
Extending and Applying the Gaussian
Process Autoregressive Regression

Model

Justin Bunker

Supervisor:
Dr. Richard E. Turner

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Magdalene College August 2019

I would like to dedicate this thesis to my sister and both of my parents whose love and
support I will always be thankful for.

Declaration

I, Justin Bunker of Magdalene College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.
The word count of this thesis does not exceed 10500 words. No existing software, apart
from several key standard libraries, was used for the work required in this thesis. A list of
these libraries is provided within the experiments section.

Justin Bunker
August 2019

Acknowledgements

I would personally like to thank my supervisor, Dr. Turner. During our numerous meetings,
I was able to learn a lot about how to approach problems with a researcher’s mindset and
this insight has greatly enhanced my experience. I am also very grateful for all of the advice
he has provided me.

Also, I would like to thank Wessel Bruinsma for all of the great discussions and constructive
feedback used towards the writing of this report. Despite being very busy, Wessel always
found the time to provide valuable advice and ideas on different matters related to this
project. It was always a pleasure to interact with him.

Abstract

The goal of this thesis is to investigate different properties and applications of the Gaus-
sian Process Autoregressive Regression (GPAR) model [9]. Through the use of multiple
Gaussian processes, GPAR can efficiently model multi-output systems by using informa-
tion about the relationship between the various outputs. The goal of this thesis is twofold.
First, we examine and describe GPAR behaviour when dealing with random hyperparam-
eter initialisation, compositional kernel search, and optimal conditional ordering. Second,
we discuss several approaches for using GPAR to enhance performance in solving multiple
integrals for related integrands using Bayesian quadrature [12] and also for hyperparameter
tuning with the freeze-thaw approach [11].

Contents

1 Introduction 1

2 GPAR Model 2
2.1 Overview . 2
2.2 Gaussian Processes . 2
2.3 Complete GPAR description . 5
2.4 Training Methodology . 6
2.5 Kernel Selection . 6
2.6 Considerations . 7

3 Bayesian Quadrature 8
3.1 Overview . 8
3.2 Application of GPAR . 9

3.2.1 Naive Numerical Methods Approach 10
3.2.2 Naive Monte Carlo Approach . 10

3.3 Derivative Approach . 10

4 Freeze-Thaw Bayesian Optimisation 13
4.1 Overview . 13
4.2 Model Selection Methodology . 15
4.3 Custom Exponential Kernel . 15
4.4 Acquisition Functions . 15
4.5 Application of GPAR . 19

5 Experiments 20
5.1 Overview . 20
5.2 GPAR Model . 21

5.2.1 Synthetic Functions . 21
5.2.2 Error Sensitivity to Random Initialisation 22
5.2.3 Kernel Selection for Characterising Relationships 24
5.2.4 Importance of Optimal Ordering . 26

5.3 Bayesian Quadrature . 27
5.3.1 Evaluation of Proposed GPAR Solution 27
5.3.2 Complex Integrands with Explicit Causality 29
5.3.3 Varying MC Sample Size . 30
5.3.4 One Dimensional Derivative Trick . 31

5.4 Freeze-Thaw Bayesian Optimisation . 32
5.4.1 Loss curve Modelling . 32

6 Conclusion and Future Work 34
6.1 GPAR . 34
6.2 Bayesian Quadrature . 34
6.3 Freeze-thaw Optimisation . 35

7 Appendix 36
7.1 GP Posterior Equations . 36
7.2 Custom Exponential Kernel . 36
7.3 Expected Improvement Acquisition Function 37

List of Figures

1 Examples of GP prior distributions . 3
2 Examples of GP posterior distributions . 3
3 GP prior samples . 5
4 Freeze-thaw graphical model . 14
5 Samples from a GP that uses the custom exponential kernel 16
6 GPAR vs IGP performance comparison . 22
7 Truth (row 1) vs GPAR (row 2) vs IGP (row 3) samples for modelling func-

tions that share noise . 23
8 Error plotted over the number of restarts for different levels of complexity . . 25
9 Top 10 and bottom 10 log-likelihood for different kernel configurations 25
10 Base scheme ordering comparison (Noise: N (0, 0.0025)) 26
11 Baseline vs Naive GPAR and Gaussian integrand modelling comparison for

y1, y2, and y3 . 28
12 Baseline vs Naive GPAR and Bessel integrand modelling comparison for y4,

y5, and y6 . 30
14 Derivative trick to model y1 (30 Obs.) . 31
15 Derivative trick to model y4 (30 Obs.) . 32
16 GPAR vs IGP models for loss functions (regular) 33
17 GPAR vs IGP models for loss functions (0 mean function) 33

List of Tables

1 Common kernels with associated hyperparameters such as the variance σ2

and lengthscale l . 5
2 Sensible choices for the GPAR kernel . 7
3 Example of GPAR iterations for 3 hypothetical outputs 21
4 Baseline statistics comparison . 28
5 GPAR statistics comparison . 28
6 Intermediate integrand evaluations (15 Obs.) 29

1 Introduction

When modelling multiple time-series outputs, it is often the case that the different out-
puts are related to each other in a causal manner. For instance, we may be interested in
modelling the following financial securities: an index representing a basket of equities of
different sectors, a different index representing a basket of technology equities, and finally a
technology stock. Knowledge of the values of the equities index can indicate what the values
could be for the technology index. The same logic follows for using the values of the tech-
nology index to help predict values of the technology stock. Exploiting such relationships is
paramount to the success of GPAR. It is also important for one to be mindful of situations
where the number of outputs, modelled by GPAR, increases in size. More specifically, we
are interested in how larger GPAR models can be trained efficiently through the use of
random restarts. We also wish to study how sensitive the GPAR predictive performance is
to the selection of the kernel, a major component of GPAR. If it turns out that only a select
few kernels are appropriate for a given task, then it is critical to come up with strategies
to find good ones efficiently. Finally, for similar reasons as given for kernel selection, we
also want to investigate the importance of another major element of GPAR: output ordering.

Bayesian quadrature is an approach, rooted in probabilistic numerics, that treats integration
as an inference problem. The success of this approach relies on how well the integrand is
being modelled. Given a set of related integrands, it would be sensible to explore whether
GPAR can exploit the relationship between the integrands to provide better models which
would then be incorporated into the Bayesian quadrature framework. We investigate a
few possible approaches that use GPAR for Bayesian quadrature. Unfortunately, Bayesian
quadrature requires the computation of a certain number of integrals, which are usually ex-
pensive. One possible idea, which was originated by Wessel Bruinsma, is to flip the problem
around by using a clever trick involving derivatives. This idea will be explored in greater
detail.

Automated approaches to finding the right set of hyperparameters for machine learning
models are usually expensive since a model must be trained for each of the proposed hyper-
parameter configurations. Each of these trained models is usually assessed using a heuristic,
such as a loss function, which attempts the quantify the performance of the model. This
loss function is usually plotted while the model is being trained. Hyperparameter tuning
is a good use case for Bayesian optimisation, which is an approach that is typically used
to optimise functions which are expensive or difficult to evaluate. The particular Bayesian
optimisation approach that is explored in more detail within this report attempts to model
the loss for models, each of which corresponds to a different hyperparameter configuration.
Since these hyperparameters are being used within the same model, it may be sensible to
suggest that their respective losses could be related to one another. Therefore, GPAR can
be used to improve the process of modelling these loss functions, and hopefully, this could
translate to finding appropriate hyperparameters much faster. We investigate to what ex-
tent GPAR is able to model these loss curves.

1

2 GPAR Model

2.1 Overview

Multi-output systems are ubiquitous and span many different domains. Examples include
forecasting battery cell capacities [2], traffic data imputation [10], blood glucose trajec-
tory predictions [4], and early sepsis detection [5]. Having efficient and accurate modelling
approaches for these systems would provide immense practical benefits. Models for such
systems must exploit inter-output relationships to characterise the behaviour of every single
output better.

The idea behind GPAR is simple. First, a suitable ordering of the various outputs is chosen.
Second, for each output, we fit a Gaussian process that receives as inputs the outputs of the
functions that are before it in the order that was previously defined. This strategy hinges
on the fact that information about one function can increase the predictive capabilities for
other functions.

This section presents a small overview of GPs and then builds on top of this to give a
complete description of the GPAR model. Particular attention is brought to the training
methodology and how specific design choices could be taken into account. Finally, several
considerations about dealing with noisy observations, sharing hyperparameters, and random
initialisations are then discussed in more detail.

2.2 Gaussian Processes

A Gaussian Process (GP) is a particular stochastic process. A stochastic process {Y (x),x ∈
X} may be defined as a collection of random variables Y (x) that are each associated to an
index x. For a stochastic process to be Gaussian, all finite subsets of this collection of
random variables must follow a joint Gaussian distribution.

Just like the multivariate Gaussian distribution is a generalisation of the univariate Gaus-
sian distribution into multiple dimensions, one can regard the GP as a generalisation of the
multivariate Gaussian distribution into the function space. In other words, a GP can be
seen as a multivariate Gaussian distribution with an infinite number of dimensions. Namely,
it allows for the specification of a probability distribution over functions such that any finite
values for each of those functions follow a Gaussian distribution.

