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Abstract

Relation classification and relation extraction are fundamental tasks in natural language
processing (NLP) and information extraction with many downstream applications,such as
knowledge base construction, and question answering. In this thesis, we propose a novel
attention-based recurrent neural network model to tackle both of these tasks. For the relation
classification task, we propose a composition model consisting of an attention-based classifier
and a variational autoencoder acting as a regularizer. As for the relation extraction task, we
first reformulate the task as a sequence tagging problem, and then propose a sequence model
based on previous attention-based classifier. To evaluate our model comprehensively, for
each task, we conduct experiments on three different established datasets from general and
specialized domains. We use Bayesian Optimization to fine tune the model hyperparameters,
and are able to achieve at least on par performance with the current state-of-the-art published
models across all datasets, we significantly outperform the best state-of-the-art results on
some of these datasets.
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Chapter 1

Introduction

Relation extraction is an important Natural Language Processing (NLP) task with various
downstream applications; for example, information extraction [74], question answering [81],
and medical informatics [69].

The aim of relation extraction is to categorize the relation between two entities of interest
into a set of predefined relation types. Traditional methods always solve this task in two steps:
(1) entity recognition, (2) relation classification. In the first step, the system pinpoints the
possible pairs of entities that may share a relation. In the second step, the system classifies
the relation for every possible pair of entities. In this thesis, we focus on two goals: (1)
solving relation classification task and (2) solving relation extraction task in general.

For relation classification, we focus on solving the task at sentence level. Given a
sequence XL = {x1, ...,xT} with length T , and two marked nominals e1 and e2, the goal
is to predict a relation r 2 R between e1 and e2, where R is a set of predefined relation
labels. For instance, given a sequence: "A trillion gallons of [water]e1 have been poured
into an empty [region]e2 of outer space”, the entities water and region have the relation of
Entity-Destination(e1, e2).

Conventional relation classification methods are mostly based on pattern matching, and
an obvious disadvantage is that high-level features such as tags of part of speech (POS), name
entities and dependency path [6] are often used. These requirements make the system rely
on external NLP modules which not only increases computational cost, but also introduces
external errors. Another important point is that manually designing patterns is prohibitively
time-consuming and often results in low coverage.

Recent advancement in machine learning and deep neural networks have enabled new
ways to reduce the dependency on manually designed features and patterns. For example,
a general framework is proposed by Collobert et al. [11] to learn task-oriented features by
using convolution neural networks (CNN) from raw text. Collobert et al. [11] evaluated
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the learning approach on several NLP tasks such as part-of-speech tagging, name entity
recognition (NER) and semantic role labelling (SRL). The results show that using the features
learnt from raw text can achieve close to or even better performance than state-of-the-art
systems that utilize manual feature engineering.

Deep learning methods have also been proposed for relation classification; for example,
work by Zeng et al. [86] proposes a CNN-based approach that achieves competitive results
without the help of external knowledge. Following the success of CNN, many other models
such as multi-window CNN [45], CR-CNN [54] and NS-depLCNN [76] have been proposed.

Although CNN models can deliver good performance on this task, they have some notable
drawbacks; for example, they do not learn temporal patterns very well. Since the semantic
meaning of a relation is formed within the context of two target nominals (entities), this
context includes the words between the nominals and words surrounding them.

Relations that are directional are sensteive to word order, for example, "London is in
England". Therefore, different ordering of a word sequence may represent a different relation.
As a result, semantic relation classification is similar to the task of temporal sequence
modelling rather than feature extraction using CNN models [87].

A Recurrent neural network (RNN) is the most common choice to learn temporal knowl-
edge from sequential data. Therefore, many models based on RNNs have been proposed
for the task of semantic relation classification. For example, Zhang et al. [87] designed
bidirectional RNNs to directly model temporal knowledge, and Vu et al. [68] proposed
the Connectionist Bi-directional RNNs and combine it with a CNN-based model through a
voting scheme to achieve competitive results. A well known drawback of traditional RNNs is
that during learning process it equally focuses on each time-step. To help RNN-based models
better select input features, the attention mechanism is widely used in many applications, i.e.
machine translation [2]. With the attention mechanism, the RNN model can automatically
focus more on inputs from important time-steps and ignore others. Zhang et al. [89] proposed
attention-based model and achieve on a par with state-of-the-art performance, which further
proves the effectiveness of non-static models over static ones.

A good relation classification model can be used as an intermediate component for solving
relation extraction tasks in general. Conventional relation extraction systems handle the
extraction process in a pipelined manner, i.e. entity recognition [43] and relation classification
[52]. Improving each of these components can increase the overall system performance. One
disadvantage of this is that pipelined systems ignore the internal connection of these two
steps, and thus errors from entity recognition often propagate to the relation classification,
leading to weaker overall results [31].
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In contrast to pipelined extraction methods, end-to-end systems make use of joint learning
to extract entities and corresponding relations together in one unified model. By leveraging
both knowledge from entities and relations, it has been shown that joint learning framework
achieves better performance in relation extraction task. However, most of existing joint
models are feature-based systems [31], [42] and [84]. For these systems, complicated feature
engineering is required. To reduce the manual effort of feature construction, Miwa and
Bansal [41] proposed a neural network based method for end-to-end entities and relation
extraction. Recently, Zheng et al. [90] proposed to transform the relation extraction task into
sequence tagging task, and with the help of RNN-based end-to-end model they achieved
state-of-the-art performance on one public dataset.

1.1 Contributions

In this thesis, we propose novel models to tackle both the relation classification and the
relation extraction tasks. For relation classification, we propose a new framework which
leverages RNNs and the attention mechanism to tackle relation classification. The model
consists of two parts: an attention-based classifier and a regularizer based on a Variational
Autoencoder (VAE). We conduct comprehensive experiments that utilize established relation
classification tasks and datasets from both the general domain as well as specialized domain.
We achieve at least on a par performance with the current state-of-the-art on these tasks, and
by introducing a regularizer into our model, the performance surpasses the state-of-the-art
results across all experimented tasks and datasets.

For the relation extraction task, we propose a novel sequence model based on our relation
classification model. We conduct comprehensive experiments on datasets from general and
specialized domains. By adopting the sequence tagging scheme for relation extraction, we
achieve at least on a par with state-of-the-art performances across all experimented tasks and
datasets.

For the relation classification task, the main contributions of this thesis are as follows:

• Propose a composition model which contains attention-based RNN classifier and
VAE-based language model.

• Achieve state-of-the-art performance on different datasets both from the general domain
and the biomedical domain.

• Demonstrate the usefulness of introducing a VAE language model as a regularizer to
the classifier for relation classification and illustrate how the performance is improved.
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For the relation extraction task, the main contributions of this thesis are as follows:

• Propose a novel RNN-based attention sequence model to tackle the general relation
extraction task as sequence tagging problem.

• Conduct comprehensive experiments on datasets from various domains, and demon-
strate the effectiveness of our proposed model.

1.2 Related Work

1.2.1 Relation Classification

Various learning paradigms have been proposed to relation classification problem, and
supervised approaches have shown their advantages in this task. Researchers have initially
focused on engineering complex features for relation classification, i.e. feature-based or
kernel-based. Suchanek et al. [63] transformed classification clues, i.e. sequences and
parse trees, into feature vectors. Different kernels, such as convolutional tree kernel [50],
subsequence kernel [7] and dependency tree kernel [7], have been proposed for relation
classification task. However, the need of manual annotation is expensive thus the quality is
always limited which encouraged the usage of distant-supervision [40].

With recent improvement of deep neural networks, many researchers have focused on
using neural networks model to automatically learn features. For natural language processing
(NLP), most of the existing methods are primarily based on learning distributed representation
for each word, which is also called as word embedding [65]. Socher et al. [59] proposed
a recurrent neural network (RNN) model along with parse tree information for sentiment
analysis and similar model is also used to classify relations [58]. Hashimoto et al. [17]
employed a neural relation extraction model allowing for explicit weighting of important
phrases. Zeng et al. [86] proposed to use convolutional neural networks (CNN) to leverage
both lexical and sentence level feature together to make final classification. Santos et al. [54]
proposed a ranking loss function along with CNN architecture model to perform relation
classification.

Another line of research relates to attention mechanism for deep learning. Bahdanau et
al. [2] first proposed to use attention mechanism in machine learning task for NLP. This
attention mechanism selects the most relevant reference words in original sequence for
words in a foreign language before translation. Xu et al. [75] used attention mechanism
to generate caption for images. This mechanism helps the model select relevant image
regions when generating captions. Pei et al. [48] leveraged attention mechanism along with
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modified recurrent unit for speech recognition and sentiment analysis. Further usage of
attention mechanism includes image question answering [32], document classification [80],
and paraphrase identification [82]. Shen et al. [55] explored word level attention mechanism
to discover better patterns in heterogeneous context for relation classification task.

In this thesis, we propose a novel attention-based architecture to determine relevance
of each input word to the relation classification output. We also incorporate a variational
autoencoder (VAE) into the entire framework to act as a regularizer for our classifier.

To the best of our knowledge, this is the first work in published literature which uses
VAE for relation classification.

1.2.2 Relation Extraction

Relation Extraction is an important task in NLP literature. It can be used as an end-user
application or as an intermediate step to further downstream applications, such as biomedical
text-mining [5] and textual entailment [13].

Two general frameworks are often used to extract entities and their corresponding rela-
tions. One is pipelined method and the other is joint learning method.

The pipelined method treats relation extraction task as two step process, i.e. (1) name
entity recognition (NER) [43] and (2) relation classification (RC) [52]. Conventional NER
models are linear statistical models, such as Hidden Markov Models (HMM) and Conditional
Random Fields [47] [35]. With recent development in deep learning, neural networks
architectures [29] have been applied to NER task. Current relation classification models can
also be divided into two categories: (1) handcrafted feature based method [52] and neural
network based methods [54].

The joint learning method extracts entities and relations with an unified model. Most
of the joint models are feature-based system [31] [51]. To reduce manual effort, Miwa and
Bansal [41] proposed to use LSTM-based model to extract entities and relations separately.
Recently, Zheng et al. [90] proposed a unified framework to transform relation extraction to
a sequence tagging problem.

1.3 Thesis Outline

In this section we summerize the thesis outline.
Chapter 2: We detail our methodology for the relation classification task. The basic

components of our model architecture are introduced and training objectives are discussed.
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We also discuss the optimization challenges for our proposed model, we then describe how
to use Bayesian Optimization as our hyperparameter tuning approach.

Chapter 3: We introduce our methodology for relation extraction task. We detail how to
transform relation extraction into sequence tagging problem and we also describe how to
adapt our proposed model from Chapter 2 to fit this task.

Chapter 4: We apply our methodology from Chapter 2 for various relation classification
datasets. To fully evaluate our model performance, we use datasets from both general domain
and biomedical domain. To better illustrate how our proposed model works. We provide
concrete visualization of our model’s results; the generative perspective of our model is also
discussed in detail. Comprehensive analysis of our experiments’ results are discussed along
with a comparison between our model and the currently published state-of-the-art systems.

Chapter 5: We adopt our method from Chapter 3 to conduct experiments for relation
extraction on datasets from general, scientific and biomedical domains. To fully understand
the importance of each part contained in our model, we also perform experiments with
various configurations of our proposed system. A detailed analysis of our experiments’
results are also presented.

Chapter 6: We give an overall conclusion and summary of our presented work, and a
brief discussion of possible future work.



Chapter 2

Relation Classification Methodology

When it comes to sequence modeling, the most common neural network architecture is a
Recurrent Neural Network (RNN). There are multiple variations of RNNs that are described in
literature, and different techniques have been developed to improve the performance of RNNs.
For the relation classification task, we design an end-to-end model that combines RNNs and
Variational Autoencoder (VAE). In section 2.1, we introduce several variations of RNNs and
their corresponding advantages and disadvantages. In section 2.2, we describe the theory
behind VAEs and how it can be incorporated into relation classification tasks. In section 2.3,
we propose a novel attention-based model architecture. In section 2.4, we demonstrate how
all the components can be combined together to deliver optimal performance. In section 2.5,
we describe how to use Bayesian Optimization to automatically tune the hyperparameters of
a neural network.

