Problem Definition

Perform approximate inference in model with local latent variables z;
whilst learning point estimates for the MAP solution for the global pa-
rameters 6 having observed x;.
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Stochastic Gradient Variational Bayes provides a method to find a deter-
ministic approximation to an intractable posterior distribution by finding
parameters ¢ such that Dy (s (2; | Xi) || pe(zi|%;)) is minimised for
all 2. This is achieved by, for each observation, maximising a lower bound

L(¢;xi) = Ey, 5 x) [10g po (i | 2i)] — Drcr (qs (2 | xi) || p(2i))-

The expectation term in this lower bound cannot typically be computed
exactly.

. 1 &
L” (0, ;%) = ZZ (log pg (x; | 2iy) — Dk (s (Zi | %i) || po(2i))),
=1

where reparameterising z = g4(X, €) with € ~ p(e) yields a differentiable
Monte Carlo approximation.

Variational Autoencoder

The Variational Autoencoder is a generative latent variable model for
data in which z; ~ N(0,I) and x; ~ py (X; | z;), where this conditional
is parameterised by an multi-layer perceptron (MLP).

An MLP recognition model g, (z; | X;) is used to provide fast approxi-
mate posterior inference in z; | X;.

The MLPs used in the recognition model ¢4 and conditional distribution
Py (X; | z;) are often compared to the encoder and decoder networks in
traditional autoencoders respectively.
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Noisy KL-divergence estimate

In the case of the non-Gaussian distributions, it is often impossible to
obtain closed-form expression for the KL-divergence term which also re-

quires estimation by sampling. This yields more generic estimator of the
form:

LA, ¢rx") = —

Visualisation of learned manifolds

The linearly spaced grid of coordinates over the unit square is mapped
through the inverse CDF of the Gaussian to obtain the value of z which
can be used to sample from py(x|z) with the estimated parameters 6.
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Bayesian: is it really all that?

Comparing reconstruction error to vanilla auto-encoder, we see stronger
performance from VAEB.

Original  \VAE AE
/ /

Full Variational Bayes

Possible to perform full VB on parameters:

(6 X) = / 10(0)(10g pa(X) + log pa(8) — log q,(6))d6

A differentiable Monte Carlo estimate to perform SGVB, yielding a dis-
tribution over parameters.

Implementation showed a decrease of variational lower bound, but no
evidence of learning, possibly due to strict Gaussian assumptions of vari-
ational approximate posteriors.

Architecture experiments

We examined various changes to the original architecture of the auto-
encoder to test the robustness and flexibility of the model which lead to
improvement in terms of optimising the lower bound and computational
efficiency.

e Different activa-

tion functions.

e Increasing the
depth of the
encoder.

# Training samples evaluated ~ 1e8

Future works

Scheduled training of VAEB [2].

| Direct parameterization of differentiable transform [3].
II.  Different priors over latent space.
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