Any GP can be fully characterised by specifying a mean function m(x) and a kernel K(x,x′).
The term “kernel” is often used interchangeably with the term “covariance function” since
K(x, x′) = cov(f(x), f(x′)) where x and x′ are indices that are respectively associated to
f(x) and f(x′). The mean function and kernel pair encapsulate prior beliefs about the be-
haviour of any given function which we seek to model. The mean function can describe the
average value of the modelled function as we move away from observations while the kernel
can specify how smooth the function is and how the function values relate to one another.
To demonstrate the significance of these functions, let us suppose that we are interested in
modelling a function for which we have seen no values yet. In Figure 1, we plot the mean
and a confidence interval that is two standard deviations away from the mean for three
different combinations of mean functions and kernels.

2

After acquiring a few observations and plotting the posterior mean and variances in Figure
2, it becomes clear that the use of different priors results in different behaviours for the
mean and confidence intervals between the observations. For example, in the left-most plot
of Figure 2, an assumption was used to establish that the underlying function is periodic.
As a consequence of this, we are left with a poor fit that serves as an example to show that
proper care must be taken when choosing an appropriate prior.

Figure 1: Examples of GP prior distributions

Figure 2: Examples of GP posterior distributions

3

Note that it is common to avoid specifying a mean function as we may let the data determine
what the posterior mean is. Providing a mean function adds more hyperparameters to the
GP which, after optimising the log-likelihood, can give information about how the function
behaves as we move away from the observations. Going forward, we assume a constant
mean function of 0 unless otherwise specified.

The kernel defines a measure of similarity between two values based on the respective indices
of these values. In other words, for a set of test points for which we want predictions, the
kernel is used to construct a covariance matrix for the respective function values at those
points. For a kernel k to be valid it must follow two conditions:

1. The kernel k must be symmetric (i.e. k(x, y) = k(y, x)).

2. All gram matrices K constructed from k must be positive semidefinite.

In practice, K gets inverted, which means we must occasionally add noise to the diagonal
of this matrix to make it positive definite. One case where this is required is when two
indices from the training set are very close to each other. This can cause the rows of the
covariance matrix to no longer be considered linearly independent which in turn results in a
singular covariance matrix. For stability and performance reasons, we invert matrices using
a Cholesky decomposition which requires the matrix to be positive definite.

In more technical terms, given a GP prior GP(0, k(x,x′)), the following Equations are used
to specify the mean function and kernel of the posterior distribution GP(mN (x), kN (x,x′))
given we have seen N observations (see appendix for derivations).

mN (x) = k(x,X)k(X,X)−1f(X) (1)

kN (x,x′) = k(x,x′)− k(x,X)k(X,X)−1k(X,x′) (2)

Given matrices A and B of respective sizes N × D and M × D, we define k(A,B) to be
a matrix K such that Kij = k(Arow i,Brow j). We can interpret A and B as each holding
a certain number of D-dimensional points as rows. Typically, x would be the point we are
interested in predicting at and X would contain the indices for which we have observations.
Therefore, using this logic and assuming we have seen N observations: k(x,X), k(X,X),
k(X,x) would respectively be matrices of sizes 1 × N , N × N , and N × 1. This notation
will be used throughout this document.

The training process of the GP (i.e. finding hyperparameter values) is typically done through
an optimisation process that seeks to maximise the log-likelihood of the hyperparameters
given the observations seen so far. Also, given that a GP has N observations and we want
to compute the posterior distribution over a series of test points, there is a worst-case time
complexity of O(N3) and a worst-case space complexity of O(N2). The former complexity
is due to the matrix inversion in Equations 1 and 2 while the latter is due to the storing of

the n(n+1)
2 entries in the same matrix.

Several specific kernels are used ubiquitously throughout this work presented in this docu-
ment. Details of these kernels are shown in Table 1. We can get an idea of what kinds of
functions each of these kernels are suitable for by looking at prior samples, as shown in Fig-
ure 3. It is also worth mentioning that the SE kernel is infinitely differentiable (see chapter
2 in [8]) as this property becomes relevant in the discussion about Bayesian quadrature.

4

Name k(x, x′) Hyperparameters

Squared Exponential (SE)1 σ2 exp

(
− (x−x′)

2

2`2

)
σ2, `

Rational Quadratic σ2

(
1 +

(x−x′)
2

2α`2

)−α
σ2, `, α

Linear σ2(x− c) (x′ − c) σ2, c

Table 1: Common kernels with associated hyperparameters such as the variance σ2 and
lengthscale l

Figure 3: GP prior samples

2.3 Complete GPAR description

As previously mentioned, we want to use GPAR to model a system consisting of multiple
outputs which are represented in the form of time-series. The underlying process that is
generating the data for a particular output may possess a causal relationship with one or
many of the other outputs. For instance, we might have the following system of equations:

y1(x) = f1(x)

y2(x) = f2 (x, y1(x))

. . .

yn(x) = fn (x, y1(x), . . . , yn−1(x))

In this case, for a given index value, each function yk(x) may rely in some way on the
values of the functions that precede it (i.e. yk−i for i = 1, . . . , k + 1). Of course, we could
model each individual output with an independent GP (IGP). However, by doing so, we
would be omitting the use of important information that could help bolster the predictive
performance of our model as the IGPs would enforce an erroneous independence assumption

1Also known as Radial Basis Function (RBF) or Exponentiated Quadratic (EQ)

5

across each of the functions.

To explain how GPAR captures this information, we may use the following simple idea.
Given a collection of random variables {Yk|k = 1, . . . , N}, the joint distribution of this
collection could be factored into univariate distributions by making use of the product rule:

p(Y1, Y2, . . . , YN) = p(Y1)

N∏
i=2

p(Yi|Y1, . . . , Yi−1)

GPAR applies this same idea but towards stochastic processes:

p(Y1(x), Y2(x), . . . , YN (x)) = p(Y1(x))

N∏
i=2

p(Yi(x)|Y1(x), . . . , Yi−1(x))

Hence, every conditional term can now be modelled with a single GP. The GP that is re-
sponsible for modelling Yk(x) would use an indexing variable X ∈ Rk where one dimension
would correspond to the native index of the system (e.g. time), while the remaining dimen-
sions respectively relate to each of the k − 1 outputs from the preceding functions. Since
conditional outputs are now modelled separately by single GPs, a significant advantage of
this approach is that we can make full use of the complete GP machinery. Note that it is
not the case that p(Y1(x), Y2(x), . . . , YN (x)) is jointly Gaussian under the GPAR model.

2.4 Training Methodology

The methodology to train GPAR can be seen in Algorithm 1. Note that in a world with
unlimited computational power, we would seek to try all possible order combinations. How-
ever, this would not be practical as there are n! ways to order n outputs. Thus, a greedy
approach is used instead, which trains n(n−1)/2 GPs, resulting in a O(n2) time complexity.
We discuss this in more detail within the experiment section of this report.

Algorithm 1: GPAR training process

N ← Output Count;
Remaining Y← 1, . . . , N ;
Current X← X;
Models← ∅;
for i = 1, . . . , N do

Model, Output ID← MaxLikelihoodWithBestY(Current X, Remaining Y);
Current X← Add(Current X, Remaining Y[Output ID]);
Remaining Y← Remove(Remaining Y, Output ID);
Models← Add(Models, Model);

end for
return Models;

2.5 Kernel Selection

Kernel selection could drastically affect how well GPAR performs. Of course, it is not always
clear which kernels should be used to model inter-output relationships. Furthermore, it may

6

Output Dep. Kernel
1 Linear kEQ(x, x′) + kLinear(y(x), y(x′))
2 Linear + x Dep. kEQ(x, x′) + kRQ(x, x′)kLinear(y(x), y(x′))
3 Non-linear kEQ(x, x′) + kRQ(y(x), y(x′))
4 Non-linear + x Dep. kEQ(x, x′) + kRQ((x, y(x)), (x′, y(x′)))

Table 2: Sensible choices for the GPAR kernel

be impractical to manually construct the kernel when the number of outputs is sufficiently
large: different subsets of outputs might have different relationships amongst each other.

One possible solution is to use compositional kernel search [3]. This technique uses the fact
that kernels are closed under addition and multiplication. This fact allows the use of a greedy
approach which successively adds and multiplies kernels that were initially predetermined.
With unlimited computational power, it would be feasible to use compositional kernel search
while finding the appropriate ordering. However, with limited computational resources, it
would be too expensive to compute a new GPAR ordering for every proposed kernel in the
search procedure. Table 2 can be used as a reasonable starting point to avoid having to
perform such an expensive search procedure [9]. One approach could be to start with a
kernel from Table 2 to establish the ordering, then use compositional kernel search to find a
better kernel. Then, with the new kernel, recompute a potentially better order and continue
repeating this whole process iteratively.