2.1 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a neural sequence model that achieves state-of-the-art
performance on important tasks that include language modeling [39], speech recognition
[15] and machine translation [23]. RNNs are used to deal with data with sequential structure
which makes it a natural choice for us to build an RNN-based model for relation classification
tasks. In this section, we describe several variations of RNNs and how they can be used to
construct our model.

2.1.1 Basic Recurrent Neural Network

The vanilla architecture of a Recurrent Neural Network can be formulated as Equation (2.1),
where xt and ht are the input and hidden state at time-step t. And s is nonlinear activation
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function which is usually the tanh function described in Equation (2.2). The softmax function
in Equation (2.3) is used to calculate the probability distribution over all possible outcomes
(classes) of the next word (i.e. a language model) or the probability distribution over possible
entity tags (e.g. name entity recognition).

ht = s(W hhht�1 +W hxxt)

y = so f tmax(W (s)ht)
(2.1)

tanh(x) =
ex� e�x

ex + e�x (2.2)

P(y = j|x) = exT w j

ÂK
k=1 exT wk

(2.3)

In Figure 2.1, we show an illustration of an RNN unrolled across 3 time-steps, and we can
see that the input information is passed through the hidden state propagation which makes
the RNN useful for sequential data.

Fig. 2.1 Illustration of vanilla RNN architecture

Although vanilla RNN is able to capture sequential dependencies in the sequence, it tends
to forget past information when the sequence gets too long. To address this problem, memory
mechanism is introduced into different variations of the vanilla RNN, in the following
subsections we focus on two variations of the vanilla RNN.
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2.1.2 Long Short-Term Memory Network

Long Short-Term Memory Networks (LSTMs) [19] addresses the shortcomings of the vanilla
RNN by introducing a memory mechanism that helps to retain information from early time-
steps in the sequence. To update the information in memory unit, the LSTM cell sets three
logical gates: an input gate it for writing, a forget gate ft for removing and an output gate
ot for reading. Each gate provides the proportion of information that is involved in the
corresponding operation which is determined by the input xt and the previous hidden state
ht�1. An illustration of unrolled LSTM across three time-steps is shown in Figure 2.21.

Fig. 2.2 Illustration of unrolled LSTM

The detalied calculations are shown in Equation (2.4). By introducing additional logical
gates, LSTM is able to capture more knowledge from input and generally delivers better
performance than vanilla RNN.

it = s(W ixt +Uiht�1 +bi)

ft = s(W f xt +U f ht�1 +b f )

gt = tanh(W cxt +Ucht�1 +bc)

ct = it ⇤gt + ft ⇤ ct�1

ot = s(W oxt +Uoht�1 +bo)

ht = ot ⇤ tanh(ct)

(2.4)

2.1.3 Gated Recurrent Unit

The second variation of vanilla RNN unit is the Gated Recurrent Unit (GRU) [9]. A gated
recurrent unit is designed to make each recurrent unit to adaptively capture dependencies of

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Fig. 2.3 Graphical illustration of GRU

different time-steps. Similarly to the LSTM unit, the GRU has gating units that modulate the
flow of information inside the unit.

The graphical illustration of the GRU is shown in Figure 2.3, and detailed calculations
are shown in Equation (2.5). It can be seen that GRU parameters are very similar to LSTM
parameters, however, without having a separate memory cells. For same parameters, the
GRU units can deliver similar or better performance than LSTM unit on various sequence
modeling tasks [10].

zt = s(W zxt +Uzht�1 +bz)

rt = s(W rxt +Urht�1 +br)

h̃ = tanh(W hxt +Uhht�1 ⇤ rt +bh)

ht = (1� zt)⇤ht�1 + zt ⇤ h̃t

(2.5)

2.1.4 Challanges in training RNNs

Here we describe several challanges which are commonly encountered when training RNNs.
The first one is the vanishing gradient problem [73] which is caused by the saturation of
activation functions. To see this problem directly, we plot two popular activation functions
tanh and sigmoid which are shown in Figure 2.4 and 2.5. From the plots it can be seen that
for the tanh, once the function value approaches -1 or 1, the gradient is approximately zero,
for sigmoid function, this happens when function approaches 0 or 1. Generally, the longer
the sequence is the more likely vanishing gradients problem happens.

One solution to this problem is backpropagation through time (BPTT) [73]. This tech-
nique addresses the vanishing gradient problem by only unfolding a range of steps instead of
entire sequence, as a result the training procedure of RNN can be more stable and faster.
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The second problem we commonly encounter when training RNNs is overfitting. And
LSTM and GRU are more likely to overfit than traditional RNN due to more parameters
contained in recurrent unit [85]. Traditional regularization technique like dropout [60] cannot
be directly imposed on weights of recurrent units. To this end, dropout on recurrent neural
network [85] addresses the regularization problem by only using dropout on input and output
of recurrent layers. As a result, the overfitting problem can be alleviated.

Fig. 2.4 Tanh function

Fig. 2.5 Sigmoid function

2.2 Variational Autoencoder

In this subsection, the second main building block in our model is introduced which is
the variational autoencoder (VAE) [24]. We first describe the VAE in the perspective of a
probability model.

A variational autoencoder models the probability of data x and latent variables z. The joint
probability can be formulated as p(x,z) = p(x|z)p(z). For each datapoint i the generative
process can be written as follows:

• Draw latent variables zi ⇠ p(z)

• Draw datapoint xi ⇠ p(x|zi)
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The directed graphical model is represented in Figure 2.6. The latent variables are drawn
from a prior p(z) and the data x has a likelihood p(x|z) that is conditioned on latent variables
z. The generative model defines a joint probability distribution over data and latent variables:
p(x,z) and this distribution can be further decomposed into p(x,z) = p(x|z)p(z).

Fig. 2.6 Graphical illustration of VAE

VAE inference requires approximating good values of the latent variables given observed
data by calculating the posterior p(z|x) shown in Equation (2.6). The denominator p(x) can
be calculated by marginalizing out the latent variables as Equation (2.7). Unfortunately, this
integral is always intractable to calculate, thus an approximation of the posterior distribution
is required.

p(z|x) = p(x|z)p(z)
p(x)

(2.6)

p(x) =
Z

p(x|z)p(z)dz (2.7)

Variational inference approximation of the posterior can be modelled as ql (z|x) where l
indexes the family of distributions. For instance, if q were Gaussian, l denotes the mean and
variance of each datapoint lxi = (µxi ,s2

xi
).

To measure how well the variational posterior q(z|x) approximates the true posterior
p(z|x), Kullback-Leibler divergence (KL-Divergence) [27] [26] shown in Equation (2.8) is
used. To calculate better approximation, the goal is to minimize the KL-Divergence which
means calculating parameters l that satisfies Equation (2.9).

KL(ql (z|x)||p(z|x)) = Eq[logql (z|x)]�Eq[logp(x,z)]+ logp(x) (2.8)

q?l (z|x) = argmin
l

KL(ql (z|x)||p(z|x)) (2.9)
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But the KL-Divergence is still impossible to compute directly due to the existence of
evidence term p(x). To address this problem, we consider the function in Equation (2.10)
and combine it with KL-Divergence to rewrite the evidence as Equation (2.11).

ELBO(l ) = Eq[logp(x,z)]�Eq[logql (z|x)] (2.10)

logp(x) = ELBO(l )+KL(ql (z|x)||p(z|x)) (2.11)

According to Jensen’s inequality [22], the KL-Divergence is always greater than or equal to
zero. This means that minimizing KL-Divergence is equivalent to maximizing the ELBO
(Evidence Lower Bound) which allows us to do approximate posterior inference. Because
this helps us to bypass the need of computing and minimizing KL-Divergence, thus we only
need to maximize the ELBO which is computationally tractable. Notice that in the variational
autoencoder model, there are only local latent variables (no datapoint shares its latent z with
the latent variable of another datapoint). As a result, we can decompose the ELBO into
a sum where each term depends on a single datapoint and this allows us to use stochastic
gradient descent with respect to the parameters l . The ELBO for a single datapoint is shown
in Equation (2.12).

ELBOi(l ) = Eql (z|xi)[logp(xi|z)]�KL(ql (z|xi)||p(z)) (2.12)

Now we make connections to neural networks model. The final step is to parameterize
the approximate posterior qq (z|x) with an inference network (or encoder) and likelihood
pf (x|z) with a generative network (or decoder). The inference and generative networks have
parameters q and f respectively which are typically the weights and biases of the neural nets.
The revised version of ELBO with inference and generative network parameters is shown in
Equation (2.13).

ELBOi(q ,f) = Eqq (z|xi)[logpf (xi|z)]�KL(qq (z|xi)||p(z)) (2.13)

The prior over latent variable p(z) is always chosen as a normal distribution with zero
mean and standard deviation of 1 which is shown as p(z) ⇠ N(0,I), because in this form
we can easily reparameterize the parameters into gradient descent process. It is proved that
with complex enough neural network we can regenerate any form of distribution from simple
normal distribution [24].
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2.3 Model Framework

In this section, we describe our neural network model for the task of relation classification.
As a reminder, the relation classification task is about assigning sentence with two marked
entities to a relation from a predefined set of relations. For example, the sentence “We
poured the <e1> milk </e1> into the <e2> pumpkin mixture </e2>.” expresses the relation
Entity-Destination(e1,e2). Since all input data has sequential structure, our model is based
on RNN architecture. An abstract illustration can be seen from Figure 2.7. We use a
discriminative model for classification and introduce a generative model for regularization.
The following parts will introduce the classifier (subsection 2.3.1) and introduce generative
model (subsection 2.3.2). In subsection 2.3.3, several techniques which are used to improve
training performance are described.

Fig. 2.7 Abstract illustration of model framework

2.3.1 Attention BiAGRU Model

Given a sequence of words as input, our goal is to: (1) calculate salience scores for each
word in our input sequence, and (2) construct hidden representations based on the salience
scores that is best suited for the sequence classification task. To this end, we propose the
Attention BiAGRU Model (ABAGM) which contains two parts: temporal attention module
and bidirectional attention-gated recurrent units. Our novel ABAGM model can be trained
end-to-end efficiently. A graphical illustration of the model’s architecture is shown in Figure
2.8.
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Fig. 2.8 The graphical illustration of our Attention BiAGRU Model (ABAGM). The top part
of the figure is bidirectional recurrent attention-gated units and the bottom is the temporal
attention module. Notice that at is scalar salience score which is calculated from both
forward and backward attention layer hidden state. The acquired salience score is further
propagated to bidirectional attention-GRU layer.
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Temporal Attention Module

Attention is widely used in many machine learning tasks with sequential structure data,
including object recognition [1], and machine translation [66] [2]. Incorporating the attention
mechanism allows the model to pay various level of focus on different parts of the input data.
Pei et al. [48] propose attention module specifically designed for sequence classification task.
Inspired by this idea, we propose our novel attention model with new architecture.

The objective of this module is to estimate the relevance of each part (token) in the
input sequence to the final classification. To fully capture the information carried by each
token, the salience score should not only depend on current time-step but also depend on
neighbouring tokens. To access more information, we consider the input sequence in both
directions instead of only looking at traditional forward direction. To efficiently leverage
information from both directions, we calculate the scalar salience score at time-step t using
Equation (2.14).

at = s(mT (
�!
h t ;
 �
h t)+b) (2.14)

Where m is the weight vector of merging layer and b is bias term. We concatenate hidden
states from both forward and backward directions, and feed it into the merging layer. To
constrain the resulting salience score to the interval from zero to one, we use logistic function
as nonlinear function s . Unlike [48] which uses vanilla RNN (described in subsection 2.1.1)
to calculate

�!
h t and

 �
h t , we use the bidirection LSTM (presented in Equation (2.4)) to model

the attention hidden states. By doing so, we allow the temporal attention module to keep
track of more information across the input sequence. Because the LSTM generally has larger
capability than vanilla RNN to extract knowledge from long sequence data [19].

