only by a small margin. We believe it would be beneficial to investigate finer

tuning of this algorithm, as well as calculation of the DTW distance without

the decimation approximation and more features, given enough time and

computation resources. Di↵erent, more computationally expensive distance

metrics that have been used in the ASR literature such as the KL lattice

divergence could also be worth exploring.
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