2.6 Considerations

Recall that the goal of a model such as GPAR is to separate noise from the true data-
generating functions. In cases where the signal-to-noise ratio is low, this task is complicated
by the fact that noisy values of the preceding functions are fed forward into the models for
subsequent functions. Having noise carried forward in this way might harm the predictive
performance of the model. To mitigate this problem, one possible solution could be only to
feed the predictive means forward and exclude the actual noisy observations.

Another important consideration is the number of hyperparameters that are being used
throughout the entire GPAR model. Since each output is modelled with a single GP, the
number of hyperparameters scales linearly with the number of outputs. A large number of
outputs combined with an overabundance of hyperparameters may severely slow down the
training time. It may be interesting to explore possible ways of sharing hyperparameters in
order to prevent this.

Finally, a common practice to fit GP hyperparameters is by maximising the likelihood. How-
ever, this surface is very multi-modal, which makes the result of the optimisation process
dependent on initialisation. Although it is possible to come up with very reasonable initial-
isations by inspecting the data, this is not always possible (e.g. in situations where there
is too much data to inspect). For this reason, it is recommended to use multiple different
initializations by sampling hyperpriors and then taking the post-optimisation configuration
that yields the highest likelihood.

7

3 Bayesian Quadrature

3.1 Overview

Numerical quadrature, also known as numerical integration, is the process of finding the
numerical value of an integral k that is usually difficult, if not impossible, to solve analytically
[7]:

k =

∫
X
f(x)dx

Typically, for numerical quadrature, the approximation of the integral is the result of a
rule which is defined as a function of integrand evaluations f(x1), f(x2), . . . , f(xN). This
process can be framed as an inference problem: we are interested in inferring the value of
an unknown quantity k as a result of seeing a finite number of observations f(xn) where
n = 1, . . . , N .

To turn this into an inference problem, we first begin by specifying a prior distribution over
the integrand. Using a GP for this prior is a good idea because of the property that GPs
are closed under affine transformation and integration is a linear operator.

After combining our prior distribution over the integrand with some observations, we get a
GP posterior that can then be pushed through the integral operator and which will result
in a posterior Gaussian distribution over the integral value:

µN =

{∫
X
k(·,X)dx

}
k(X,X)−1f(X) (3)

σ2
N =

{∫
X

∫
X
k(·, ·)dxdx′

}
−
{∫
X
k(·,X)dx

}
k(X,X)−1

{∫
X
k(X, ·)dx

}
(4)

Proof. To demonstrate this result we can use the following simple proof [12]. First, we define
our GP as a function g : X ×Ω→ R where X and Ω are respectively defined to be the sets of
indices and samples. Therefore, g(x, ω) is the evaluation of a sample ω ∈ Ω at a particular
index x ∈ X . Since GPs are closed under affine transformations and the integral is a linear
operator, we can compute both the mean and the variance of the integral and this will give
us the mean and the variance of the GP over the integral. Also, we remind the reader that
provided we have a bounded integral

∫
(X×Y)

|f(x, y)|d(x, y) < ∞, Fubini’s theorem allows

8

us to swap the order of integration such that
∫
X

(∫
Y
f(x, y)dy

)
dx =

∫
Y

(∫
X
f(x, y)dx

)
dy.

EN
[∫
X
g(x, ω)dx

]
=

∫
Ω

∫
X
g(x, ω)p(ω)dxdω

=

∫
X

∫
Ω

g(x, ω)p(ω)dωdx

=

∫
X
mN (x)dx

VN
[∫
X
g(x, ω)dx

]
= EN

[(∫
X
g(x, ω)dx−

∫
X
mN (x)dx

)2
]

= EN
[∫
X

∫
X

(g(x, ω)−mN (x)) (g(x′, ω)−mN (x′)) dxdx′
]

=

∫
Ω

∫
X

∫
X

(g(x, ω)−mN (x)) (g(x′, ω)−mN (x′)) p(ω)dxdx′dω

=

∫
X

∫
X

∫
Ω

(g(x, ω)−mN (x)) (g(x′, ω)−mN (x′)) p(ω)dωdxdx′

=

∫
X

∫
X
kN (x, x′)dxdx′

Finally, by considering g(x, ω) to be a posterior distribution over the integrand, we can
combine this result with Equations 1 and 2 to respectively arrive at Equations 3 and 4.

3.2 Application of GPAR

Let us consider the case of modelling N integrals y1, y2, . . . , kN where the respective inte-
grands f1(x), f2(x), . . . , fN (x) may have causal relationships among one another. GPAR
could be used to model each of the integrands more accurately as opposed to simply using
IGPs. For the first output in the GPAR stack, which we can assume to be f1, we can use
the standard BQ approach. However, modelling the second output f2 requires a bit more
thought because the kernel now expects each of its arguments to be of two dimensions. For
each move up the GPAR output stack, the dimensionality of the kernel arguments increase
by one, and we need to integrate that kernel when dealing the intermediate integrals (i.e.
not the original integration problem, but the ones in the posterior distribution). How do we
deal with the dimensionality increase?

A possible solution would be as follows. Let us assume we have an oracle g1 that tells us
the exact value f1 would have for a given input x in our example for no extra cost. As we
are only interested in integrating over our input domain and we know that the kernel makes
use of the added information of the previous outputs, we could use our oracle to tell us the
corresponding output for every specific argument as we’re integrating:(∫

X
k((x, f2(x)),Xobs)dx

)
i

=

∫
X
k((u, g2(u)), (xi, f2(xi)))du

Unfortunately, we do not have access to such an oracle, and we want to avoid directly
evaluating the integrand, assuming it is expensive to do so. Hence, we have to resort to
using GPAR means to provide these corresponding values.

9

3.2.1 Naive Numerical Methods Approach

To compute the intermediate integrals as described above, we can resort to using standard
numerical method approaches. One drawback to this way of proceeding is that the interme-
diate integrand requires at least one GP prediction (and possibly many more), which could
significantly increase the computation time if a large number of integrand evaluations are
done.

3.2.2 Naive Monte Carlo Approach

The approach mentioned above may have problems when the domain of integration increases
and the numerical methods responsible for approximating the integrals of the key terms in
the process require more integrand evaluations. Rather than using deterministic quadrature
methods, we could instead use Monte Carlo sampling:∫ b

a

∫ b

a

. . .

∫ b

a︸ ︷︷ ︸
M

f(x1, x2, . . . , xM)dx1dx2 . . . dxM ' (b− a)M
N∑
i=1

f(xi)

A fixed number of N of samples can be taken with the hope that it is reasonable enough to
provide a sensible final result at the cost of perhaps less precision. The challenge here would
be to balance the trade-off between computational cost and results properly. Unfortunately,
this trade-off would depend on the nature of the integrand.

3.3 Derivative Approach

An approach to doing Bayesian quadrature without having to deal with integration in the
intermediate steps would be very attractive. Such an approach may be possible by differen-
tiating the kernel that we use for the prior that is placed over the integrand.

The first form of the Fundamental Theorem of Calculus (FTC) (see chapter 5 in [6]) states
that given we have a differentiable function F on the interval (a, b) and the function f(x) =
dF(x)

dx is Riemann integrable on [a, b] then we have the following identity:∫ b

a

f = F (a)− F (b)

Adapting the integral term from Equation 3 in order to integrate over the interval [a, b] on
the real number line, we have: ∫ b

a

k(x,X)dx

Assuming that the kernel k(x, x′) is differentiable, let k∆(x, x′) = dk(x,x′)
dx . Combining this

with the integral above yields:∫ b

a

k∆(x,X)dx = k(b,X)− k(a,X)

Typically, k would be an EQ kernel because it has the property that it is infinitely differ-
entiable. Also, since the EQ kernel is stationary and k(−∞, c) = 0 for c ∈ R we may claim

10

the following: ∫ c

−∞
k∆(x,X)dx = k(c,X)

The same idea could be brought forward to the double integral term in Equation 4 with

k∆∆′(x, x
′) = d2k(x,x′)

dxdx′ . Using the same logic as shown above we can arrive at the following
identity: ∫ c

−∞

∫ d

−∞
k∆∆′(x, x

′)dxdx′ = k(c, d)

Using this identity, we can come up with an equivalent expression for Equation 4 as shown
below. Note that we shortened the notation for the sake of clarity.∫ b

a

∫ b

a

k∆∆′(x, x
′)dxdx′ =

{∫ b

−∞

∫ b

−∞
k∆∆′

}
− 2

{∫ a

−∞

∫ b

−∞
k∆∆′

}
+

{∫ a

−∞

∫ a

−∞
k∆∆′

}
= k(b, b)− 2k(a, b) + k(a, a)

To summarise what was demonstrated so far: we are effectively modelling the observations
of the integrand using a kernel k∆∆′(x, x

′) that was obtained by differentiating each argu-
ment of a known kernel such as the SE. The advantage of proceeding in this way is that
the integral terms, which are usually computational bottlenecks, can be evaluated by using
the closed-form of the known kernel. To get the differentiated kernel, we may rely on auto-
matic differentiation or other numerical differentiation techniques that are less costly than
numerical integration.