Bidirectional Attention-Gated Recurrent Units

The objective of this module is to learn a hidden sequence representation that leverages the
salience attention score (from the temporal attention module) and sequential input data. In
order to achieve this, we design a novel bidirectional attention-gated recurrent units which
takes scalar salience score and sequential data as input. The recurrent unit structure is
devised based on the original GRU cell (Equation (2.5)). The model parameters are shown in
Equation (2.15), where ⇤ operation stands for scalar, vector multiplication. It can be seen that
at time-step t, high salience score at will force the output of recurrent unit Ht to focus more
on current hidden state H?

t and input xt . On the other hand, low salience score let the model
tend to ignore current input and hidden state and inherit more information from previous
time-steps. Unlike previous methods [2] [48] which only leverage unidirectional attention
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information, we assume attention score denotes the relevance level at different tokens of
input sequence from both forward and backward directions.

zt = s(W zxt +UzHt�1 +bz)

rt = s(W rxt +UrHt�1 +br)

H̃t = tanh(W Hxt +UHHt�1 ⇤ rt +bH)

H?
t = (1� zt)⇤Ht�1 + zt ⇤ H̃t

Ht = (1�at)⇤Ht�1 +at ⇤H?
t

(2.15)

Formally, given an input sequence X1,...,T = {x1, ...,xT} of length T in which xt 2 RD

denotes input feature at tth time-step. We first feed input sequence into temporal attention
module to calculate salience score sequence A1,...,T = {a1, ...,aT}. Then salience score
sequence is propagated into the bidirectional attention-gated recurrent units along with the
input sequence feature, the results are forward hidden state sequence {�!H 1, ...,

�!
H T} and

backward hidden state sequence { �H 1, ...,
 �
H T}. Instead of directly using final state of

�!
H T

and
 �
H T , we use max-pooling over time to extract the final representation of the hidden state

representaion
�!
H max,

 �
H max from both directions. The values of each dimension contained

in
�!
H max,

 �
H max are the maximum value across all time-steps. By doing this, we can extract

the most salient feature across all time-steps from both directions. For the last step, the final
hidden representation of the sequence is acquired by using weighted sum of

�!
H max and

 �
H max

shown in Equation (2.16). The sum of scalar weights w1 and w2 are normalized to one by
using the softmax function, and both weights are updated during the training process.

Ho = w1 ⇤
�!
H max +w2 ⇤

 �
H max (2.16)

Finally, the hidden representation Ho is fed into the classifier which has a weight matrix
Wclass 2 RD⇥N , where N is the number of classes, in order to calculate scores for each class.

2.3.2 Variational Autoencoder Language Model

The proposed model contains two parts: the discriminative classifier and the generative
regularizer. In this subsection, we introduce the generative regularizer which is a language
model (LM) based on the variational autoencoder (VAE).
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Model Design

The graphical illustration of this part is shown in Figure 2.9. We adopt the same structure
presented by Bowman et al. [4], where the inference network qq (encoder) and the generative
network pf (decoder) are single-layer LSTMs. Same as standard VAE setting [24], Gaussin
prior N(0,I) acts as a constrain on the hidden variable z. During the encoding stage,
the encoder network maps the sequence to a latent variable z. Notice that in order to
backpropagate the error during the training process, reparameterization trick [24] is adopted
where the mean and variance of hidden state distribution are parameterized as µ(z) and s(z).
During the decoding stage, the decoder serves as a special RNN language model which is
conditional on the hidden variable. In the degenerate setting where the distribution of z equals
to the Gaussian prior and zero KL-Divergence is acquired, the hidden variable encodes no
useful information. Then the VAE language model essentially equals to an RNN language
model.

Fig. 2.9 The abstract architecture of the variational autoencoder based language model, and
words are represented by feature vector.

When training VAE language model, we deem ELBOi(l ) in Equation (2.13) as negative
of loss objective. As a result, the loss function is shown in Equation (2.17), where the first
term is reconstruction cost and second term is KL-Divergence cost.

loss =�Eqq (z|xi)[logpf (xi|z)]+KL(qq (z|xi)||p(z)) (2.17)

The reconstruction cost is the data likelihood under the variational posterior (expressed
as cross-entropy) [4] and KL-Divergence cost of variational posterior can be calculated in
closed-form given the Gaussian prior. To calculate the data likelihood, at each time-step t,
the output of decoder LSTM cell ot 2 RM is passed to the softmax classifier with the weight
matrix Wso f tmax 2 RM⇥V , where M is the dimension of output size and V is the output
vocabulary size. Then the probability distribution over all possible words at this time-step is
inferred and based on this distribution the cross-entropy cost can be calculated.
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Optimization Challenges

An inference network which encodes useful information using the latent variable z will have
nonzero KL-Divergence term and a relatively small cross-entropy term. But when modelling
a text sequence, straightforward implementation fails to learn this behaviour. Instead, it
tends to learn a model that always sets qq (z|x) equal to prior p(z), resulting in a zero cost
for the KL-Divergence term. To address this, a KL cost annealing technique is introduced
by Bowman et al. [4] which sets a variable weight on the KL-Divergence term of the cost
function as shown in Equation (2.18). The weight term is set to a small value at the start of
training, and it is gradually increased to one as the training process continues.

loss =�Eqq (z|xi)[logpf (xi|z)]+b ⇥KL(qq (z|xi)||p(z)) (2.18)

Therefore, training VAE language model using KL cost annealing forces the inference
network to encode more useful information. As a result, the VAE based language model can
produce comparable performance to the RNN language model but can encode variational
information instead of just remembering word sequences like RNN language model [4].

2.3.3 Model Composition

In previous subsections, we described basic components of the proposed model framework.
In this subsection, we introduce how to combine these two parts together to form our final
configuration.

Suppose that we have the input sentence "the <e1> car </e1> has an <e2> engine
</e2>", the illustration of the proposed composition model is presented in Figure 2.10.

As shown in Figure 2.10, the entire framework combines the discriminative classifier and
the generative regularizer together. There are two pipelines in the model:

• In the first pipeline, the input sequence is fed into the ABAGM model to produce the
hidden representation of the sequence Ho 2RD where D is the dimension of the hidden
representation. The hidden representation Ho is further propagated into the classifier
which has the weight matrix Wclass 2 RD⇥N where N is the number of classes. Based
on the scores calculated from classifier, the relation prediction can be made.

• In the second pipeline, the input sequence is fed into the VAE language model. For the
inference network, the original input sequence is used. As for the generative network,
two special symbols <SOS> and <EOS> are used to indicate the start and the end of
input sentence.
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Fig. 2.10 Graphical illustration of compostion model

To connect these two pipelines together, at training time, each sentence s that belongs
to a given class c, we extract the cth column y of weight matrix Wclass as the compact
representation of the class c. The reason is that the class scores are always measured by the
closeness of the sentence hidden representation Ho and each column of Wclass. So that the
columns of Wclass are compact vector representation of different classes [54]. The extracted
label vector of the corresponding correct class type is further passed into the decoder of the
VAE language model. At each time-step t, the label vector y 2 RD is concatenated with
the output of the decoder LSTM cell ot 2 RM and is fed into the softmax classifier with
the weight matrix Wso f tmax 2 R(D+M)⇥V to produce a probability distribution of next word.
Then the VAE language model can be trained using cross-entropy loss function.

After combining these two parts, the composition model can be trained jointly. We
incorporate the VAE language model into the entire framework so it can act as a regularizer
for the classifier. Because the generative network is conditioned on both the hidden variable
z and the sentence label y, the ELBO term in Equation (2.13) is modified to form Equation
(2.19) where yi is the class label for input xi.

ELBOi(q ,f) = Eqq (z|xi)[logpf (xi|z,yi)]�KL(qq (z|xi)||p(z)) (2.19)

In this case, the VAE language model forces the class matrix Wclass to encode more in-
formation such that the decoder can better reconstruct the original input sentence. Apart
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from regularizing the class matrix, we also include regularization for the input feature. In
NLP tasks, the input text is always converted to compact feature representation by mapping
from word embeddings. The detailed discussion is presented in Chapter 4. When training
end-to-end model, the embeddings of words are always updated accordingly during the
training process. Thus by introducing the VAE language model into the framework, we
let the model update the word embeddings both for classification task and for language
modelling task which is the second regularization imposed on input feature. In conclusion,
the regularization from VAE language model for the classifier mainly contains two aspects:

• Forcing the class label matrix Wclass to encode more information to help the VAE
language model better reconstruct the original sentence.

• Updating the word embeddings during the training process for both the classification
task along with the language modelling purpose.

2.4 Training Objective

In this subsection, we describe the objective function used for training the composition model.
The model mainly contains three components and they are introduced in the following parts.

2.4.1 Cross-Entropy Loss for Relation Classification

First we use Wc to denote the class matrix Wclass mentioned earlier. For a softmax classifier,
given a hidden representation Hso of some input sequence s, the probability of the sequence
s belonging to class k is calculated by Equation (2.20). The cross-entropy loss is further
defined as Equation (2.21). By adopting this loss function, for each input, the model tends to
maximize the probability of the correct label while minimize the probability of the incorrect
ones.

P(yk|s) =
exp{WT

ckHso +bk}
ÂK

i=1 exp{WT
ciHso +bi}

(2.20)

Lce =�Â
i

yilog(P(yi|s)) (2.21)

2.4.2 Rank Loss

The pairwise rank loss for relation classification is proposed in [54] which is shown in
Equation (2.22).

L = log(1+ exp(g(m+� sq (x)y+)))+ log(1+ exp(g(m�+ sq (x)c�))) (2.22)



22 Relation Classification Methodology

In Equation (2.22), m+ and m� are margins and g is scaling factor that magnifies the
difference between the scores and the margin helps to penalize the prediction errors; the
terms sq (x)y+ and sq (x)c� stand for scores of the correct label class and the negative label
class c�, in [54] the class c� is chosen as the incorrect class with largest score (c� =

argmaxc2C;c6=y+ sq (x)c). It can be seen that the first term in Equation (2.22) decreases as the
correct label score sq (x)y+ increases and the second term decreases as the incorrect label
score c� decreases.

sq (x)k = HT
so[Wc]k (2.23)

For the input sequence s, the scores are calculated using the class matrix Wc without the bias
term shown in Equation (2.23). Santos et al. [54] propose a special treatment for artificial
class "Other" where the label vector of "Other" is not learned, resulting in the class matrix
Wc 2 RD⇥(N�1). At training stage, if one sentence does not belong to any of the actual
classes, put it in another word it belongs to artificial class "Other", the first term of Equation
(2.22) is set to zero. At prediction stage, if all scores for actual classes are negative, then the
predicted class will be the remaining artificial class "Other".

For our case, we modify the original rank loss formula. First, in order to combine
cross-entropy loss and rank loss, we do not impose special treatment on the artificial class, in
which case, the class matrix Wc 2 RD⇥N . Second, in our experiments, we found that only
sampling one negative class is too unstable, thus instead of sampling negative class with
largest score, we sample k negative classes with top k largest scores. We found that choosing
k as 5 for Semeval-2010 task 8 dataset and KBP37 dataset is a suitable setting, and for CID
task k is set to 1. As a result, the modified version of rank loss is shown in Equation (2.24),
where C contains k negative class labels with top k negative class scores.

Lrank = log(1+ exp(g(m+� sq (x)y+)))+ Â
i2C

log(1+ exp(g(m�+ sq (x)i))) (2.24)

2.4.3 Language Model Loss

The third main component of entire loss function is acquired from the VAE language model
which acts as a regularizer for the classifier. Since KL-annealing is adopted (subsection
2.3.2), the VAE loss for one input data xi can be calculated as Equation (2.25). Notice that
the Gaussian prior (N(0,I)) is used over hidden variable, we assume xi = {w1, ...,wL} has
length L and the dimension of hidden variable z is D. And KL-Divergence cost weight b is
gradully increased to one as training proceeds, where the rate of increase is a hyperparameter
which can be tuned on the validation dataset.
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Lvae =�Eqq (z|xi)[logpf (xi|z)]+b ⇥KL(qq (z|xi)||p(z))

=�log
L

’
i=1

P(wi|z)�b ⇥ 1
2

D

Â
j=1

(1+ log(s(z)2
j)�µ(z)2

j �s(z)2
j)

=�
L

Â
i=1

logP(wi|z)�b ⇥ 1
2

D

Â
j=1

(1+ log(s(z)2
j)�µ(z)2

j �s(z)2
j)

(2.25)

2.4.4 Final Composition Loss Function

The final composition loss function is built from all three components discussed earlier along
with L2-Norm loss. The loss function over entire dataset which contains N samples is shown
in Equation (2.26).

