
Semi-Supervised Learning with Deep Generative Models
S. Saemundsson, Y. Gao, S. Popescu

Department of Engineering, University of Cambridge

Objectives

The motivation behind reproducing the chosen paper was
a better understanding of semi-supvervised learning meth-
ods and stochastic variational inference. At the outset of
the project our goals were as follows:
• Implement our own version of the models found in (1)
using TensorFlow (2).

• Evaluate their performance on the MNIST dataset
and contrast with the original paper.

• Ultimately the goal was to reproduce the results
obtained using the stacked deep-generative model of
(1) with only 100 labelled examples.

Introduction

Ever-increasing unlabelled data together with prohibitive costs
of manually labelling it calls for models that are able to effi-
ciently and accurately generalise from a small number of ex-
amples. The framwork described in (1) formulates the semi-
supervised problem as a generative one and uses deep neural
networks to parameterise the densities of the data. It also pro-
vides a scalable method for stochastic variational inference for
joint optimisation of model and variational parameters. Quan-
titative results show that this approach improves on classifica-
tion accuracy in benchmark problems in the semi-supervised
domain and qualitatively the models are shown to separate the
data based on both data classes as well as intra-class variability.
Possible domains with high-impact from semi-supervised learn-
ing techniques range from speech analysis and natural language
parsing to genomics, research areas predominantely abundant
with unlabeled data but with high labeling costs.

Figure 1: Examples of flattened 49 dimensional latent representations of
the 784 dimensional images in the MNIST dataset. The columns are as
follows: Original → Latent → Reconstructed with two examples each.

Latent Discriminative Model (M1)

Facing a scarcity of labels, the most common starting point is
to construct an embedding layer with the main goal of cluster-
ing related observations ina latent feature space that permits
high accuracy classifciation. The novelty of the current method
resides in using a deep generative model for feature represen-
tation as opposed to more conventional linear embedding or
features derived from a standard autoencoder. The generative
model has the following form:

p(z) = N (z|0, I); pθ(x|z) = f (x|z, θ) (1)

where f (x|z, θ) is a neural network, x the observations and z
the latent representations.

Figure 2: Analogies learnt by the M2 model. The leftmost label and image
are used to infer a latent representation under the trained model. Keeping
the latent representation fixed and varying the label, the generative model
produces images with similar styles and orientation.

Stacked Model (M1+M2)

A deep generative model with two layers of stochastic variables
can be established by combining model 1 and model 2:

p(x, y,z1, z2) = p(y)p(z2)pθ(z1|y,z2)pθ(x|z1) (2)

where the priors are the same as in the individual models and
both pθ(z1|y, z2) and pθ(x|z1) are parameterised by neural
networks. In practise this is done by first learning a latent
representation using M1 which is used as input into the neural
network for M2.

Variational Inference

In all our models, computation of the exact posterior distribu-
tion is intractable due to the nonlinear, non-conjugate depen-
dencies between the random variables. Therefore using varia-
tional inference is an essential approach to allow for tractable
and scalable inference and parameter learning. This is done
using a variational approximation of the posterior qφ(·). The
objective to minimise in the case of M1 can be shown to be:

logpθ(x) ≥ Eq (logpθ(x|z)])− KL (qφ(z|x)||pθ(z)) (3)

In the case of M2 there are two distinct types of datapoints (i.e.
labelled and unlabelled):

logpθ(x, y) ≥ −L(x, y) = (4)
Eq (logpθ(x|z, y) + logpθ(y) + logp(z)− qφ(z|x, y))

logpθ(x) ≥ −U(x) =
∑
y

qφ(y|x))(−L(x, y)) +H(qφ(y|x))

(5)
The bound on the marginal likelihood for the entire data is
then:

J =
∑
x,y

L(x, y) +
∑
x

U(x) (6)

Additionally, in order for the predictive distribution qφ(y|x) to
contribute also to the term pertaining to the unlabelled data,
a hyperparameter α was introduced whereby:

J α = J + α · Ep(x,y)(−logqφ(y|x)) (7)

This hyperparameter can be shown to be equivalent to plac-
ing a symmetric Dirichlet prior over the π parameters of the
categorical distribution.

Generative Semi-Supervised Model (M2)

M2 describes the data as being generated by a latent class
variable y and another one z. The model has the following
form:

p(y) = Cat(y|π); p(z) = N (z|0, I) (8)

pθ(x|y, z) = f (x|y, z, θ) (9)

Where Cat(y|π) is the categorical distribution and f (x|y, z, θ)
a neural network. Classification is thus performed by approxi-
mate inference of the latent variable y.

Results

Table 1 shows the accuracy obtained using M1+M2 on
the MNIST dataset using 100, 1000, 3000 labelled ex-
amples in training.

#Labelled Accuracy Original

100 95.2 (±0.4) 96.67 (±0.14)
1000 96.7 (±0.1) 97.41 (±0.05)
3000 97.1 (±0.1) 97.60 (±0.02)

Table 1: Accuracy of M1+M2 on MNIST compared to the original
paper.

Experiments

The dataset was split into 55000/5000/10000 datapoints for
training, validation and evaluation respectively. Each result
with a set number of labelled examples was run 3 times for 1200
epochs of the data using different initialisations to obtain the
average in Table 1. The data was further split into 100 batches
containing a fixed number of labelled examples (e.g. 10 in each
batch for a 1000 labelled examples). The networks in M1 had
two fully connected 500 unit hidden layers. In M2 there was
only one hidden layer for each network with 500 hidden units.
In both cases the hidden units had softplus activations.
Gradient ascent was performed using ADAM (3) with a learn-
ing rate of 3 × 10−4, and decay rate parameters β1 = 0.9,
β2 = 0.999. The weights were initialised at random and in the
case of M1, L2 regularisation was applied with weight parame-
ter 0.001. For M2 the weights were conditioned with a standard
normal gaussian prior.

Discussion

The results in Table 1 are slightly lower than that of the original
paper. The discrepancy is likely caused by one of two factors:
i) difference in implementation (e.g. L2 regularisation), ii) due
to time constraints the models were run for only 1200 epochs
until approximate convergence. TensorFlow was found to be
highly useful in terms of balancing out-of-the-box components
and flexibility which allowed for quick prototyping.

References

(1). Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max
Welling. Semi-supervised Learning with Deep Generative Mod-
els. arXiv:1406.5298, 2014. (2). Google Research. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems.
http://www.tensorflow.org. (3). Diederik P. Kingma, Jimmy Lei Ba.
ADAM: A Method for Stochastic Optimization. arxiv:1412.6980,
2014