One final difficulty must be addressed: the results that are shown above are only valid is the
quadrature is performed on an integrand that takes a one-dimensional index as an input.
One of the difficulties of Bayesian quadrature is that it has trouble dealing with integrands
which have highly multi-dimensional domains. Fortunately, the results shown above could
easily be generalised into higher dimensions.

Given we have a function g : RD → R where D ∈ N+, we want to demonstrate a way to

evaluate
∫ bD
aD

∫ bD−1

aD−1
. . .
∫ b1
a1
g(x1, x2, . . . , xD)dx1dx2 . . . dxD as a set of finite evaluations of a

function f : RD → R where f(x1, x2, . . . , xd) = ∂D

∂x1∂x2...∂xD
g(x1, x2, . . . , xd).

For the simplest case D = 1, as already mentioned, we may use the first form of the FTC:∫ b1

a1

g(x1)dx1 = f(b1)− f(a1)

For D = 2:∫ b2

a2

∫ b1

a1

g(x1, x2)dx1dx2 =

∫ b2

a2

(g(b1, x2)− g(a1, x2)) dx2

= (g(b1, b2)− g(a1, b2))− (g(b1, a2)− g(a1, a2))

Note that in the results presented earlier we used the fact that kernels are symmetric as
well as a1 = a2 and b1 = b2. These assumptions would allow g(a1, b2) = g(b1, a2).

11

For D = 3:∫ b3

a3

∫ b2

a2

∫ b1

a1

g(x1, x2, x3)dx1dx2dx3 =

∫ b3

a3

(g(b1, b2, x3)− g(a1, b2, x3)) dx3

−
∫ b3

a3

(g(b1, a2, x3)− g(a1, a2, x3)) dx3

= g(b1, b2, b3)− g(a1, b2, b3)

− g(b1, a2, b3) + g(a1, a2, b3)

− g(b1, b2, a3) + g(a1, b2, a3)

+ g(b1, a2, a3)− g(a1, a2, a3)

This recursive relationship continues for as many dimensions as we desire. One drawback is
that for any value of D, the time complexity in the number of terms to evaluate is O(2D).
When working with kernels in the current context, D would be equal to twice the dimen-
sionality of the input space because we are treating each dimension for both arguments as a
separate argument for the kernel (e.g. for x,y ∈ R2, k(x,y) = k(x1, x2, y1, y2), and D = 4).
By exploiting the kernel symmetry, we can lower the number of evaluations, but we still
cannot escape the exponential time complexity. This increase in dimensionality limits the
number of multiple related integrals that can be jointly modelled. Further improvements
can be obtained if the kernel is separable.

Finally, we must also verify that the result of differentiating our kernel D times is also a
valid kernel since we will be using it to model the integrand. For any given integrand,

we will require k∆ = ∂D/2

∂x1∂x2...∂xD/2
k and k∆∆′ = ∂D/2

∂xD/2+1∂xD/2+2...∂xD
k∆ = ∂D

∂x1∂x2...∂xD
k,

yet only the latter must be considered a valid kernel because it is being used to model the
observations whereas the former is merely used as an intermediate mathematical step within
the Bayesian quadrature framework.

12

4 Freeze-Thaw Bayesian Optimisation

4.1 Overview

Many machine learning models require the setting of what is known as hyperparameters.
These are a special type of parameters that are set before the training process begins. These
hyperparameters help specify the characteristics of the machine learning model. They may
characterise the structure of the model (e.g. the architecture of a neural network) which
affects model capacity. They may also establish behaviour within the training process (e.g.
stopping condition for an optimiser). Several notable examples of this can be seen below:

1. Learning rate in an optimiser such as gradient descent.

2. Kernel selection for models such as SVMs and GPs.

3. Number of layers and units per layer within in a neural network.

4. Type of activation functions.

These hyperparameters are usually set by combining practitioner experience with trial and
error. Unfortunately, this approach can be both time-consuming and very inefficient if the
practitioner does not have a reasonable amount of experience with the particular modelling
approach at hand. Another approach is to search the hyperparameter space using random
or grid searches. Even for a small number of hyperparameters, this could be very time
consuming because, for each new hyperparameter configuration, one must train a model
with that particular configuration to see whether the initial settings were proper. These
search methods do not work really well because they are not efficient and still require a
large number of tries to be successful.

To evaluate a particular hyperparameter configuration, the practitioner would have to run
the model on a cross-validation data set and then look at a loss metric such as mean squared
error or one minus the percent accuracy. During the training process, the loss metric would
be plotted every time the model has iterated through all of the training data (i.e. at every
epoch). The best hyperparameter configuration would be the one with the lowest cross-
validation loss at its asymptote. The plot of the cross-validation loss over the number of
epochs usually looks like an exponential decay function which means that even after only a
few epochs, it can sometimes be easy for a human being to infer what the asymptotic loss
will eventually look like, by inspecting this plot.

Freeze-thaw Bayesian optimisation is a principled approach that can be used to find a set
of hyperparameters in a relatively efficient manner [11]. It leans on the fact that a partial
loss curve may sometimes be enough to infer how good a hyperparameter configuration is.
Meanwhile, Bayesian optimisation is a technique that is used to minimise a function that
may be very difficult or expensive to evaluate, where a model, such as a GP, is used as a
surrogate for this function. Observations are made by evaluating the function at specific
points in the domain. A different function, known as the acquisition function, uses the pos-
terior distribution of the surrogate model and returns a measure of how beneficial it would
be to evaluate the original function at a specific point in the domain. At every iteration of
the Bayesian optimisation procedure, the acquisition function is maximised to get the next
point that the function of interest should be evaluated at. The goal is to find the minimum

13

Figure 4: Freeze-thaw graphical model

of a function with the least amount of function evaluations. Proper care must be taken for
selecting the appropriate acquisition function for the task at hand.

A naive way to use Bayesian optimisation for finding the best set of hyperparameters is to
use a single GP to model the cross-validation loss for a specific time value. For example,
assume we are interested in finding an optimal set of 3 hyperparameters α, β, and γ then
the domain of this GP would be of four dimensions (i.e. x1 = [α1, β1, γ1, t1]

T
where t1 rep-

resents the number of epochs). Assuming we have N unique hyperparameter configurations
and a maximum of T epochs in which we evaluate these configurations, then this leaves us
NT observations. This results in the particular worst-case time and space complexities of
O(N3T 3) and O(N2T 2) which are deemed expensive.

Through a reasonable conditional independence assumption, freeze-thaw lowers the complex-
ity while still providing excellent results. We can describe this assumption by explaining
the generative procedure behind freeze-thaw. First, we begin with a global GP, which uses
a Matérn-5/2 kernel, over the domain of all possible hyperparameter configurations. Given
we have a basket of hyperparameter configurations, we can sample this global GP to get
what the model believes is an appropriate asymptotic loss for each configuration. The loss
function for each of the configurations is in turn modelled by a separate GP. We may sample
these GPs to get a loss function for each of the configurations in our basket. A graphical
representation of this model can be found in Figure 4. The nodes containing f(xk), repre-
sent the asymptotic loss for loss curve k, and the nodes containing ykv represents the loss
of curve k at epoch v.

In order to perform freeze-thaw optimisation, we first train an initial set of models with
different hyperparameter configurations. The freeze thaw model hyperparameters are then
set by maximising the log marginal likelihood, denoted as P ({yn}Nn=1|{xn}Nn=1), over all
of the observations of the loss curves that were seen so far. We define yn to be a vector
containing the points for the nth loss curve and xn is its corresponding hyperparameter

14

configuration. A closed form of this likelihood could be found by marginalising out the
latent variable f :

P
(
{yn}Nn=1 | {xn}

N
n=1

)
=

∫ [N∏
n=1

N (yn; fn1n,Ktn)

]
N (f ; m,Kx) df (5)

We use 1n to denote a vector of ones with the same length as the number of observations
for the nth loss curve.

Second, Bayesian optimisation is used to construct a basket containing both old and new
models, each with a unique hyperparameter configuration. Third, we again use Bayesian
optimisation to select one of the models from the constructed basket to train. The selected
model can be completely new, or it can be a model that had already been trained (i.e. has
observations for its loss). This is the reason behind why this approach is called freeze-thaw:
the training of one model can be stopped (i.e. “frozen”) and we may continue the training
of an existing model (i.e. “thawed” model) or start training a completely new model.

4.2 Model Selection Methodology

Two types of selections are required in freeze-thaw. The first type is the selection of Bold old
models (i.e. models for which loss observations were already made) and Bnew new models for
hyperparameter configurations that were not considered yet. The second type of selection
deals with choosing the model to train within the basket of Bold +Bnew models.

4.3 Custom Exponential Kernel

We are interested in using GPs to model the cross-validation loss for a specific model.
Since this loss will generally follow an exponential decay, the authors behind freeze-thaw
have suggested to use a kernel which is an infinite mixture of exponentially decaying basis
functions:

k(x, x′) =

∫ ∞
0

e−λxe−λx
′
p(λ)dλ

If we put a Gamma(α, β) prior on λ we may arrive at the following closed form expression
(see appendix for the derivation):

k(x, x′) =
βα

(x+ x′ + β)
α

This shows the desirable property where limx→∞ k(x, x) = 0, which allows us to model
the asymptotic loss by using the constant mean function. To give an idea of the type of
functions that are suitable candidates for being modelled with this type of kernel, we present
GP samples associated with this kernel in Figure 5.