L f inal =
1
N

N

Â
n=1

(Ln
ce +Ln

rank +a⇥Ln
vae + g⇥klk2) (2.26)

In Equation (2.26), l stands for all the parameters contained in the composition model.
We penalize the parameters to prevent large values, we also place equal importance on
cross-entropy term and rank loss term since both terms are directly related to classification
performance. We downgrade the importance of VAE language model loss and L2-Norm loss,
since they act as a regularizer and do not hold equal importance as the previous two terms.

2.5 Tuning Hyperparameters using Bayesian Optimization

Neural network models are very susceptible to many factors like parameter initialization and
hyperparameter setting [21], and different hyperparameter settings always have larger effect
than different parameter initialization. To choose a relatively good set of hyperparameters,
grid search method is usually used with cross validation or on held-out validation set. Grid
search has its advantage that it is very easy to implement, but it also has obvious disadvantages
like taking too much time to search all points on the grid and the search point value may
not be optimal at the beginning. Therefore we use Bayesian Optimization (BO) to tune
hyperparameters instead of using traditional grid search.

We treat the model as a complex function f , and our goal is to solve x? = argmaxx2X f (x)
where f (x) stands for model performance on specific task. We make nonparametric treatment
on function f and approximate f using a proxy function f̃ which we assume to be drawn from
a Gaussian Process (GP) prior, i.e. f̃ 2 GP(µ,k) where we take mean function µ = 0. The
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choice of kernel has an impact on how well the proxy function represents the real objective
function [57] and careful consideration must be taken when choosing kernel k. We follow the
idea proposed in [57] to choose the ARD Matern 5/2 kernel shown in Equation (2.27) as k.

KM52(x,x0) = q0(1+
q

5r2(x,x0)+ 5
3

r2(x,x0))exp{�
q

5r2(x,x0)} (2.27)

Suppose that f has been evaluated n times yielding D = {xn,yn}, where yn 2N( f (xn),s2
noise).

The prior assumed on f̃ and D induce a posterior over functions, f̃ |D 2 GP(µ 0,k0).
To choose where to evaluate f next, we rely on an acquisition function which depends on

the previous observations D and on the GP hyperparameters q . We denote the acquisition
function as a(x|D,q) which computes salience scores for different choices of x to evaluate
next. There are different acquisition functions which can be used [57] i.e. Probability of
Improvement (Equation (2.28)), Expected Improvement (Equation (2.29)), and GP Upper
Confidence Bound (Equation (2.30)).

aPI(x;xn,yn,q) = F(g(x))

g(x) = f (xbest)�µ(x;{xn,yn},q)
s(xn;{xn,yn},q)

(2.28)

aEI(x;{xn,yn},q) = s(x;{xn,yn},q)(g(x)F(g(x))+N(g(x);0,1)) (2.29)

aUCB(x;{xn,yn},q) = µ(x;{xn,yn},q)� kg(x;{xn,yn},q) (2.30)

In our work, we use Expected Improvement (Equation (2.29)) as our acquisition function
for it can take balance between exploration and exploitation. Specifically, when tuning
hyperparameters, each set of hyperparameter denotes one sample of x and the corresponding
model performance is y. For each experiment, if no official validation set exists, we then split
the training set into two parts and use one as validation. By using Bayesion Optimization to
tune hyperparameters on validation set, we aim at finding optimal setting of hyperparameters
with less effort comparing with grid search approach.



Chapter 3

Relation Extraction Methodology

In previous chapter, we describe our methodology for the relation classification task. In this
chapter, we move one step further to solve the relation extraction task in general. Relation
classification is usually considered as a subtask of relation extraction which is defined as:
given a sequence of raw text, the goal is to extract correct triplets that contain two entities and
their corresponding relation r which belongs to predefined set of relations R. For instance,
given input sentence The United States President Trump will visit the Apple Inc and
CEO Cook will entertain him in person., there should be two extracted triplets which are
{United States, Country-President, Trump} and {Apple Inc, Company-CEO, Cook}. For
these extracted triplets, the two entities are {United States, Trump} and {Apple Inc, Cook},
in which the corresponding relations are Country-President and Company-CEO.

The main differences between relation classification and relation extraction are:

• In relation classification, the target words are always given and the entity relation is
classified given the target words and context. On the other hand, for relation extraction,
only the raw text is given and the task is to determine the words of interest (target
nominals) as well as the relation linking them.

• In relation classification, only one relation is classified at one time; so that for previous
example, if we want to determine the relation between {United States, Trump} and
{Apple Inc, Cook}, we have to classify twice and at each time we mark different
entities as target nominals. For relation extraction, the goal is to extract all possible
triplets at one run, thus it saves us the effort to run multiple classifications for different
pair of target entities.

Traditional relation extraction solutions consist of two steps: (1) entity recognition [43],
(2) relation classification [52]. In the first step, the system pinpoints the possible pairs of
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entities that may share a relation. In the second step, the system classifies every possible
pair of entities. This separated framework makes the task more straightforward to deal with
and each component can be performed independently. However, one disadvantage is that by
separating relation extraction in two steps, it neglects the internal relevance between these
two components. Thus, the performance of entity recognition may affect the performance of
relation classification and lead to error propagation [31]. To merge these two steps into one
pipeline, Zheng et al. [90] proposed to transform relation extraction into sequence tagging
problem and achieved state-of-the-art performance on one public dataset.

Inspired by this idea, we make modifications to our previously proposed model to fit
sequence tagging task. In this chapter, we demonstrate how to leverage our model to solve
relation extraction problem in general. In the first section, we discuss sequence-to-sequence
modelling in NLP literature. In the second section, we demonstrate how to modify our
proposed model for relation extraction.

3.1 Sequence-to-Sequence Modelling

Sequence-to-sequence modelling is a fundamental concept in NLP literature where many
tasks can be seen as sequence-to-sequence prediction; for example, machine translation
(MT) [64], part-of-speech (POS) tagging [71], and name entity recognition (NER) [29].
Sequence-to-sequence modelling can be generally formulated as given an input sequence
X1:T with length T , the model is tasked to produce an output sequence Y1:L with length L.
For different tasks the definition of input and output can differ. For instance, in machine
translation, the input sequence is always the reference language sentence and the output
sequence is the target language sentence. Since the input and output sequences belong to
different languages, the input length T and output length L are not expected to be equal
in general; whereas for name entity recognition, the input sequence is raw text and output
sequence is the entity types corresponding to each input word; here, we expect the input
sequence length to equal the output sequence length.

For the remainder of this chapter, we demonstrate how to transform the relation extraction
task as a sequence tagging problem and how to modify our model to fit this task. Finally, at
the end of this chapter, different training objectives which can be used in this scheme are
described.
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3.2 Relation Extraction as Sequence Tagging Task

3.2.1 The Tagging Scheme

Fig. 3.1 Reference annotation for example sentence, where "CP” stands for "country-
president” and "CF” stands for "Company-Founder”.

An example of how tagging scheme works is shown in Figure 3.1. Each word of the
input sentence is assigned to a label from the predefined label set. Tag "O” stands for the
"Other” tag, where words assigned to this label do not contribute to the final extracted result.
Apart from the "O” tag, the remaining tags consist of three parts: (1) the word position in
the entity, (2) the relation type and (3) the relation role. To represent word position, "BIES”
(Begin, Inside, End, Single) signs are used to denote the positional information of a word
in the entity. The relation type belongs to a set of predefined relations and the relation role
are denoted by number "1” and "2”. An extracted result can be represented as a triplet:
(Entity1,RelationType,Entity2), where "1” means that the word belongs to the first entity
in the triplet; likewise, the number "2” means that the word belongs to the second entity
in the triplet. Thus, for a predefined relation set with size |R|, the total number of possible
sequential tag labels is Nt = 2⇥4⇥ |R|+1, where 1 accounts for the "Other” tag.

The example in Figure 3.1 illustrates how to transform the relation extraction task to
a sequence tagging task. The first triplet is {United States, Country-President, Trump} in
which the first entity is United States and the second entity is Trump. Note that for the first
entity there is no inside word between United and States, thus the word United is mapped
to tag B-CP-1 and States is mapped to tag E-CP-1. Since there is only one word in the
second entity, thus the word Trump is mapped to tag S-CP-2. The same rule applies to the
second triplet {Facebook Inc, Company-Founder, Mark Elliot Zuckerberg}, in which case
{Facebook Inc} is mapped to {B-CF-1 E-CF-1} and {Mark Elliot Zuckerberg} is mapped to
{B-CF-2 I-CF-2 E-CF-2}.

By using this tagging scheme, the relation extraction problem can be reformulated
as a sequence tagging problem instead of being solved in entity recognition and relation
classification independently. This allows us to tackle this problem with unified end-to-end
model.
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3.2.2 Extract Results from Tag Sequence

After getting tag sequence, the triplet results can be formed from entities which have same
relation type. For the example in Figure 3.1, United States and Trump share the same relation
type, thus the extracted triplet is formed from these two entities and their corresponding
relation. To determine the position of the entities in the extracted triplet, the ’relation role’
component of the tag is used. Since United States has role "1” and Trump has role "2”, thus
the final extracted result is {United States, Country-President, Trump}.

An output tag sequence may contain several pairs of entities which all can have the
same relation type. For example, if the sentence is {The United States President Trump will
meet France President Emmanuel Macron}, then the corresponding tag sequence will be {O
B-CP-1 E-CP-1 O S-CP-2 O O S-CP-1 O B-CP-2 E-CP-2}. When this situation happens, the
triplet is formed from the entities that are closest to each other. So that United States forms a
triplet with Trump and France forms a triplet with Emmanuel Macron.

In our work, we only consider entities that belong to only one triplet (As is the case
with previous work by Zheng et al. [90]). Each entity can only be assigned to exactly one
relation type, which means that different relations cannot be allocated to the same entity. The
identification of overlapping relations is left for future work.

3.2.3 Att-BiAGRU Sequence Model

Fig. 3.2 General framework of our proposed Att-BiAGRU sequence model

The general paradigm of our proposed sequence model is shown in Figure 3.2. It can be
seen that the sequence tagging model is mainly based on our relation classification model
(discussed in Chapter 2), with one modification made. There are still two modules contained
in the model (the temporal attention module and the BiAGRU module).
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The temporal attention module has the same architecture as the one described in sub-
section 2.3.1. The input sequence feature X1:T = x1, ...,xT is first fed into a bidirectional
LSTM layer and based on the bidirectional output the corresponding salience score sequence
A1:T = a1, ...,aT can be calculated via Equation (2.14). The acquired salience score se-
quence is further propagated to bidirectional attention-gated recurrent units (AGRU) layer,
then a forward hidden state sequence {�!H 1, ...,

�!
H T} and backward hidden state sequence

{ �H 1, ...,
 �
H T} are calculated via Equation (2.15). The one modification compared with model

in Chapter 2 happens after getting forward and backward hidden state sequences. Since, we
are dealing with sequence modelling, we directly concatenate both hidden state sequences
together to form the final sequence representation: O1:T = o1, ...,oT , where at each time-step
t the vector ot is obtained by concatenating the forward state

�!
H t and the backward state

 �
H t .

3.2.4 Calculate Sequence Output

For an input sequence X1:T = x1, ...,xT , we first compute the sequence representation O1:T =

o1, ...,oT 2RT⇥h, where h is hidden size of recurrent unit. Then, the sequence representation
is passed through a weight matrix W 2 Rh⇥N and bias term b 2 R1⇥N to compute the final
score matrix P 2 RT⇥N , where N is number of distinct tags and Pi, j corresponds to the score
of the jth tag of ith word in the sentence. The next step is to compute final sequence tag
prediction from score matrix P, we consider two alternatives (i) using a Softmax, and (ii)
using a Conditional Random Field. We discuss both alternatives in the remaining subsections.

Softmax Prediction

The first alternative to predict final tag sequence from score matrix is using softmax function,
where at each time-step t, the vector Pt 2 R1⇥N is transformed into valid probability distribu-
tion over all distinct tags through Equation (3.1). The term P(yi|xt) denotes the probability
of word xt has tag yi.

P(yi|xt) =
exp(Pti)

ÂN
j=1 exp(Pt j)

(3.1)

For each time-step t, the model selects the tag prediction with the largest probability value,
the tag sequence with length T can be acquired by repeating this calculation T times.

In the training process, the cross-entropy loss is computed over entire sequence. The
formula is described in Equation (3.2), where T is sequence length and N is the distinct tag
number.

