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Objectives
• Combine variational inference with MCMC methods

•Use Hamiltonian Monte Carlo first to improve vanilla variational au-
toencoder

•Use Manifold Hamiltonian Monte Carlo for faster convergence and
better performance

•Apply to MNIST for marginal likelihood improvement

•Generate new images using trained decoder

Introduction
In variational auto-encoders, we approximate the posterior p(z|x) with a
family of distribution qλ(z|x) where λ includes the mean and variance of
a Gaussian distribution for each data point λxi = (µxi, σ

2
xi). We then use

KL-divergence to measure how well our approximation models the true
posterior [1]:

KL(qλ(z|x)||p(z|x)) = Eq[log qλ(z|x)]− Eq[log p(x, z)] + log p(x) (1)

This is difficult to compute directly thus we try to maximum the evidence
lower bound(ELBO) instead.

L = Eq(z|x)[log p(x, z)− log qλ(z|x)] (2)

The maximization of ELBO can be addressed in multiple approaches, here
in this project we are trying to address that in a way that combine the best
of variational inference and MCMC methods [2]. In particular, we are in-
terested in Hamiltonian Monte Carlo on Riemannian manifolds (MHMC),
which is a state-of-the-art method for approximate Bayesian inference.

Figure 1: Structure of vanilla variational autoencoder

Methodology
(1) MCMC and auxiliary variables
In variational inference we have the evidence lower bound:

L = Eqθ(z|x)[log p(x, z)− log qθ(z|x)] (3)

If we integrate the auxiliary random variables into the lower bound we’ll
have:
Laux = Eq(y,zT |x)[log[p(x, zT )r(y|x, zT )]− log q(y, zT |x)]

= L − Eq(zT |x){KL[q(y|zT , x)||r(y|zT , x)]}
=≤ L ≤ log[p(x)]

where r(y|x, zT ) is an auxiliary inference distribution. This auxiliary will
again need to be approximated by a Markov structure:

r(y|x, zT ) = r(z0, ...zt−1|x, zT ) =
T∏
t=1

rt(zt−1|x, zt) (4)

so that the variational lower bound can be rewritten as:

log p(x) ≥ Eq[log p(x, zT )/q(z0|x) +
T∑
t=1

log[rt(zt−1|x, zt)/qt(zt|x, zt−1)]]

(5)
By specifying qt and rt in some flexible parametric form we can then op-
timize the lower bound to get a good approximation to the true posterior.
(2) Optimizing the lower bound
For most qt and rt, the lower bound in equation 5 cannot be computed an-
alytically but we can approximate it by sampling from qt. This involves
the calculation of ratio:

αt =
p(x, zt)rt(zt−1|x, zt)
p(x, zt−1)qt(zt|x, zt−1)

(6)

which can be used to update the lower bound: L = L + log[αt]. The next
step is to obtain the gradient of the lower bound with respect to parameter
θ (parameters in q and r) using some reparameterization trick. Once we
obtain that, we can use it in a stochastic gradient-based optimization algo-
rithm for fitting p(z|x) and get the final optimized variational parameters
θ.
(3) Hamiltonian variational inference
Hamiltonian dynamics is a very effective way of exploring the posterior
distribution p(z|x). because the dynamics is guided by the gradient of the
exact log posterior and random walks are suppressed by momentum vari-
able v. What’s more we have a nice property of HMC which is:

q(vt, zt|zt−1, x) = q(vt, zt, zt−1|x)/q(zt−1|x)

= q(v′t, zt−1|x)/q(zt−1|x) = q(v′t|zt−1, x) (7)

similarly we have r(v′t, zt−1|zt, x) = r(vt|zt, x). We can utilize this prop-
erty to approximate the log marginal likelihood lower bound by calculating
a ratio:

αt =
p(x, zt)rt(vt|x, zt)

p(x, zt−1)qt(v′t|x, zt−1)
(8)

and update the lower bound: L = L + log[αt]. We fit the variational
approximation to the true posterior by maximizing the lower bound with
respect to q, r and the parameters of the Hamiltonian dynamics.

(4) Riemannian Manifold Hamiltonian Monte Carlo
A Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) sampler
can resolve the shortcomings of existing Monte Carlo algorithms when
sampling from target densities that may be high dimensional and exhibit
strong correlations. It also converges faster [3]. The major difference of it
comparing with HMC is in q(v′t|zt−1, x).

Figure 2: Comparison between RMHMC and HMC sampler

Results and Discussion

(a) Preliminary lower bound using HMC (b) Generated digits

Result is derived using Hamiltonian variational inference. A great increase
in the lower bound can be seen. Each value is averaged over one epoch.

Future Work
Modify the current HMC sampler to implement MHMC sampler for a
faster convergence and better lower bound on MNIST dataset. Then gen-
erate new images using other dataset like CIFAR-10.
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