4.4 Acquisition Functions

Freeze-thaw makes use of two types of acquisition functions: expected improvement (EI)
and entropy search (ES). Expected improvement is used to construct the basket of models
and entropy search is used to select which model is trained from within that basket. The
following is an explanation for how each of these acquisition functions would be used to

15

Figure 5: Samples from a GP that uses the custom exponential kernel

find the minimum of a function f . We also define fmin = minx∈Xobs
f(x) where Xobs is

the set of configurations that were seen so far. We will also use a GP as our model for f :
GP (m(x), k(x, x′)).

For EI we define the following utility function:

u(x) = max {0, fmin − f(x)}

For a particular x, f(x) is a random variable. The EI acquisition function is defined as the
expected value of this utility function:

αEI(x) = E[u(x)]

= (fmin(x)−m(x)) Φ(fmin|m(x), k(x, x)) + k(x, x)φ(fmin,m(x), k(x, x))

We respectively denote both φ(x|µ, σ2) and Φ(x|µ, σ2) as the PDF and CDF for a univariate
Gaussian distribution with mean µ and variance σ2. Therefore, we end up with a closed-
form solution that is easy to evaluate. The derivation of this result can be found in the
appendix.

For ES we are interested in finding the next observation that lowers the entropy of the
probability of the minimum value. The entropy of a probability distribution P over the
continuous random variable X is defined as:

H[P] = −
∫ ∞
∞

P (x) logP (x)dx

If X is instead defined as a discrete random variable that can take on a finite set of values
ω1, ω2, . . . , ωn, we would have the following definition:

H[P] = −
n∑
i=1

P (ωi) logP (ωi)

16

Entropy can be thought of as a measure of how uncertain the outcome of a stochastic event
is. For example, an event that is entirely deterministic would have zero entropy while an
event tied to a uniform distribution would have high entropy. Another way of interpreting
entropy is the average amount of information that is required to send the result of an output
that follows a given probability distribution. If an event is uniformly random, then each
outcome would be encoded using a message of the same length. However, if the distribution
is non-uniform, then an encoding scheme could encode more frequent outcomes with small
messages at the expense of less frequent outcomes which would have longer messages. By
proceeding in this way, the average message length would be smaller (i.e. meaning smaller
entropy).

Given that x∗ = argmaxx∈X f(x), the utility function for ES can be defined as:

u(x) = H [P (x∗|D)]−H [P (x∗|D, x, f(x))]

A point x that results in a high value of u(x) would imply that knowing the value of the
function evaluated at that point, f(x), would lower the entropy of the probability distribu-
tion over the point x∗. Due to the usually complex nature of this probability distribution,
it is common to use Monte Carlo (MC) sampling to get an approximate representation.

When picking a model from a basket, EI should be avoided since it favours selecting a new
configuration because an untrained model typically has a higher expectation to improve
than the ones that have already been trained. Therefore, ES is used instead: we want to
lower the entropy of the probability over the configuration with the lowest asymptotic loss.

For each of the configurations in a basket of configurations, we would use MC to compute
the probability distribution Pmin(x∗) (i.e. approximation for Pmin(x∗|D)) that a specific
configuration x∗ has the minimum asymptotic loss. The closed form of Equation 6 is used
as a stepping stone for this approximation. Refer to Algorithm 2 for more details.

P
(
f∗|y, {xn}Nn=1 ,x

∗
)

=

∫
P (f∗|f ,x∗)P

(
f |y, {xn}Nn=1

)
df (6)

To compute the acquisition function, we will also need the probability distribution over the

minimum given a specific observation y∗. We will denote this distribution as P y
∗

min(x∗) (i.e.
approximation for Pmin(x∗|D, f(x) = y∗)). Again using marginalisation, Equations 7 and 8
will be used to sample observations that respectively depend on if the configuration at hand
has already seen training or if it is completely new. Refer to Algorithm 3 for more details.

P
(
y∗n| {xn}

N
n=1 ,y

)
=

∫
P (y∗n|yn, fn)P

(
fn|y, {xn}Nn=1

)
dfn (7)

P
(
y∗| {xn}Nn=1 ,y,x

∗
)

=

∫
P (y∗|f∗)P

(
f∗|y, {xn}Nn=1 ,x

∗
)
df∗ (8)

Finally, putting the pieces together, we can compute an approximation of the ES acquisition
function as seen in Algorithm 4.

17

Algorithm 2: Computing Pmin

Given a Basket (x1, x2, . . . , xN);
P ← (0, 0, . . . , 0);
for i = 1, 2, . . . , nsamples do

Samples← (0, 0, . . . , 0);
for k = 1, 2, . . . , N do

x∗k ← Basket(k);
f∗k ← Sample from (6) using x∗k;
Samples(k)← f∗k ;

end for
imin ← argmini Samples(i);

P (imin)← 1
nsamples

;

end for
return P ;

Algorithm 3: Computing P ymin

Given a Basket (x1, x2, . . . , xN) and a specific configuration xk;
if xk is old then

y∗k ← Sample from (7) using xk;
else

y∗k ← Sample from (8) using xk;
end if
Backup ← current freeze-thaw parameters;
Update freeze-thaw parameters with (5) by incorporating y∗k as an observation;

P
y∗k
min ← Result of running Algorithm (2) with Basket and new parameters;

current freeze-thaw parameters ← Backup;

return P
y∗k
min;

Algorithm 4: Performing ES to find the next model to train

Given a Basket (x1, x2, . . . , xN);
Pmin ← Result from Algorithm 2;
α← (0, 0, . . . , 0);
for k = 1, 2, . . . , N do

x∗k ← Basket(k);
for i = 1, 2, . . . , nsamples do

P
y∗ki

min ← Result from Algorithm 3 with x∗k;

α(i)← H[Pmin]−H[P
y∗ki
min]

nsamples

end for

end for
kmax ← argmaxk α(k);
return kmax;

18

4.5 Application of GPAR

The seemingly obvious way to use GPAR is to improve the modelling of the loss functions.
It might be sensible to claim that losses from a given model with different hyperparame-
ter configurations could possess causal relationships between one another. Therefore, for a
given set of losses, GPAR could be used to find more accurate asymptotic losses. However,
because each loss function would be conditioned on the loss functions that come before it on
the GPAR stack, this approach would violate the conditional independence assumption that
is made between all the GPs. Therefore, it is not possible to directly incorporate GPAR
into freeze-thaw.

Despite this setback, we can inspire ourselves from the mechanics of freeze-thaw to create
a new optimisation procedure which still uses GPAR to model the loss functions. First, EI
could still be used to create the basket of hyperparameter configurations, and ES would be
used to determine which model to train. Once the model is trained for a predetermined
amount of time (e.g. one epoch), GPAR can run over all of the loss functions to update the
constant mean functions that are used to model each loss. The values that the aforemen-
tioned mean functions take on could be used as observations for a global GP that is then
trained separately. The procedure repeats itself in this way until a stopping condition is
met (e.g. fixed number of training epochs).

19

5 Experiments

5.1 Overview

All of the relevant experiments that were done in the context of this project are presented
in this section. For the sake of cohesion, after an experiment is presented, a short discussion
of the results and implications immediately follows.

All of the software that was created to run the experiments were written from scratch with
the help of the following libraries:

• TensorFlow: Graph-based mathematical library

• GPy: GP library

• GPflow: GP library with TensorFlow backbone

• Matplotlib: Plotting library

• NumPy: Numerical computing library (matrix computations)

• Pandas: Data manipulation and analysis library

• SciPy: Scientific computing library (numerical methods)

The experiments were all run locally on a laptop with the following specifications:

• Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

• NVIDIA GeForce GTX 1050 Ti

• 16.0 GB Memory

Also, for many of the experiments, the error metric of choice is the standardised mean
squared error (SMSE), which is simply the mean squared error normalised by the variance
of the truth:

SMSE =
1

N ×Var({y(i)
truth}Ni=1)

N∑
i=1

(y
(i)
pred − y

(i)
truth)2 (9)

One consideration that is worth mentioning is the risk of introducing bias in favour of GPAR
when comparing against IGPs. In the implementation of GPAR, each possible ordering of
the functions undergoes a certain number of random restarts before optimising the hyper-
parameters. For example, assuming that each GP performs 10 random restarts and that we
are interested in modelling 3 different functions, then each function could see more than 10
initialisations when training as part of GPAR. Consider the GPAR example shown in Table
3: y1, y2 and y3 respectively see 10, 20, and 30 initialisations in the case where every GP
uses 10 random initialisations. However, in the IGP case, each function is strictly restricted
to only seeing 10 initialisations per function. Furthermore, we want to limit the amount
of stochasticity that the initialisation can bring. Under a very stochastic regime, a certain
set of results and conclusions could be acquired for one run, and a completely different set
could be found for a different run. Hence, to limit this behaviour, we use a relatively high
number of initialisations (e.g. 50+). Past a certain threshold, the number of initialisations
was found to provide a negligible impact on performance.