LCE =�
T

Â
t=1

N

Â
j=1

y jlog(P(y j|xt)) (3.2)
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CRF Prediction

When using previous method to make final prediction, the tagging decisions are made
locally. To leverage the intermediate connection between different time-steps, tagging model
based on conditional random field (CRF) [28] is proposed in [29]. For an input sequence
X1:T = x1, ...,xT , the score matrix P 2 RT⇥N is computed from sequence model. Similarly,
T is sequence length and N is number of distinct tags, and Pi, j denotes the score of the jth

tag of ith word in the sentence. For a sequence of prediction Y1:T = y1, ...,yT , the prediction
score is defined as Equation (3.3), where A is a matrix of transition scores that Ai, j denotes
the score of transition from tag i to tag j. y0 and yn are always the start and end tags of a
sequence which are manually added to the set of possible tags.

S(X1:T ,Y1:T ) =
T

Â
i=0

Ayi,yi+1 +
T

Â
i=1

Pi,yi (3.3)

The probability of one possible output tag sequence y is computed as Equation (3.4),
where YX denotes the set of all possible tag sequences for an input sequence X1:T .

P(y|X1:T ) =
exp(S(X1:T ,y))

Âỹ2YX exp(S(X1:T , ỹ))
(3.4)

During training, the training objective is the negative log-probability of correct tag sequence
which is defined in Equation (3.5). It is evident that this objective encourages the network to
produce a valid sequence of tag labels.

LCRF =�log(P(y|X1:T )) =�S(X1:T ,y)+ log( Â
ỹ2YX

exp(S(X1:T , ỹ))) (3.5)

While decoding, the output sequence is predicted as described in Equation (3.6), and it can
be efficiently computed by dynamic programming, i.e. Viterbi Algorithm [67].

y? = argmax
ỹ2YX

S(X1:T , ỹ) (3.6)

3.2.5 Hyperparameters Tuning

For simplicity, we keep all recurrent unit hidden size the same and we add L2-Norm regu-
larization to the model parameters so that when using the softmax prediction the training
objective is shown in Equation (3.7), where l stands for model parameters and b is L2
regularization strength. When we use the CRF prediction, the training objective is defined as
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Equation (3.8).
L = LCE +b ⇥klk2 (3.7)

L = LCRF +b ⇥klk2 (3.8)

As a result, to construct our sequence model, the hyperparameters set contains three parts:
(1) recurrent unit hidden size, (2) L2-Norm regularization strength and (3) initial learning
rate. All these hyperparameters are automatically tuned via Bayesian Optimization (BO) as
described in Chapter 2.





Chapter 4

Relation Classification Experiments

In this chapter, we discuss about various aspects regarding experiments for relation classifi-
cation task. In order to demonstrate the effectiveness of our work, we apply our proposed
method to three relation classification datasets, two from general domain, and one from a
specialised domain (biomedical). We detail the experiment setup along with the results for
each experiment.

4.1 Experiment Setup

In this section, we discuss several key aspects for the experiment setup. First, we introduce
how to construct feature representation from raw input data. Then, we demonstrate the
regularization and learning technique for the model training process. Finally, we describe all
hyperparameters that are involved in our model.

4.1.1 Word Embeddings Input Layer

In most NLP models and applications, words in raw text are represented as word embeddings
[38] which is often a dense vector representation of words. Pretrained word embeddings can
be acquired through unsupervised learning on large scale corpus.

Suppose we have a pretrained word embeddings Wembedding 2RV⇥d where d is dimension
of the word embeddings and V is the vocabulary size. A given raw text sequence s =
{w1, ...,wL} has the length L. Each word i is first mapped to a one-hot vector si 2 R1⇥V ,
where only one corresponding index has a value of one and all other indexes have value of
zero. The one-hot representation of input sequence s of length L is S 2 RL⇥V . Following
Equation (4.1), the raw text sequence can be mapped into the corresponding compact input
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representation Winput 2 RL⇥d .
Winput = SWembedding (4.1)

One benefit of mapping the raw input to embeddings through input layer is that it allows
us to jointly update the input layer weights (the word embeddings) through the training
process. Generally, conducting task-oriented optimization on pretrain word embeddings can
improve system performance on specific task.

In this work, we use pretrained word embeddings 1 trained on Wikipedia using Glove
Algorithm [49], where the dimensionality of the embeddings is 300.

4.1.2 Position Indicator

Because in relation classification task, it is important to let the model know the position of
target nominals. For RNN-based model, since it learns knowledge from entire word sequence,
therefore the target nominal positions can be automatically recognized in the forward and
backward recursive propagation. One simple and effective approach to help the model better
recognize target nominals is proposed by Zhang et al. [87]. They propose position indicator
technique, in which case, embeddings for four position indicators <e1>, </e1>, <e2> and
</e2> are randomly initialized. And for each word sequence, these indicators are inserted
around target nominals. The following is an example:“<e1> people </e1> have been moving
back into <e2> downtown </e2>”. In this example, the target nominals are people and
downtown, and mapping this processed sequence through embedding layer can help the
model better recognize the target word positions. It can further let the model better calculate
the relative importance of the words surrounding the nominals.

4.1.3 Model Training

In this subsection, we detail the training process used in our experiments, as well as steps
taken for the model’s regularization, and hyperparameter selection.

Model Regularization and Training

Generally, in deep learning application, neural networks model has large number of parame-
ters which give it high capacity to fit complex function but also let it suffer from overfitting
problem. To address this, various approaches have been developed such as dropout [61],
and L2 regularization. Work by Zaremba et al. [85] has shown that standard dropout does
not work on Recurrent Neural Network, and they proposed a modified dropout. In our

1The word embeddings can be freely downloaded from https://github.com/chakki-works/chakin
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training process, we use the approach proposed by Zaremba et al. [85] for both the Attention
BiAGRU Model and the VAE language model. We apply this dropout in the input embedding
layer (dropout=0.5). To reduce vanishing gradient or gradient explosion problem, we also
adopt the back propagation through time (BPTT) [73] and gradient clipping (threshold is
10.0). To restrict parameter from getting too large, L2-Norm regularization is used on model
parameters.

Optimizer and Learning Rate

There is no guarantee to find global optimal parameters while training a neural networks
model, thus stochastic gradient descent approach is the standard approach for training. To
improve training stability and model performance, various optimization algorithms have been
devised. In this work, we use the Adagrad optimizer [12], because this optimizer can adapt
the learning rate to model parameters. It performs smaller updates (low learning rates) for
parameters associated with frequently occurring features, and larger updates (high learning
rates) for parameters associated with infrequent features.

We follow Equation (4.2) to dynamically adjust the learning rate through the training
process, where linit is the initial learning rate and T is the training epoch. By doing so, at the
start of training, we allow the model to update its parameters at a faster rate, and then update
parameters at a slower rate towards the end of the training process. The value of linit is a
hyperparameter which is automatically tuned through the Bayesian Optimization process.

lr =
linit

T
(4.2)

Another important parameter in the training process is the mini-batch size during the
stochastic training process. In our work, we set batch size as 32.

4.1.4 Model Hyperparameters

In this part, we describe all model hyperparameters which are automatically tuned via
Bayesian Optimization. The hyperparameters are listed as follows:

• Recurrent unit hidden size: For simplicity, we set same hidden size of all recurrent
units contained in the entire framework, which includes temporal attention module
unit, attention-gated recurrent unit, encoder and decoder units of the VAE.

• L2-Norm regularization strength: Another hyperparameter is the strength of L2-
Norm regularization on model parameters which is g in Equation (2.26). By setting
large g , we penalize more on weights that get too large, and vice versa.
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• Initial learning rate: As described in subsection 4.1.3, learning rate is hyperparameter
we have to tune in order to get robust system performance. So that in Bayesian
Optimization process, we also tune the linit shown in Equation (4.2).

• Vocabulary size: In the training process of language model, the number of words in
the vocabulary can significantly affect the performance. In standard dataset like Penn
Treebank [37], the vocabulary size is about 10,000. In our experiment, we found that
when vocabulary gets too large (i.e. over 30,000), the VAE language model training
process can become very unstable, thus we also set a hyperparameter of vocabulary
size in our model framework. Suppose we have vocabulary size k, the words contained
in specific dataset are sorted according to frequency and top k words are added to the
vocabulary set while all other words are mapped to special token "_unk_".

• VAE language model loss weight: In our model, we use the VAE language model as
regularizer for the classifier. Since the VAE LM loss does not directly improve the
classification performance, thus the regularization strength a (Equation (2.26)) should
also be adjusted to achieve optimal performance.

• m+ and m�: The last two hyperparameters are m+ and m� contained in rank loss
function shown in Equation (2.24). In our experiments, we found that fine tuning these
two parameters has significant influence on model performance, and bad choice of m+

and m� can easily cause the training process diverse and model is therefore collapsed.

4.2 SemEval-2010 Task 8

Recall that relation classification task is about given a sentence and two marked entities, and
we want to classify the relation between the marked entities given context. To demonstrate
the effectiveness of our model, we perform experiments on two general domain datasets and
one biomedical domain dataset.

First, we use the SemEval-2010 Task 8 dataset [18] to perform experiments. This dataset
contains 10,717 examples annotated with 9 different relation types and an artificial relation
type "Other", which is used to indicate that the relation in the example does not belong
to any of the nine main relation types. The nine relations are Cause-Effect, Component-
Whole, Content-Container, Entity-Destination, Entity-Origin, Instrument-Agency, Member-
Collection, Message-Topic and Product-Producer. Each example contains a sentence marked
with two nominals e1 and e2, and the task is about predicting the relation between the two
nominals and taking into account the directionality. That means that the relation Cause-
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Effect(e1,e2) is different from the relation Cause-Effect(e2,e1), as shown in the examples
below.

• When deliberations began , the <e1> crowd </e1> of people jamming the hallways
radiated <e2> optimism </e2>. ! Cause-Effect(e1,e2)

• Generally it appears that most of the <e1> damage </e1> was caused by the winds and
the rough <e2> seas </e2>. ! Cause-Effect(e2,e1)

The statistics of each relation type contained in training and test data of SemEval-2010
Task 8 dataset are shown in Table 4.1 and more information can be found in [18].

Training Set Test Set
Relation Type Number of Samples Propotion (%) Number of Samples Propotion (%)

Cause-Effect(e1,e2) 344 4.30 134 4.93
Cause-Effect(e2,e1) 659 8.24 194 7.14

Component-Whole(e1,e2) 470 5.87 162 5.96
Component-Whole(e2,e1) 471 5.89 150 5.52
Content-Container(e1,e2) 374 4.68 153 5.63
Content-Container(e2,e1) 166 2.08 39 1.44
Entity-Destination(e1,e2) 844 10.55 291 10.71
Entity-Destination(e2,e1) 1 0.01 1 0.04

Entity-Origin(e1,e2) 568 7.10 211 7.76
Entity-Origin(e2,e1) 148 1.85 47 1.73

Instrument-Agency(e1,e2) 97 1.21 22 0.81
Instrument-Agency(e2,e1) 407 5.09 134 4.93
Member-Collection(e1,e2) 78 0.98 32 1.78
Member-Collection(e2,e1) 612 7.65 201 7.40

Message-Topic(e1,e2) 490 6.13 210 7.73
Message-Topic(e2,e1) 144 1.80 51 1.88

Product-Producer(e1,e2) 323 4.04 108 3.97
Product-Producer(e2,e1) 394 4.93 123 4.52

Other 1410 17.63 454 16.71
Total 8000 100 2717 100

Table 4.1 SemEval-2010 Task 8 dataset statistic

The SemEval-2010 Task 8 dataset is already partitioned into 8,000 training instances and
2,717 test instances. We evaluate our systems by using the SemEval-2010 Task 8 official
scorer, which computes the macro-average F1 Score for the nine actual relations (excluding
"Other" ).

4.2.1 Experiment Results

In this part, we present the experiment results on SemEval-2010 Task 8 dataset. To fully
analyze the design of our model, we conduct several experiments based on variations of our
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proposed composition model, and we compare our results with the most recent state-of-the-art
results in published literature.

