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Objectives

The goal of BachBot is to generate 4-part
Baroque chorales in the stype of Johann Sebas-
tian Bach. We interpret this as sampling random
chorales from a generative probabilistic model of
Bach chorales and identify four discrete objec-
tives:
• Melody modeling: Marginal distribution
over univariate Soprano melody sequences

• Melody harmonization: Conditional
distribution over multivariate (Alto, Tenor,
and Bass) harmony parts given fixed Sporano
melody

• One-pass polyphonic generation:
Sequentially modeling of all parts jointly

• Applications in music analysis: What
would Bach do? Enhance “Bach-ness” of
inputs.

Data Representation

We will explore how three different representations
of music (the first two of which are isomorphic) affect
convergence and performance:
• Per-part tuples – four collections (one for each
voice) of note/rest and duration tuples; note that
the time interval between two tuples is variable

• Per-part roll – categorical array Xp,t ∈ V
denoting note played by part p ∈ {S, A, T, B} at
time t ∈ {1, 2, · · · , T}; to distinguish notes held
from previous times from notes articulated at the
current time, Yp,t ∈ {0, 1} indicates if the note is
articulated at time t.

• Piano roll – similar to per-part roll except
Xn,t ∈ {0, 1} denotes if note n (rather than part
p) is played at time t; this represents cannot
express two different parts playing the same note

Melody Modeling

•Given initial seed, generate melody sequence
•Baseline: N -gram language model perplexity
•Experiments:

• RNN, LSTM, and GRU architectures
• Word level vs note level features, augmentation with
expert crafted features

• Constant (roll representation) or varying timestep (tuple
representation) per input

Figure 1: Inside of an LSTM cell[1]

Melody Harmonization

•Given melody, generate the harmony parts
•Baseline: HMM-based system[2] accuracy
•Experiments:

• Single multivariate vs 4 independent LSTMs with MRF
refinement

• Bi-directional LSTM

Figure 2: Bidirectional RNN hidden states

One-pass polyphonic generation

•Given initial seed, generate entire chorale
•Baseline: n/a, subjective evaluation
•Experiments:

• Bi-axial and grid architectures
• Convolutional vs recurrent dimensions

Figure 3: Biaxial RNN architecture[3]

Applications in Music Analysis

•MAP : what would Bach do?
• Interpreting hidden state activations
•Enhance “Bach-ness” of input

Figure 4: 2D grid RNN architecture[4]

Project status

•Completed
• Preprocessing pipeline (strip markup, extract 4 parts,
transpose C major/A minor) complete

• torch 2-layer LSTM melody model
• keras/tensorflow bi-axial LSTM modely model

•Upcoming
• Get baselines for N -gram melody model and HMM-based
harmonization [2]

• Augment feature representation with expert crafted
features

• Investigate GRUs and vanilla RNNs for melody modeling
and harmonization

• Implement and compare biaxial vs grid RNNs for
harmonization and single pass generation

• Sample outputs and perform subjective evaluation using
MTurk
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