20

Round Candidates Highest Likelihood
1 P (y1), P (y2), P (y3) P (y1)
2 P (y2|y1), P (y3|y1) P (y2|y1)
3 P (y3|y1, y2) P (y3|y1, y2)

Table 3: Example of GPAR iterations for 3 hypothetical outputs

5.2 GPAR Model

5.2.1 Synthetic Functions

Since GPAR will be used extensively, it is important to run some sanity checks to establish
correctness. We first begin by specifying 3 functions as shown below. For future reference,
these functions will be referred to as the base scheme.

y1(x) =
− sin(10π(x+ 1))

2x+ 1
− x4 (10)

y2(x) = cos(y1(x))2 + sin(3x) (11)

y3(x) = y1(x)2y2(x) + 3x (12)

For 35 uniformly-spaced index values, the observations for each of these outputs are gen-
erated by evaluating the corresponding equation and then adding some Gaussian noise
N (0, 0.0025). The selected kernel is the one from Table 2 corresponding to non-linear out-
put dependencies with a dependency on the index variable (i.e. Kernel 4). Note that we
will keep using this kernel unless otherwise specified. The visualisation of the predictions,
as well as the SMSE for GPAR and IGP, can be seen in Figure 6.

The plots in Figure 6 are ordered in the way that they are modelled by GPAR: y1, y2, y3.
The fact that the first function that is modelled, y1, does not benefit by being modelled by
GPAR is expected. The models for the remaining functions do, however, benefit from the
additional information used by GPAR.

Noise structure recovery could be used as an additional sanity check to validate GPAR. The
noise parameters ε1 ∼ N (0, 0.01), ε2 ∼ N (0, 0.0016), and the functions shown below will be
used.

y1(x) =
− sin(10π(x+ 1))

2x+ 1
− x4 + ε1 (13)

y2(x) = sin(2πx)2ε1 + cos(2πx)2ε2 (14)

y3(x) = sin(2πε1) + ε2 (15)

y4(x) = sin(2πx)ε1 + ε2 (16)

We wish to plot samples of (13) vs those of (14) at a specific x value. To create the truth,
we directly sample both functions 100000 times and use a scatter plot with a 2D histogram,
which helps better visualise the density of the points. To create an equivalent plot using
IGPs, we sample from each corresponding GP, rather than directly from the functions. Fi-
nally, for GPAR, we sample the first GP, which could be either for (13) or for (14) depending
on the order found by the training procedure. Then, the noisy sample from the first GP
is fed into the second GP to produce the corresponding sample for the remaining output.

21

(a) Modelling of Synthetic Functions

(b) SMSE for Synthetic Functions Model

Figure 6: GPAR vs IGP performance comparison

This entire procedure is also done for (13) vs (15) and (13) vs (16). The results can be seen
in Figure 7. The samples from GPAR resemble the truth more than the ones from IGPs.

For the IGP, each plot is simply the product of two independent Gaussian distributions. On
the other hand, for GPAR, by modelling the conditional distribution, we can capture the
relationship between the two functions which are linked through shared noise. Visually, this
means that the two-dimensional Gaussian distribution can stretch diagonally rather than
only horizontally or vertically.

5.2.2 Error Sensitivity to Random Initialisation

Improperly selecting initial hyperparameters could negatively impact GPAR performance.
For simple cases, it is possible to specify a reasonable starting point manually. For more
sophisticated cases, it might be a better idea to perform random initialisations. We seek to
demonstrate that systems which are more involved (i.e. more outputs with a broader vari-
ety of inter-output relationships) require more random initialisations as opposed to simpler
systems.

In order to do this, we will use GPAR to model 3 different schemes of low, medium, and
high complexities, which are described in more detail below. For each of these schemes, 20
GPAR runs are performed where each run corresponds to training GPAR once with a set
number of initialisations and then summing up the total SMSE across all functions. The
sums are then averaged over the total number of runs (i.e. 20) the result of which is a point

22

(a) Noise Structure (13) vs (14)

(b) Noise Structure (13) vs (15) (c) Noise Structure (13) vs (16)

Figure 7: Truth (row 1) vs GPAR (row 2) vs IGP (row 3) samples for modelling functions
that share noise

23

on our plot for the specified number of restarts.

To come up with a set of random initialisations, each of the hyperparameters is sampled from
a standard Gaussian distribution, and afterwards, if required, a constraint is applied (e.g.
positive value constraint). For each of these schemes, we use an EQ kernel, 50 uniformly-
spaced observations, and compute the total SMSE over 1000 test points. The EQ kernel
is used because it results in a faster runtime, which allows us to use a higher number of
restarts and sample sizes.

Low complexity scheme:

y1(x) = 5 sin(x) + 5 (17)

y2(x) = 7y1(x)0.5x + 12 (18)

Medium complexity scheme:

y1(x) = 5x2 + 100 sin(x) + 5 (19)

y2(x) = 0.005y1(x) +
x

y1(x)
+ 200 (20)

y3(x) = x2 + y1(x) + 100 cos(y2(x)) (21)

High complexity scheme:

y1(x) = 5(cos(x)2) + x sin(cos(x))2 + 5 (22)

y2(x) = 5 sin(0.0001y1(x)3) + xy1(x) cos(sin(x))2 + 100 (23)

y3(x) = 0.0001(y2(cos(x)y1(x))2) + x sin(sin(x))3 − 200 (24)

y4(x) =
y1(x)2)

y2(x)
+
y2(x)

y3(x)
+
y3(x)2

y1(x)
(25)

y5(x) =
√

(y1(x)y4(x)) + y2(x) + y3(x) + 10 cos(x) (26)

In Figure 8, we notice the trend that more random initialisations are needed for more com-
plicated schemes. To further take advantage of random initialisation when the complexity
scales, one can achieve even better performance by using a prior distribution over the hy-
perparameters (i.e. a hyperprior). The Gamma distribution is a popular choice because
its support is the set of all positive real numbers R+ which corresponds to valid values for
many hyperparameters.

5.2.3 Kernel Selection for Characterising Relationships

Choosing the right kernel is of critical importance when using GPs. What if we mischar-
acterise the relationships between various outputs (i.e. swapping a linear dependence as-
sumption vs a non-linear one)? We wish to investigate if there is a basis for exploring kernel
search methods to improve performance.

In order to do this, a new simple variant of compositional kernel search is used to find a good
kernel efficiently. First, we define a base set containing the following four kernels families:
EQ, RatQuad, Linear, and Matern 5/2. In this starting set, for each kernel family, there is

24

Figure 8: Error plotted over the number of restarts for different levels of complexity

Figure 9: Top 10 and bottom 10 log-likelihood for different kernel configurations

the option of only being applied to the index (i.e. k(x, x’)) or of being applied to both the
index and the preceding outputs (i.e. k([x, y], [x, y’])). Thus, the starting set will contain
eight kernels: four only applied to the index, and four applied to all dimensions of the input.

In the first round of the search, we start with the eight kernels. The next search round
combines the kernels of the previous round through addition and multiplication with each
of the eight base kernels. This continues until the search depth is reached.

For a search depth of 2, we end up trying 8 + 8× (2× 8) = 136 kernels. The results for the
top ten and bottom ten kernels according to likelihood are shown in Figure 9. Kernels that
are applied to both the index and preceding outputs are denoted with an underscore. Also,
in this figure, Kernel 4 from Table 2 is shown in red as a reference.

Looking at the results from Figure 9, one may notice that the top 10 kernels are very similar
to each other when measured by their log-likelihood. This suggests that it may not be nec-

25

(a) Y1 - Y2 - Y3

(b) Y1 - Y3 - Y2

(c) Y2 - Y1 - Y3

(d) Y2 - Y3 - Y1

(e) Y3 - Y1 - Y2

(f) Y3 - Y2 - Y1

Figure 10: Base scheme ordering comparison (Noise: N (0, 0.0025))

essary to use significant resources to find an absolute best kernel. There is also a tendency
to favour EQ, RatQuad and Matern 5/2 kernels over the Linear kernel. However, this is
expected as the search ran on observations which come from an underlying source that is
not very linear in nature.

5.2.4 Importance of Optimal Ordering

Another property that is worth investigating is how much the predictive performance of
GPAR relies on having the correct output ordering. Is it worth spending significant resources
on getting the absolute best order? Furthermore, if there is a very strong dependency, then
it would be interesting to see under which conditions it becomes critical to be more mindful
of ordering.

Using the base scheme, we present results for all of the 6 possible orders in Figure 10. These
results indicate that out of the 6 orders, more than half are of similar performance (i.e.
orders a, b, d, and e) are quite similar in performance. It may not be necessary to spend
the computational resources to train and compute likelihoods for every input to establish
order.