Three different variations of our model are listed as below:

• BiGRU-Attention + BiAGRU Model: To construct temporal attention module, we
use bidirectional recurrent layer with standard recurrent unit. We compare the perfor-
mance of different recurrent units (GRU and LSTM cells) for constructing the attention
module.

• BiLSTM-Attention + UniAGRU Model: To examine the effect of the bidirectionality
attribute of the AGRU layer, the model with unidirectional AGRU layer on top of
BiLSTM attention module is used to conduct experiments, so that we can see the
performance difference.

• BiLSTM-Attention + BiAGRU Model: For this model, bidiretional LSTM cells
are used to construct attention module and bidirectional AGRU layer is also used as
described in Chapter 2. The results are compared with previous two variations.

The experiment results are shown in Table 4.2, all figures are F1 Score computed by the
official task scorer [18] and {+ VAE LM} means adding VAE language model regularizer on
the classifier.

Model Type Classifier + VAE LM

BiAGRU-Attention + BiAGRU 85.7 86.0

BiLSTM-Attention + UniAGRU 85.4 85.6

BiLSTM-Attention + BiAGRU 85.9 86.3

Table 4.2 System performance of different model variations

From results in Table 4.2, we can see that the best model setting uses the BiLSTM for the
temporal attention module and uses bidirectional ARGU layer to model the input sequence
along with computed salience scores. The performance improvement acquired from the
VAE language model is significant, the two reasons for this improvement is due to the
regularizations provided by the language model (described in subsection 2.3.3).

The optimal hyperparameters for {BiLSTM-Attention + BiAGRU} model acquired from
Bayesian Optimisation are shown in Table 4.3, note that we do not tune vocabulary size
(21819) in the experiments because the vocabulary set is relatively small for this dataset.
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Hyperparameter Value

Recurrent unit hidden size 126

L2-Norm regularization strength 7.61e-4

Initial learning rate 7.92e-2

VAE language model loss weight 0.729

m+ 2.089

m� 0.407

Table 4.3 Optimal model hyperparameters values for SemEval-2010 Task 8 dataset

We now compare our model performance with existing state-of-the-art results published
in literature. The results are shown in Table 4.4. We can see that our model achieves on a par
with state-of-the-art performance without using external knowledge (in paper [89], Stanford
POS Tagger toolkit is used to acquire POS features).

4.2.2 Model Analysis

In this subsection, we present analysis of the temporal attention module and VAE language
model and their effect on the overall architecture.

We select samples from six different relation types to visualize the salience scores
computed from these samples. The results are shown in Figure 4.1, where the color indicates
the value of salience score. As the right legend shows, the deeper the color is the larger the
salience score is, then we can know which word matters more given different context.

From the results we observe that using the position indicators can help the model pinpoint
the location of the two marked nominals. In the last example where two nominals are
relatively far apart from each other, the model can still assign relatively high salience score
for these two nominals, by doing so, the model improves its prediction compared to a model
that does not know the exact nominal locations.

Secondly, we can see that the model is able to automatically learn which words are more
important under different relation types. For example, the first instance belongs to relation
type Cause-Effect(e1,e2), and the words with highest salience scores apart from target
nominals are the phrase caused a. This phrase clearly indicates the relationship between two
nominals is Cause-Effect(e1,e2) even without the help of other words. We can also see from
last instance that if we only look at words with high salience score, the sentence is {chimps
make their rods} which clearly belongs to the relation type Product-Producer(e2,e1).
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Model F1-score (%)

Non-Neural Networks Model

SVM [52] 82.2

Shortest Dependency Tree (SDP) Model

MVRNN [58] 82.4

FCM[83] 83.0

DepNN [33] 83.6

depLCNN+NS[76] 85.6

SDP-LSTM[78] 83.7

DRNNs [77] 86.1

End-To-End Model

CNN [86] 82.7

ER-CNN + R-RNN [68] 84.2

Attention-based Model

Attention-CNN [56] 85.9

AT-BiLSTM [89] 86.3

Multi-Att-CNN [70] 88.0?

Our Model

Att-BiAGRU-VAE 86.3

Table 4.4 Result comparison with previous publications (?: We fail to reimplement the result
of Multi-Att-CNN, our result is about 84.8. The authors of the paper [89] were also not
able to reproduce the result. There are also online reimplementations that can be found, the
experiment on the Github https://github.com/FrankWork/acnn is not able to replicate the
result as well. We think the reason might be that some details or tricks are missing in the
paper.)
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Fig. 4.1 Attention layer visualization
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As a result, we can derive following conclusions from attention visualization:

• Using position indicator can help the model pinpoint the exact location of two marked
nominals and therefore more accurate decision can be made by the model.

• The attention layer helps the model automatically learn which words are more important
given specific relation type, even with long sequence where two nominals are relative
far from each other, the model is still able to find important words.

Generating New Sentences

As mentioned earlier, our model consists of one discriminative classifier and one generative
regularizer. To conduct classification, the discriminative component can be used; likewise,
we can use the generative component to generate text, which is an advantage of generative
model [24]. In this part, we use an interesting aspect of our model in which we can generate
new instance of any relation type we want.

Recall that the generative network (decoder) in our model takes the form of pf (xi|z,yi),
thus the generated sample xi is both conditioned on the latent variable z and relation type
yi. As a result, it is expected that by varying label yi we can generate sentences of different
relations given same z and by varying z we can generate different sentences of same relation
given same yi. To justify our hypothesis, we randomly sample two initial z from Gaussian
prior, and for each z we feed it into the generative network of the VAE along with ten different
relation labels. For simplicity, to generate new samples, we use greedy decoding approach,
in which case, at each time-step we choose the word with highest probability. The generated
results are shown in Table 4.5, from which we can see that most of the generated instances
are reasonable and belong to the specific type of relation. Note that by training the model
with the special position indicators <e1>, </e1>, <e2> and </e2>, the generated network
is able to produce sentence with corresponding position indicators. In which case, we can
clearly see the two marked nominals.

From the above analysis, we can conclude that for each instance xi, the composition
model decomposes sentence knowledge into two parts. The first part is the internal topic
of sentence which is the relation type yi. The second part is abstract attributes which are
contained in the hidden variable z. The attributes may decide how the instance is formed, i.e.
the word choices, sentence length or the style of the sentence. To provide direct illustration,
we use T-SNE [36] approach to visualize the hidden representation Ho (Equation (2.16)) and
hidden variable z for both training and test data. The results are shown in Figure 4.2 to 4.5.

From above results, we can see that the hidden representation Ho of both training data
and test data are clearly separable (the noisy class with colur of bright yellow is the artificial
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Relation Type Sample 1 Sample 2

Cause-Effect(e1,e2) the <e1> transmitter </e1>
emits a <e2> mistake </e2> .

the <e1> earthquake </e1>
caused the resulting <e2>

signal </e2> .

Cause-Effect(e2,e1)
the <e1> pain </e1>

was caused by
the <e2> sun </e2> .

the first <e1> accident
</e1> was caused by the

<e2> sun </e2> .

Instrument-Agency(e1,e2)
the <e1> electrician </e1> is

a utensil for a <e2>
programmer </e2> .

the best <e1> spikes </e1>
are used by <e2>
painters </e2> .

Instrument-Agency(e2,e1)
the <e1> defendant </e1>

killed the victim with
a <e2> spear </e2> .

the relying <e1> shooter
</e1> uses a <e2> glove

</e2> with a roller and a spear .

Content-Container(e1,e2) the <e1> bomb </e1> was
in a <e2> box </e2> .

the aerosmith <e1> bomb
</e1> was in a <e2>

box </e2> in the basement
of the refrigerator .

Content-Container(e2,e1) the <e1> stomach </e1> contains
the <e2> contents </e2> .

the <e1> bottle
</e1> contains the contents of

a <e2> cigarettes </e2> .

Message-Topic(e1,e2)
the <e1> book </e1> is a

depiction of the <e2>
book </e2> .

the first <e1> chapter </e1>
was in a <e2> letter </e2>

of the first book .

Message-Topic(e2,e1)
the <e1> disparity </e1>
has been reflected in the
<e2> discussion </e2> .

the harrowing <e1> chapter
</e1> has been reflected

in a <e2> discussion </e2>
of the inspection

Component-Whole(e1,e2)
the <e1> rudders </e1> of

the <e2> dryer </e2>
is a natinal .

the first primer <e1> system
</e1> is the best part

of the <e2> building </e2> .

Component-Whole(e2,e1)
the first <e1> train </e1>
has a <e2> button </e2>

with a single wavelength .

the <e1> kitchen </e1>
comprises a <e2> trophy </e2>

of the pendulum .

Table 4.5 Generated sentences of different relation types
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Fig. 4.2 T-SNE visualization of training Ho Fig. 4.3 T-SNE visualization of training z

Fig. 4.4 T-SNE visualization of test Ho Fig. 4.5 T-SNE visualization of test z

class "Other"). On the other hand, the distributions of hidden variable z for both training data
and test data across different relation types are very similar. And both of them are similar to
predefined Gaussian prior. From above analysis, we can deem the hidden representation Ho

as internal topic knowledge which is seperable across different sentences, and the hidden
variable z as abstract attributes of sentences which is not separable.

4.3 KBP37

4.3.1 Dataset Demonstration

The second dataset we use is the KBP37 dataset proposed by Zhang et al. [87] which contains
18 directional relations and one artificial relation class "no_relation". It is also a dataset
from general domain but more difficult than previous SemEval-2010 Task 8 dataset. Several
differences between these two datasets are listed as below:
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Number of training data 15917

Number of development data 1724

Number of test data 3405

Number of relation types 37

per:alternate_names org:alternate_names

per:origin org:subsidiaries

per:spouse org:top_members/employees

per:title org:founded

per:employee of org:founded_by

per:countries_of_residence org:country_of_headquarters

per:stateorprovinces_of_residence org:stateorprovince_of_headquarters

per:cities_of_residence org:city_of_headquarters

per:country_of_birth org:members

no_relation

Table 4.6 Statistic of KBP37 dataset

• Pairs of nouns in KBP37 are always entity names which are more sparse than SemEval-
2010 task 8. And there are more target nouns that own several words instead of one,
which is rarely seen in the Semeval-2010 task 8 dataset.

• Average length of sentences in KBP37 is much longer than Semeval-2010 task 8
dataset.

• It is not guaranteed that there exists only one relation per data, though in test set only
one relation is offered as the answer.

The statistic of KBP37 dataset is shown in Table 4.6 and several examples are shown as
below:

• <e1> Thom Yorke </e1> of <e2> Radiohead </e2> has included the + for many of his
signature distortion sounds using a variety of guitars to achieve various tonal options.!
per:employee_of(e1,e2)

• Hastings was unable to confirm news reports that the victim was the state’s <e1> Demo-
cratic </e1> Party chairman <e2> Bill Gwatney </e2>. ! per:employee_of(e2,e1)
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4.3.2 Experiment Results

In this part, we present the experiment results on the KBP37 dataset. The results are also
measured by macro-average F1 Score. For simplicity, we choose the best model design
acquired from previous section to perform experiments and results are shown in Table 4.7.
On comparison with baseline performance we show that our model delivers significantly
better performance.

Model Type F1-score

RNN+PI (baseline [87]) 58.8

BiLSTM-Attention + BiAGRU 62.5

BiLSTM-Attention + BiAGRU + VAE LM 63.4

Table 4.7 Model performance on KBP37 dataset

The optimal hyperparameters for the model with best performance are shown in Table
4.8, note that we also fine tune the vocabulary size for the VAE languagae model.

Hyperparameter Value

Recurrent unit hidden size 151

L2-norm regularization strength 8.12e-4

Initial learning rate 0.168

VAE language model loss weight 0.353

m+ 1.841

m� 0.278

Vocabulary size 12663

Table 4.8 Optimal model hyperparameters values for KBP37 dataset

From the results we can see that adding the VAE language model can further increase
the model performance by 0.9 F1 Score. On the other hand, for the SemEval-2010 Task 8
dataset, only 0.4 F1 Score improvement is gained. One explanation for this phenomenon is
that the VAE language model is expected to produce more benefit as the number of relation
types increases. This is because the more relation types exist, the more discriminative the
columns of class matrix Wclass have to be in order to help the VAE language model better
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reconstruct the original sentences. As a result, the VAE language model improves more for
dataset with 37 relation types than a dataset with 19 relation types.

