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Introduction Classification Regression
. | Model #Units Test Error  Model #Units Test Error = We generated the homoscedastic regression task described in [1] (Figure 4).
Traditional feedforward neural networks do not provide a measure of the
Problem uncertainty in their predictions resulting in being prone to overfitting. BBB 400 1.79% BBB 800 1.92% = While the regular NN is confident in its fit far away from the region where we have
Dropout 400 1.72% Dropout 800 1.45% data, BBB naturally becomes more uncertain as we move farther into unseen regions.

Table 1: BBB and Dropout are applied to a feedforward neural network with two 400/800 unit layers
Bayes by Backprop (BBB) [1] introduces uncertainty in the weights (MNIST dataset).

I;r(ipssed (Figure 1) and predictions and thus improves generalisation. This is
OHIHON achieved by sampling from the weight posterior distribution. 1> 1>
= An advantage of BBB is that it returns the posterior over the weights. 1.0 1.0
ol Exact Bayesian inference is intractable because of the large number of network - A drawback of BBB is that it has twice as many parameters to train. 0-57 037
pie- parameters. A variational approximation based on free energy minimization . . . . 0.0 1 0.0 1
mentation | .4 the reparametrisation trick estimates the parameters of the weights posterior. Weight Distribution s s
051 % 051
= The Dropout and BBB weight distributions have a larger variance than a standard 07 —107
//g?\ neural network, possibly leading to regularisation. T 050 —025 000 025 050 075 1.00 125 T 050 —025 000 025 050 075 1.00 125
o5 0. \;N; N A A NN - Signal-to-noise ratio (SNR) i.e. % is computed to prune weights in BBB.
Figure 4: Comparison of fit between a standard feed-forward neural network (left) with BBB (right) on the
\<D regression task given above. For BBB the result of 30 samples is given. The curves show the interquartile
N ¥ , ranges (blue is the median).
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Figure 1: Each weight is represented by a single value on the left (standard neural network) and by a 3 g 00201 « We compared the performance of BBB to other NN-based agents on the UCI
distribution on the right (BBB). Image taken from [1]. R P Mushroom Dataset [3], cast as a RL task. We measured the agents’ cumulative regret

0.010 - relative to an oracle (Figure 5)
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= Prediction is made as an expected value over the posterior distribution of the weights: = We see that the e-greedy agents over-explore. The greedy agent does better, but
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P | %) = Epip [P | %, w)] (1) Weight Signal-To-Noise Ratio (d8) BBB’s regret flattens out quicker and to a larger extent than the others’.
(wIP) ’ Figure 2: Comparison between the weight Figure 3: Evolution of weight distribution as a
distributions of BBB, Dropout and a standard function of the training epochs and 90% pruning
Bayes By Backprop: A Variational Approach feed-forward neural network. threshold. " Bayes By Backprop o
—— Eps-Greedy (1%)
A0 p— Eps-Greedy (5%) 80
- The parameters, 8*, defining the posterior approximation are obtained by minimizing - Up to 90% of the weights can be removed in BBB without significantly affecting the s | R
the Expectation Lower Bound (ELBO), defined as accuracy resulting in a faster and smaller network. % g 0 N A AANAAS
F(D,0) = KL[qg(w | ) || P(w)] — Eqywin)[log P(D | w)]. (2) = Removing the same number of weights based on their absolute value in the Dropout g 3 a0
~ ~- 7N — d NN reduces accuracy considerably. 1 “ B Agent eats edible mushraom
Compressmn cost Likelihood cost 20 , Agent eats poisonous mushroom
' . . ' . . B Agent passes on po?sonous mushroom
= Calculating this quantity is analytically intractable, hence we resort to Monte Carlo Pruning #Parameters BBB Pruning #Parameters Dropout | | | | | ; J Agent passes on edible mushroom
<MC> a rOleatl()nS 0 10000 20000 30000 40000 50000 0 2000 4000 6000 8000
PP - 0% 2.6m 1.92% 0% 1.3m 1.45%
1 | | | 50% 1.3k 1.86% 50% 650k 1.45% Figure 5: Cumulative regrets of different agents. Figure 6: Evolution of the policy of the BBB
]:‘(D, (9) ~ - Z log q<w(2) | Q) — log P(W(Z)) — log p(D ‘ W(Z)) 507 650k 1 85Y% 7507, 295Kk | 750 agent over the first 10000 steps.
. Zzl (3) 90% 260k 1.82% 90% 130k 17.01%
_ - Z Fw®.0) where w) ~ g(w | 6) 95% 130k 2.16%  95% 65k 41.48% Conclusion and Future Investigation
e Table 2: Weights are pruned based on SNR (left) and absolute value (right) to obtain a compact network.

= Neural networks are regularised in a principled fashion in BBB by using the

= To calculate VyF (D, 0), which is the gradient of an expectation over q(w | 6), we
Kullback-Leibler divergence in the cost function.

utilise the reparametrisation trick [2]:

W= j+ooc wheree~ N0 T). (4) References g (]?fBu]iCagiloIKZ glheraﬁ)aivefjgg;iof NNs, which in the limit is equivalent to an ensemble
. y y .

. Sampling w) according to Eq (4) allows us to obtain unbiased MC estimates for the 1] Charles Blundell, Julien QOrnebi§e, Koray Kavgkcuoglu, and Daan Wierstra. Weight Uncertainty - The uncertainty introduced by sampling from the variational posterior naturally leads
gradient of F using the samples from Eq (3): in Neural Networks. arXiv e-prints, page ariiv:1505.05424, May 2015 to exploration in RL tasks, which outperforms the simpler e-greedy methods
n (0) (0) (0) 2] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv e-prints, page ’ '

V,F(D,6) = Q E,wio) [f (W, 0)] ~ Z of(w',0)ow" n of(w'",0) arXiv:1312.6114, Dec 2013, = The hyperparameters ought to be systematically tuned to achieve better performance.

) - q(w ) ~ : . . . .
00 p ow!) 00 00 (3] Dheeru Dua and Casey Graff. UCT machine learning repository, 2017. = An interesting problem is to extend BBB to other types of neural networks, especially

CNNs and RNNs.