26

5.3 Bayesian Quadrature

5.3.1 Evaluation of Proposed GPAR Solution

Through a simple example, we start by examining the feasibility of the proposed naive GPAR
solution. We choose 3 Gaussian distributions to use as integrands: N (1, 2), N (−3, 1), and
N (0, 4). An EQ kernel over all input dimensions is used in every GP. We also perform
1000 random restarts for training each GP. Furthermore, a small amount of noise is added
to the covariance matrix to ensure that it is positive definite. Lastly, we uniformly select
observations within the interval of integration.

y1 =

∫ 0.5

−8

N (x|1, 2)dx

y2 =

∫ 0.5

−8

N (x| − 3, 1)dx

y3 =

∫ 0.5

−8

N (x|0, 4)dx

In Figure 11, we show the results of this experiment. Each column corresponds to a different
integrand. The two plots on the left demonstrate how well IGP and GPAR can model the
integrals. The first row of these plots shows the Gaussian distribution over the integral
from the perspective of the naive GPAR approach. Vertical lines display the means of both
approaches as well as the ground truth, which is acquired through standard numerical meth-
ods. The second row shows how well the integrands are being modelled. The confidence
intervals that are shown come from GPAR. Finally, the third row compares the absolute
value of the errors for each approach. Lastly, the two plots on the right side compare the
SMSE of GPAR and IGPs over the integrand.

Looking at plots (a) and (c), it appears that GPAR is doing slightly better at modelling y1.
This can be explained by the fact that information from y3 (i.e. the first function that is
being modelled) has some usefulness for modelling y1 possibly because y1 and y3 are very
similar. However, it performs noticeably less well on y2. It could be speculated that, when
modelling y3, the preceding model outputs within GPAR are ruining the integration process
used to compute the posterior. It is natural to ask if this behaviour persists by increasing
the number of observations.

Unfortunately, plots (b) and (d) demonstrate that doing so reduces the performance of
GPAR relative to its counterpart even more. Numerical results can be found in Tables 4
and 5 (note that µi and σi respectively denote the mean and standard deviation obtained
through the Bayesian quadrature procedure for yi). Looking at these results, we can make
two observations. First, for the baseline, all of the means get closer to the truth while the
standard deviation gets smaller. This is the expected behaviour. On the other hand, for
the naive GPAR approach, as the number of observations gets higher, the means for y1 and
y2 seem to get worse and the confidence increases. This is not a good sign. Finally, as a
sanity check, we confirm that the statistics that correspond to the first function modelled
by GPAR, y3, are the same as for IGPs.

Unfortunately, the blame cannot be passed on to the modelling process of the integrand.
We point the readers attention to plot (d) of Figure 11. According to these results, GPAR

27

(a) Integral modelling comparison (5 Obs.)

(b) Integral modelling comparison (15 Obs.)

(c) SMSE for integrand models (5 Obs.)

(d) SMSE for integrand models (15 Obs.)

Figure 11: Baseline vs Naive GPAR and Gaussian integrand modelling comparison for y1,
y2, and y3

Obs µ3 σ3 µ1 σ1 µ2 σ2

5 0.584031 0.041260 0.359485 0.044020 0.974550 0.061393
15 0.596376 0.022263 0.359807 0.022309 0.999099 0.022474
30 0.597741 0.015587 0.360689 0.015600 0.999513 0.015644

Truth 0.598674 - 0.361836 - 0.999767 -

Table 4: Baseline statistics comparison

Obs µ3 σ3 µ1 σ1 µ2 σ2

5 0.584031 0.041260 0.361407 0.046628 0.955750 0.093960
15 0.596376 0.022263 0.363216 0.026232 0.920098 0.085130
30 0.597741 0.015587 0.364319 0.020785 0.915754 0.082817

Truth 0.598674 - 0.361836 - 0.999767 -

Table 5: GPAR statistics comparison

28

Integrands Max
∫

Evals. Max
∫∫

Evals.
{yn}3n=1 63 819
{yn}6n=4 231 40047

Table 6: Intermediate integrand evaluations (15 Obs.)

is on par with IGPs, yet fails to achieve, at the very least, the same performance.

5.3.2 Complex Integrands with Explicit Causality

We now attempt a more difficult set of integrands to model. This example has been designed
so that GPAR has a modelling advantage. The goal of this is twofold:

1. To see if GPAR can use a significant modelling advantage to offset the shortcomings
discovered in the previous experiment.

2. To motivate the use of MC sampling due to the increased integrand complexity.

Using the Bessel function of the first kind Jα(x), we construct three different integrands
(see below). We will use forty observations: twenty in the interval [0, 12] and the remaining
twenty in [28, 40].

Jα(x) =

∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α

y4 =

∫ 40

0

J0(x)dx

y5 =

∫ 40

0

(J0(x) + J1(x))dx

y6 =

∫ 40

0

(J0(x) + J1(x) + J2(x))dx

This is an example where, in the naive GPAR case, the intermediate integration steps will
require more integrand evaluations. In order to show this, we could print the number of
evaluations that the numerical integration subroutine (i.e. nquad from the SciPy library)
uses. For each set of integrals (i.e. Gaussian and Bessel), Table 6 shows the maximum
number of integrand evaluations for the single and double integral computations for the
two experimental setups. As a reminder, we refer the reader to Equations 3 and 4 to point
out that the single integrals are performed for each observation, and the double integrals
are performed once. Because GP predictions are performed within the integrand, Table 6
demonstrates that these integrand evaluations could be a problem because the number of
evaluations can become very high.

The results of predicting the integrals and modelling the integrands can be found in Figure
12. Naive GPAR has a lower absolute error for both y5 and y6. These results seem to
support the argument that if the modelling advantage is significant enough, then GPAR
could outperform the baseline.

29

(a) Integral modelling comparison (30 Obs.) (b) SMSE for integrand models (30 Obs.)

Figure 12: Baseline vs Naive GPAR and Bessel integrand modelling comparison for y4, y5,
and y6

(a) y1 Means vs # samples (b) y4 Means vs # samples

5.3.3 Varying MC Sample Size

We can explore the effects of imprecise computation for the intermediate integrals in Bayesian
Quadrature. In Figures 13a and 13b, we respectively plot the means over both y1 and y4

over the number of MC samples when performing regular Bayesian quadrature. We plot
these means for different numbers of observations in order to identify any relevant trends.
In Figure 13a, it is unsurprising to see that the means seem to converge to the true value as
the number of samples is increasing. Also, a lower number of observations seems to translate
to having less variance, particularly for lower numbers of samples. This is also expected as
Equations 3 and 4 show that for each observation there is one single integral computation.
Hence, a low number of samples will provide weak estimates, and the aggregation of all of
these estimates will contribute to the overall error. In other words, having more observations
increases the significance of the poor approximations caused by an insufficient number of
samples. Unfortunately, as shown in Figure 13b, limiting the number of observations is not
possible because this causes a second problem: if there are not enough observations, which
can be the case when the domain of integration gets large, then even with a reasonable
number of samples, it will be difficult to converge to the true value. Also, to achieve
comparable results to ones from the previous section, it seems like MC sampling requires
many more evaluations of the intermediate integrands without providing any clear benefits.

30

Figure 14: Derivative trick to model y1 (30 Obs.)

5.3.4 One Dimensional Derivative Trick

A possible alternative to using MC to deal with the problems related to integrating, is to
model the observations using a differentiated kernel. Figures 14 and 15 shows the results of
modelling y1 and y4 using 30 observations.

The leftmost plot in Figure 14 shows how the integrand is being modelled by the GP, which
uses a differentiated EQ kernel. As a reminder, y1 is the integral from -8 to 0.5 of a Gaussian
distribution with mean 1 and variance 2. The true value is also displayed for that range. As
we move away from the region of integration, the predictive mean becomes more unwieldy.
In the middle plot, we show the predictive mean for g(x) =

∫ x
−8
N (x′|1, 2)dx′ that we com-

pare with a Gaussian CDF which could be seen as a very close approximation for the true
value. Finally, in the rightmost plot, we show the prediction of the integral at x = 0.5 (i.e.
prediction for g(0.5)). Overall, this shows excellent potential for this approach. We also
show similar good results for y4 in Figure 15.

31

Figure 15: Derivative trick to model y4 (30 Obs.)

5.4 Freeze-Thaw Bayesian Optimisation

5.4.1 Loss curve Modelling

We want to investigate whether GPAR can model loss functions efficiently. First, we cre-
ate a set of 6 neural networks, each with a varying number of units and layers. Then,
we generate a series of loss functions for a variety of different epoch lengths. The GPs
used in the modelling process are made up of a constant mean function as well as a kernel
that is composed of the sums of the custom exponential kernel, where the domain is the
number of epochs, and an EQ kernel, that takes in previous outputs. The latter component
of the kernel is only relevant for GPAR as IGPs will only make use of the former component.

In Figure 16, we present three different runs of the same loss functions where different runs
have different numbers of observations for each loss function. We notice that GPAR per-
forms well when the number of observations for a particular curve is low because it can rely
more on preceding outputs.

The training process also includes finding an appropriate value for the constant mean func-
tion. This may attenuate the advantages that GPAR has relative to IGPs. Indeed, Figure
17 shows the same configuration that was presented above but with the difference that both
GPAR and IGP have a mean function that is always set to 0. By removing the mean func-
tion from any consideration, the overall effectiveness of GPAR appears to increase.