4.4 Chemical Disease Relation Task

4.4.1 Dataset Demonstration

In the previous two experiments, both datasets are from general domain. In order to test our
model performance in a more specialized domain, we apply our model to the biomedical
domain dataset. In this experiment, we use BioCreative V chemical disease relation (CDR)
task [72] dataset, which aims to evaluate system performance on the task of chemical-disease
relation extraction. To better fit the purpose of evaluating our model, we focus on the second
subtask (Chemical-induced disease relation extraction) of [72]. The subtask description is
summarized as follows:

Given with raw text from PubMed articles as input, the model is asked to return <chemicl,
disease> pair which has drug-induced diseases relation.

The model is fed with PubMed articles and the task is to extract entity pairs that contain
both a chemical entity and a disease entity. And the extracted chemical entity and disease
entity must have chemical-induced disease relation. An example PubMed article is shown as
follows:

Lidocaine-induced cardiac asystole. Intravenous administration of a single 50-mg bolus
of lidocaine in a 67-year-old man resulted in profound depression of the activity of the
sinoatrial and atrioventricular nodal pacemakers. The patient had no apparent associated
conditions which might have predisposed him to the development of bradyarrhythmias; and,
thus, this probably represented a true idiosyncrasy to lidocaine.

In the above example, chemical entity is marked as double underlines and disease entity
is marked as single underline. Only the entity pair <lidocaine, cardiac asystole> has positive
chemical-induced disease (CID) relation and all other possible chemical-disease entity pair
combinations have negative CID relation.

4.4.2 Task Reformulation

In order to evaluate the Chemical-induced disease (CID) relation extraction on our model,
we first need to restructure the data. Since our model performs classification not extraction,
we deem the task as a binary classification task. We consider all possible combinations of
chemical entity and disease entity, and for an entity pair which has a positive CID relation,
we mark it as positive example; likewise with an entity pair which has a negative CID
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relation, we mark it as negative example. We then process the dataset on sentence-level and
article-level. For sentence-level, we only consider entity pairs that co-occur in one single
sentence. As for article-level, all entity pairs that co-occur in same article are considered and
it is very similar as original task. After postprocessing the dataset, we perform experiment
on both levels and use F1 Score to measure system performance as [72] did.

4.4.3 Biomedical Word Embeddings

Unlike previous two datasets which are from general domain, chemical disease relation task
is from biomedical domain. So that we expect word embeddings pretrained in biomedical
corpus can produce better performance than word embeddings pretrained on general domain
corpus. To this end, we use pretrained BioMedical word embeddings from [8] to initialize
our embedding layer. This word embeddings is pretrained on two BioMedical corpora which
are PubMed Central Open Access subset (PMC) and PubMed. The embedding size is 200
instead of 300.

4.4.4 Experiment Results

In the following part, we present the experiment results on both sentence-level and article-
level. And on comparison with baseline method, we show that our approach can significantly
improve system performance on sentence-level, and on article-level we can still outperform
baseline method. The results are shown in Table 4.9.

Model Type F1-score (%)

Baseline [8] 57.03

Sentence-level

BiLSTM-Attention + BiAGRU 67.27

BiLSTM-Attention + BiAGRU + VAE LM 67.41

Article-level

BiLSTM-Attention + BiAGRU 58.31

BiLSTM-Attention + BiAGRU + VAE LM 58.49

Table 4.9 Model performance on CID task

From the results, we can see that the performance on both levels outperform the baseline
result, and sentence-level performance is significantly higher than the article-level. Also, the
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VAE language model is also able to slightly improve the performance on both levels. More
specifically:

• 1. On sentence-level, the model achieves much better performance than article-level
because the average length of input sequence is much shorter. So that it is easier for
the model to fully capture the temporal information on the sentence-level which leads
to a better performance.

• 2. On this task, the VAE language model is still able to slightly improve the system
performance but not as much as it did in the previous two experiments. Because the
relation type number is only two (positive and negative CID relation), and for both
cases, the sentences may present similar structure and word choices. As a result, we
assume the improvement of VAE language model only comes from the regularization
of word embeddings through training process and not from regularization of relation
label matrix Wclass.

• 3. By reformulating the task, we are able to use our classification model on the
extraction task in biomedical domain. The experiment results show that we can
outperform the baseline approach on both levels which further proves that our model
is effective in both general and specialized domains.





Chapter 5

Relation Extraction Experiments

In this chapter, we detail the experiment set up and results for our relation extraction model.
In order to get a more comprehensive understanding of the model’s performance, we conduct
experiments on datasets from three different domains: the general domain (newswire), the
scientific domain and the biomedical domain.

5.1 Experiment Setup

We follow the same experiment setup as described in Chapter 4. In summary, to get an input
feature representation, the raw text is first mapped through a word embeddings layer that
is initialized by pretrained domain-specific embeddings. Since in relation extraction, there
is no marked entities, thus the position indicator technique is not used to preprocess the
data. To update model parameters, we use the same update rule for learning rate as shown
in Equation (4.2), and the optimizer is also chosen as Adagrad optimizer [12]. We also
use Bayesian Optimization (BO) to fine tune the hyperparameters, and there are only three
hyperparameters for the proposed sequence model which are: (1) recurrent unit hidden size,
(2) initial learning rate and (3) L2-Norm regularization strength.

5.2 SemEval-2018 Task 7 Subtask 2

5.2.1 Task Demonstration

SemEval-2018 Task 7 [16] is a recently published task concerning semantic relation extraction
and classification of text from scientific papers.

To evaluate our relation extraction model, we focus on subtask 2 of the overall shared
task, which is about relation extraction and classification. Given an abstract from a scientific
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paper with annotated named entities, the two components for this subtask are: (1) identifying
instances of semantic relations between the named entities occurring in the same sentence
and (2) assigning class labels, i.e. one of six predefined relation types, to the identified
relation instances. There are six general predefined relations and five of them are directional
and their detailed explanations are presented in Table 5.1. In all of these six general relations,
only the COMPARISON relation is symmetric; all other relations are directional. In general,
the fine-grained relation type number is 5⇥2+1 = 11.

Relation Type Explanation

USAGE Methods, tasks, and data are linked by usage relations

RESULT An entity affects or yields a result

MODEL An entity is a analytic characteristic or abstract model of another entity

PART_WHOLE Entities are in a part-whole relationship

TOPIC This category relates a scientific work with its topic

COMPARISON An entity is compared to another entity

Table 5.1 Relation types and corresponding explanations

Recall that the task data is abstract text from scientific papers with annotated entities, in
the following we present an example from test set:

This paper introduces a simple <entity id="H94-1014.1"> mixture language model
</entity> that attempts to capture <entity id="H94-1014.2"> long distance constraints
</entity> in a <entity id="H94-1014.3"> sentence </entity> or <entity id="H94-1014.4">
paragraph </entity>. The model is an <entity id="H94-1014.5"> m-component mixture
</entity> of <entity id="H94-1014.6"> digram models </entity>. The models were con-
structed using a <entity id="H94-1014.7"> SK vocabulary </entity> and trained using
a 76 million word <entity id="H94-1014.8"> Wall Street Journal text corpus </entity>.
Using the <entity id="H94-1014.9"> BU recognition system </entity>, experiments show a
7% improvement in <entity id="H94-1014.10"> recognition accuracy </entity> with the
<entity id="H94-1014.11"> mixture digram models </entity> as compared to using a <entity
id="H94-1014.12"> Digram model </entity>.
From above example, we can see that all entities and their corresponding entity IDs are
provided and we will discuss how to leverage this information in following subsections.
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5.2.2 Data Preparation

Domain Specific Word Embedding

Since we are dealing with scientific domain dataset, thus we use domain-specific word
embeddings to initialize embedding layer instead of using word embedding pretrained on
general domain. In our experiment we use embedding pretrained by Lauscher et al. [30].
The embedding1 is 50-dimensional trained by Glove [49] algorithm on the CORE corpus of
scientific publications aggregated from Open Access repositories and journals [25].

Data Augmentation

Because the SemEval-2018 Task 7 dataset provides limited training data, we enlarge the
training data by combining both training data from subtask 2 and subtask 1.2 [16]. The
statistic of relation instances appear in both training and test sets are shown in Table 5.2.

Training Set Test Set
Relation Type Number of Samples Propotion (%) Number of Samples Propotion (%)

USAGE 619 25.00 111 30.25
USAGE_REVERSE 334 13.49 63 17.17
MODEL-FEATURE 349 14.10 57 15.53

MODEL-FEATURE_REVERSE 152 6.14 16 4.36
PART_WHOLE 275 11.10 60 16.35

PART_WHOLE_REVERSE 155 6.26 22 5.99
RESULT 137 5.53 14 3.81

RESULT_REVERSE 58 2.34 2 0.54
TOPIC 238 9.61 3 0.82

TOPIC_REVERSE 23 0.93 0 0.00
COMPARE 136 5.92 19 5.18

Total 2476 100 367 100

Table 5.2 SemEval-2018 Task 7 Subtask 2 Statistic

Leverage Entity ID Information

As presented in above example, all entities contained in the abstract are provided with
corresponding IDs, i.e. the entity long distance constraints has its ID H94-1014.2. Sup-
pose this entity belongs to relation PART_WHOLE and has relation role "1", then the tag
reference according to subsection 3.2.1 should be {B-PART_WHOLE-1 I-PART_WHOLE-1
E-PART_WHOLE-1}. But we can use entity ID to represent the entire entity text to further
simplify the tag reference. By doing so, the entity ID H94-1014.2 itself is used in the raw text

1The pretrained embedding can be freely downloaded via this link: https://github.com/anlausch/scientific-
domain-embeddings
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as input and its corresponding tag is {S-PART_WHOLE-1}. And to calculate the embedding
of this entity ID, we use the average embedding of these three words long, distance, and
constraints. The reason we propose this simplification is that in this dataset only the entities
which have their entity IDs are considered for relation extraction, so that all non-entity words
will be mapped to tag "O". And using entity ID to replace entity text can help us reduce the
size of possible tag set. Now for each relation, there are only two possible tags, i.e. for rela-
tion PART_WHOLE, the possible tags are {S-PART_WHOLE-1} and {S-PART_WHOLE-2}.
As a result, the size of possible tags Nt are now 2⇥ |R|+1 instead of 2⇥4⇥ |R|+1, where
|R| is relation set size and 1 is for "O" tag. Therefore, the model parameters can be reduced
since prediction class number is reduced.

5.2.3 Result Evaluation

Recall that the goal of this subtask consists of two parts, which are:

• identifying instances of semantic relations between entities in the same sentence

• assigning class labels, i.e. one of six predefined relation types (see Table 5.1), to the
relation instances

For the first part, the aim is to extract entity pairs that have internal relation, and the
relation label and directionality are not considered at this step. In the second part, the aim
is to make relation classification on extracted entity pairs from previous step. The detailed
evaluation metrics for each step are listed as below:

• Evaluation of relation extraction: Extraction evaluation assesses the quality of iden-
tified relation instances. Relation labels and directionality are ignored in this step.
Precision is calculated as the percentage of correctly connected entity pairs. Recall is
calculated as the percentage of gold entity pairs found by the system. The official F1
score is calculated as the harmonic mean of precision and recall.

• Evaluation of relation classification: Classification evaluation considers only cor-
rectly identified relation instances as per step 1. For these instances, the official score
evaluation metrics is macro-average F1.

From above definitions we can see that the first evaluation considers how many correct
entity pairs are extracted and the second evaluation considers how well the system assigns
correct relations to these correct extracted entity pairs.
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5.2.4 Experiment Results

To get a more comprehensive understanding on our model performance, we choose three
variations of our proposed model in subsection 3.2.3 to conduct experiments. The variations
are described in the following:

• BiLSTM: Only the bidirectional LSTM layer is used to directly model the input
sequence, and no attention layer or AGRU layer is used.

• BiLSTM-Attention + UniAGRU: Bidirectional LSTM layer is used to construct
temporal attention module and unidirectional AGRU layer is used on top of BiLSTM-
Attention module to perform sequence modelling.

• BiLSTM-Attention + BiAGRU: The exact model architecture described in subsection
3.2.3. Bidirectional LSTM layer is used to construct temporal attention module and
bidirectional AGRU layer is used on top of BiLSTM-Attention module to perform
sequence modelling

The experiment results on two separate steps of subtask 2 along with the state-of-the-art
results on published literature are shown in Table 5.3, and both CRF and Softmax are used
for each variation.

