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Problem Definition

Perform approximate inference in model with local latent variables zi
whilst learning point estimates for the MAP solution for the global pa-
rameters θ having observed xi.
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Stochastic Gradient Variational Bayes provides a method to find a deter-
ministic approximation to an intractable posterior distribution by finding
parameters φ such that DKL (qφ (zi |xi) || pθ (zi |xi)) is minimised for
all i. This is achieved by, for each observation, maximising a lower bound

L (φ;xi) = Eqφ(zi |xi) [log pθ (xi | zi)]− DKL (qφ (zi |xi) || p (zi)) .

The expectation term in this lower bound cannot typically be computed
exactly.

L̃B (θ, φ;xi) =
1

L

L∑
l=1

(log pθ (xi | zi,l)− DKL (qφ (zi |xi) || pθ (zi))) ,

where reparameterising z = gφ(x, ε) with ε ∼ p(ε) yields a differentiable
Monte Carlo approximation.

Variational Autoencoder

The Variational Autoencoder is a generative latent variable model for
data in which zi ∼ N (0, I) and xi ∼ pθ (xi | zi), where this conditional
is parameterised by an multi-layer perceptron (MLP).

An MLP recognition model qφ (zi |xi) is used to provide fast approxi-
mate posterior inference in zi | xi.

The MLPs used in the recognition model qφ and conditional distribution
pθ (xi | zi) are often compared to the encoder and decoder networks in
traditional autoencoders respectively.

Noisy KL-divergence estimate

In the case of the non-Gaussian distributions, it is often impossible to
obtain closed-form expression for the KL-divergence term which also re-
quires estimation by sampling. This yields more generic estimator of the
form:

L̃A(θ,φ;x(i)) =
1

L

L∑
l=1

(
log pθ(x

(i), z(i,l))− log qφ(z
(i,l)|x(i))

)
.
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Visualisation of learned manifolds

The linearly spaced grid of coordinates over the unit square is mapped
through the inverse CDF of the Gaussian to obtain the value of z which
can be used to sample from pθ(x|z) with the estimated parameters θ.

Bayesian: is it really all that?

Comparing reconstruction error to vanilla auto-encoder, we see stronger
performance from VAEB.
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Full Variational Bayes

Possible to perform full VB on parameters:

L(φ;X) =

∫
qφ(θ)(log pθ(X) + log pα(θ)− log qφ(θ))dθ

A differentiable Monte Carlo estimate to perform SGVB, yielding a dis-
tribution over parameters.
Implementation showed a decrease of variational lower bound, but no
evidence of learning, possibly due to strict Gaussian assumptions of vari-
ational approximate posteriors.

Architecture experiments

We examined various changes to the original architecture of the auto-
encoder to test the robustness and flexibility of the model which lead to
improvement in terms of optimising the lower bound and computational
efficiency.

• Different activa-
tion functions.
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• Increasing the
depth of the
encoder.
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Future works

I. Scheduled training of VAEB [2].
II. Direct parameterization of differentiable transform [3].
III. Different priors over latent space.
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