32

(a) Run 1 Predictions

(b) Run 2 Predictions

(c) Run 3 Predictions

(d) Run 1 SMSE

(e) Run 2 SMSE

(f) Run 3 SMSE

Figure 16: GPAR vs IGP models for loss functions (regular)

(a) Run 1 Predictions

(b) Run 2 Predictions

(c) Run 3 Predictions

(d) Run 1 SMSE

(e) Run 2 SMSE

(f) Run 3 SMSE

Figure 17: GPAR vs IGP models for loss functions (0 mean function)

33

6 Conclusion and Future Work

6.1 GPAR

As shown in multiple experiments, GPAR provides meaningful predictive performance ben-
efits. Several important conclusions could be made from the experimental results.

First, we note that the number of random initialisations had to scale with the complexity of
the system of functions. Within the GPAR framework, each function is modelled with a GP
that has its hyperparameters. Increasing the number of functions that are being modelled
requires more GPs, which in turn results in a higher hyperparameter count. As future work,
it would be useful to mathematically quantify the rate at which the recommended number
of restarts increases. Furthermore, this also serves as a motivation for finding ways to limit
the number of hyperparameters in the model (e.g. parameter sharing).

Second, while running a simplified kernel search, it may not always be necessary to spend
the resources to find an absolute best kernel. Although there may still be terrible kernel
choices that can negatively impact performance in a significant way, a large number of ker-
nels can have similar results. Further work could involve constructing a more efficient kernel
search procedure that is less computationally intensive but still provides admirable results.

Thirdly, some function orders do provide terrible results. However, just like with the kernel
search results, we can relax the requirement to find the absolute best order in favour of more
computational efficiency. Finding cheaper ways of establishing order that does not involve
computing a GP over every output could be an area for further investigation.

6.2 Bayesian Quadrature

For Bayesian quadrature, we are interested in seeing how the proposed naive GPAR im-
plementation would perform. Unfortunately, for integrals where the integrand is relatively
simple (i.e. very smooth), then it is better to stick to IGPs. However, when GPAR can
significantly outperform IGPs in modelling the integrand, then using the naive GPAR im-
plementation seems to be the better option.

Unfortunately, as the integrands get more sophisticated, the naive GPAR implementation
gets more costly due to the increase in the number of function evaluations required to solve
the intermediate integrals. This motivates an alternative approach. Using MC sampling to
compute the intermediate integrals initially seemed like an attractive solution. The hope was
that capping the number of samples would not result in a significant decrease in modelling
performance. Sadly, MC was shown not to be a valid option. A larger domain of integration
requires more observations, which in turn requires more MC samples because performance
is more sensitive to the number of MC samples when the number of observations is high. In
the end, this behaviour results in needing an unreasonable number of samples to model the
integral under consideration correctly. Therefore, other approaches to solving this problem
should be considered.

One promising way to avoid dealing directly with the intermediate integrals is to use a
differentiated kernel to model integrand observations. This method was shown to function

34

well on a few examples. However, further work is still required to incorporate this approach
within the GPAR framework.

6.3 Freeze-thaw Optimisation

The presented experiments show that GPAR can offer an advantage in modelling loss func-
tions of a common model with different hyperparameters configurations. Modelling these
curves is a key component in the freeze-thaw approach. Concerning future work, one pos-
sible improvement would be to find more efficient ways to use a mean function while still
allowing GPAR to maintain the same level of performance difference with IGPs. Also, more
generally, it would be interesting to quantify to what extent better models of the loss curves
benefits the overall performance of freeze-thaw.

35

7 Appendix

7.1 GP Posterior Equations

Assuming a training set of N observations is provided, and we are interested in predicting
the values of a function at some test indices. For the training set, we define y and X to re-
spectively correspond to the function values and their associated indices. Each entry in the
vector y is a function value and each row in matrix X is an index. Following the same logic,
we use y∗ and X∗ for the set of function observations and indices that we are interested in
getting predictions for.

With a kernel, we can specify the join distribution over the values for both the training and
the desired sets of indices:[

y
y∗

]
∼ N

([
0
0

]
,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
Using the relevant Equations for the conditional distribution of a multivariate Gaussian (see
chapter 2 in [1]), we condition over the training set to obtain the following:

µy∗|y,X,X∗ = 0 +K(X∗,X)K(X,X)−1 (y − 0)

= K(X∗,X)K(X,X)−1y

Σy∗|y,X,X∗ = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)

7.2 Custom Exponential Kernel

We show a derivation for the closed form of the custom kernel, in freeze-thaw optimisation,
when using a Gamma distribution p(x) = 1

Γ(α)β
αxα−1e−βx over λ. Note that Γ(α) is the

Gamma function (i.e. Γ(α) =
∫∞

0
xα−1e−xdx).

k(x, x′) =

∫ ∞
0

e−λxe−λx
′
p(λ)dλ

=

∫ ∞
0

e−λxe−λx
′ 1

Γ(α)
βαλα−1e−βλdλ

=

∫ ∞
0

1

Γ(α)
βαλα−1e−λ(x+x′+β)dλ

=
βα

(x+ x′ + β)α

∫ ∞
0

1

Γ(α)
(x+ x′ + β)αλα−1e−λ(x+x′+β)dλ

=
βα

(x+ x′ + β)α

36

7.3 Expected Improvement Acquisition Function

Below is a derivation of the closed-form of the expected improvement acquisition function.
We respectively denote φ(x, µ, σ2) and φ(x, µ, σ2) as the probability density function and
cumulative density function for a Gaussian distribution N (µ, σ2).

αEI(x) = E[u(x)]

=

∫ ∞
−∞

u(x)p(f)df

=

∫ ∞
−∞

u(x)N (f |m(x), k(x, x))df

=

∫ fmin

−∞
(fmin − f)N (f |m(x), k(x, x))df

= fmin(x)Φ(fmin|m(x), k(x, x))−
∫ fmin

−∞
fN (f |m(x), k(x, x))df

= fmin(x)Φ(fmin|m(x), k(x, x)) +

∫ ∞
−fmin

f√
2πk(x, x)

e
−(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) +
1

2

∫ ∞
−fmin

2(f −m(x))√
2πk(x, x)

e
−(f−m(x))2

2k(x,x) df

+

∫ ∞
−fmin

m(x)√
2πk(x, x)

e
−(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) +
1

2

∫ ∞
(fmin−m(x))2

1√
2πk(x, x)

e
−u

2k(x,x) du

+

∫ ∞
−fmin

m(x)√
2πk(x, x)

e
−(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) +
k(x, x)√
2πk(x, x)

e
−u

2k(x,x)

∣∣∣∣∣
∞

u=(fmin−m(x))2

+

∫ ∞
−fmin

m(x)√
2πk(x, x)

e−
(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) + k(x, x)φ(fmin,m(x), k(x, x))

+

∫ ∞
−fmin

m(x)√
2πk(x, x)

e−
(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) + k(x, x)φ(fmin,m(x), k(x, x))

−m(x)

∫ fmin

−∞

1√
2πk(x, x)

e−
(f−m(x))2

2k(x,x) df

= fmin(x)Φ(fmin|m(x), k(x, x)) + k(x, x)φ(fmin,m(x), k(x, x))

−m(x)Φ(fmin|m(x), k(x, x))

= (fmin(x)−m(x)) Φ(fmin|m(x), k(x, x)) + k(x, x)φ(fmin,m(x), k(x, x))

37

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[2] Abdallah A. Chehade and Ala A. Hussein. Latent function decomposition for forecast-
ing li-ion battery cells capacity: A multi-output convolved gaussian process approach,
2019.

[3] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Structure discovery in nonparametric regression through com-
positional kernel search, 2013.

[4] Ian Fox, Lynn Ang, Mamta Jaiswal, Rodica Pop-Busui, and Jenna Wiens. Deep multi-
output forecasting: Learning to accurately predict blood glucose trajectories. 2018.

[5] Joseph Futoma, Sanjay Hariharan, Mark Sendak, Nathan Brajer, Meredith Clement,
Armando Bedoya, Cara O’Brien, and Katherine Heller. An improved multi-output
gaussian process rnn with real-time validation for early sepsis detection, 2017.

[6] J. Lebl. Basic Analysis: Introduction to Real Analysis. Createspace Independent Pub,
2014.

[7] A. O’Hagan. Bayes–hermite quadrature. Journal of Statistical Planning and Inference,
29(3):245–260, nov 1991.

[8] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[9] James Requeima, Will Tebbutt, Wessel Bruinsma, and Richard E. Turner. The gaussian
process autoregressive regression model (gpar), 2018.

[10] Filipe Rodrigues, Kristian Henrickson, and Francisco C. Pereira. Multi-output gaussian
processes for crowdsourced traffic data imputation. 2018.

[11] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian opti-
mization. 06 2014.

[12] Xiaoyue Xi, Francois-Xavier Briol, and Mark Girolami. Bayesian quadrature for mul-
tiple related integrals. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5373–5382, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

38