Extraction (F1 Score) (%) Extraction + Classification (F1 Score) (%)
UWNLP [34] 50.0 39.1

ETH-DS3Lab [53] 48.8 49.3
SIRIUS-LTG-UiO [46] 37.4 33.6

UC3M-NII [62] 35.4 18.5
NTNU [3] 33.9 17.0
Bf3R [44] 33.4 20.3

Our Experiment
BiLSTM 38.3 73.8

BiLSTM + CRF 37.9 74.5
BiLSTM-Attention + UniAGRU 25.9 55.8

BiLSTM-Attention + UniAGRU + CRF 27.1 60.1
BiLSTM-Attention + BiAGRU 40.3 92.5

BiLSTM-Attention + BiAGRU + CRF 39.9 88.4

Table 5.3 Experiment Results on SemEval-2018 Task 7 Subtask 2

5.2.5 Result Analysis

From results in Table 5.3, it can be seen that our models do not outperform state-of-the-art
systems on extraction task. Which means that these state-of-the-art systems can extract more
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correct entity pairs which have potential internal relation. On the other hand, for extraction +
classification task, all of our system variations deliver much better performance than current
state-of-the-art systems. For our systems, the best model variation is BiLSTM-Attention +
BiAGRU, and it performs 40.3 F1 Score on extraction task and 92.5 F1 Score on extraction
+ classification task. Comparing with other published results, although our system takes
a 10% hit on extraction step, the high performance on classification step outperforms the
published best performance by more than 40% F1 Score. This means that our model assigns
correct relation to almost all of the correct extracted entity pairs, and by combining these
two steps together we can say that our model gives overall state-of-the-art performance on
SemEval-2018 Task 7 Subtask 2.

Then we give analysis about different variations of our proposed model. Firstly, from
all of the aforementioned configurations, we see that the CRF layer and the Softmax layer
deliver similar performance on both steps. Generally, the Softmax layer performs better,
and the best model setting BiLSTM-Attention + BiAGRU is constructed with the Softmax
layer. Secondly, comparing the BiLSTM with the BiLSTM-Attention + UniAGRU config-
uration, we can note that the BiLSTM achieves better performance. We conclude that the
bidirectionality attribute of our model matters more than the attention attribute when solving
relation extraction as a sequence tagging problem; by leveraging both bidirectionality and
attention attributes, the model can generally produce best performance.

5.3 New York Times

5.3.1 Dataset Demonstration

For the second experiment, we conduct relation extraction on New York Times2 (NYT)
dataset [51]. The training set contains large amount of data (353k triplets) which is acquired
by means of distant supervision without manually labelling. As for test set, to precisely
evaluate model performance, it is manually labelled to ensure its quality (3,880 triplets).
Since our model does not deal with overlapping relations (described in subsection 3.2.2),
we preprocess the dataset to make it suitable for our model. The total number of possible
relations is 25 (24 actual relations and one "None" relation). Because there is no entity ID
information provided, we cannot conduct the same simplification as we did in subsection
5.2.2. As a result, the total number of possible tags is 2⇥4⇥24+1 = 193, where 1 is for
the "None" relation.

2The dataset can freely be downloaded at: https://github.com/shanzhenren/CoType
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5.3.2 Data Preparation

In this experiment, we use same general domain embeddings that was used for the SemEval-
2010 Task 8 and the KBP37 task in Chapter 4. The embedding is pretrained on Wikipedia
with Glove [49] algorithm with embedding dimensionality of 300.

To tune model hyperparameters, 10% data of test set are randomly selected to form
validation set. Bayesian Optimization (BO) is used on validation set to evaluate model
performance and automatically tune hyperparameters.

5.3.3 Result Evaluation

To evaluate system performance, standard Precision, Recall and F1 Score are used. Same
as [90], an extracted triplet is correct when its relation type and the head offsets of two
corresponding entities are both correct.

5.3.4 Experiment Results

We use the best model configuration acquired previously, which is BiLSTM-Attention +
BiAGRU, to conduct this experiment. Both the Softmax and CRF layers are also used to
compare the models’ performance. The experiment results and published state-of-the-art
results are shown in Table 5.4.

Precision (%) Recall (%) F1 Score (%)
FCM [14] 55.3 15.4 24.0

DS + logistic [40] 25.8 39.3 31.1
LINE [88] 33.5 32.9 33.2

MultiR [20] 33.8 32.7 33.3
DS-Joint [31] 57.4 25.6 35.4
CoType [51] 42.3 51.1 46.3

LSTM-CRF [90] 69.3 31.0 42.8
LSTM-LSTM [90] 68.2 32.0 43.6

LSTM-LSTM-Bias [90] 61.5 41.4 49.5

Our Experiment
BiLSTM-Attention + BiAGRU 58.77 49.32 53.63

BiLSTM-Attention + BiAGRU + CRF 56.11 48.77 52.19

Table 5.4 Experiment results on NYT dataset
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5.3.5 Result Analysis

In the above experiment results, we can see that our sequence model achieves state-of-the-art
performance on the NYT dataset. This is done without constructing a sophisticated loss
function. Our model is able to deliver around 50% recall while still maintaining a good level
of precision. As a result, our model achieves the best F1 Score on this task. This result
further suggests that our proposed model is a good sequence model for relation extraction.

We can also observe that the Softmax layer outperforms CRF layer. The reason from
our analysis is that the possible tag number for this task is quite large (193), which makes it
difficult for CRF layer to learn a good transition matrix A 2 R193⇥193. As a result, the CRF
layer does not produce better results in contrast with the Softmax layer.

5.4 Chemical Disease Relation Task

5.4.1 Dataset Demonstration

For the third experiment, we utilize a dataset from the biomedical domain. We use the
CDR task dataset [72] that was also used previously in section 4.4 for relation classification;
however, this time, we perform direct relation extraction on this task.

5.4.2 Data Preparation

We use the biomedical domain specific word embeddings as we did in subsection 4.4.3. The
embeddings are pretrained on PubMed with embedding dimensionality of 200.

The chemical and disease entity ID are provided for this task, we therefore leverage this
entity ID information as we did in subsection 5.2.2, in which case we replace the entity
text contained in raw data with its corresponding entity ID. Since only one actual relation
Chemical-Induced Disease (CID) is considered for this task (demonstrated in subsection
4.4.1), the possible tag number is 2⇥1+1, where 1 stands for the "None" relation.

Since our model mainly focuses on relation extraction on sentence level, we therefore
only consider entity pairs that co-occur in same sentence. The training and test data that do
not satisfy this condition are ignored to better evaluate our model on sentence level.

5.4.3 Result Evaluation

As with previous experiments, the evaluation metrics are standard Precision, Recall and F1
Score. The extracted triplet is considered as correct when both entity IDs and corresponding
relation type are correct.
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5.4.4 Experiment Results

For this experiment, we also use the best model configuration acquired previously, which
is BiLSTM-Attention + BiAGRU. And both Softmax layer and CRF layer are experi-
mented with to compare model performance. The baseline performance [72] and our model
performance are shown in Table 5.5.

Precision (%) Recall (%) F1-score (%)

Baseline [8] 55.67 58.44 57.03

Our Experiment on Sentence-level

BiLSTM-Attention + BiAGRU 53.85 59.93 56.73

BiLSTM-Attention + BiAGRU + CRF 58.92 57.03 57.96

Table 5.5 Experiment Results on CDR dataset

5.4.5 Result Analysis

Firstly, from above results, we see that our model delivers comparable performance on
sentence-level relation extraction. One advantage of our model over baseline system [8]
is that in our model we do not leverage any external knowledge. The only knowledge we
use is domain-specific pretrained word embeddings, so that this result further proves the
effectiveness of our model on domain-specific data.

Secondly, for this experiment, we see that the CRF layer performs better than Softmax
layer. Our analysis is that the possible distinct tag number for this task is small (3), so that
the model is able to learn a good transition matrix A 2 R3⇥3. As a result, the CRF layer is
able to capture global sequence information with a good transition matrix, therefore a better
performance is acquired with the CRF layer.

5.5 Conclusion

In this chapter, we perform relation extraction on three datasets from scientific, general
and biomedical domains. All results show that our model is able to achieve at least on par
results with current state-of-the-art performance on various datasets, in several configurations,
our model significantly outperform the state-of-the-art. These results demonstrate that our
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proposed model is able to perform well on sequence tagging task, and can be appropriately
used when reformulating the task of relation extraction as a sequence tagging task.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Relation classification and relation extraction are fundamental tasks in information extraction
with many downstream applications, such as question answering, text mining, textual entail-
ment, and knowledge base construction. Relation classification task is defined as: given an
input sequence with two named entities, the goal is to categorize a possible relation between
these entities from a set of predefined relations. On the other hand, the relation extraction
task can be formulated as: given a sequence of raw text, the goal is to extract correct triplets
that contain two entities and a corresponding relation. Thus, we can decompose relation
extraction as two steps: named entity recognition (NER) and relation classification. As a
result, relation classification can be seen as a subtask of relation extraction.

For relation classification, we proposed an attention-based RNN classifier. To further
improve model performance, a VAE-based regularizer is incorporated into the model. For
relation extraction, we proposed a joint end-to-end neural model for NER and relation
classification . In this model, we reformulated the relation extraction task as a sequence
tagging problem, from which the triplets containing entities and corresponding relation can
be directly extracted. Then, we construct our sequence model from our attention-based RNN
classifier. To further improve system performance, softmax and CRF layers are used for
decoding the output tag sequence.

We conduct comprehensive experiments to evaluate our proposed models for both tasks.
For relation classification, we perform experiments on datasets from the general domain
(SemEval-2010 Task 8, KBP37) and the biomedical domain (CDR). In SemEval-2010 Task
8 dataset, we achieve state-of-the-art performance using our proposed BiLSTM-Attention +
BiAGRU + VAE LM model without leveraging external knowledge. For this dataset, we do
not count the performance of Wang et al. [70] due to difficulty to replicate their stated results
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by both of us and other published works, for example [89] and authors for this Github link
https://github.com/FrankWork/acnn. We also give a detailed analysis of how the attention
module works. To illustrate the generative perspective of our model, we generate various
reasonable new samples given different relations. On KBP37 dataset, we achieve significantly
better performance comparing with state-of-the-art result by using our BiLSTM-Attention
+ BiAGRU + VAE LM model. The improvement is 4.6% F1 Score. For CDR task, we first
reformulate it into binary classification problem, and we conduct experiments on article-level
and sentence-level. Results from both levels are better than baseline performance, which
proves the usefulness of our model on specific domain dataset.

For relation extraction, we perform experiments on datasets from the general domain
(NYT), the scientific domain (SemEval-2018 task 7 subtask 2) and the biomedical domain
(CDR). For NYT dataset, by leveraging sequence tagging scheme along with our proposed
sequence model, we are able to improve the state-of-the-art performance by 4.13% F1 Score.
For the CDR task, we conduct direct relation extraction on sentence-level and we are able to
achieve comparable state-of-the-art performance. For SemEval-2018 task 7 subtask 2, this
subtask is divided into two steps: named entity recognition and relation classification. Our
model performs 40.3 F1 Score for named entity recognition and 92.5 F1 Score for relation
classification. Although we do not deliver best performance for the first step (compared to
the current state-of-the-art F1 Score of 50.0), we are able to deliver 92.5 F1 Score on relation
classification step (compared to the current state-of-the-art F1 Score of 49.3). By combining
performances of these two steps together, we achieve overall state-of-the-art performance for
the entire task.

6.2 Future Work

We plan to investigate our methods on other tasks in NLP. The classifier built for relation
classification can be easily adapted for other sequence classification tasks, such as sentiment
analysis, sentence paraphrasing, semantic role labeling (SRL), and coreference resolution.

As for general relation extraction task, VAE-based regularizer can still be incorporated
into the model’s framework. For example, we can use VAE regularizer to tackle name entity
recognition of input sequence, at the same time as the relation extraction is performed. By
predicting named entities information jointly, the model may achieve better regularization
and produce better performance. The proposed sequence model can also be extended to other
information extraction tasks, such as event extraction [79]. In this case, we can conduct name
entity recognition and event extraction jointly.
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