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Abstract

3D human motion synthesis is the process of a model generating human motion sequences.
Synthesised motions can be used in various applications, such as animation and video game
production, people tracking, and human-machine interaction. 3D motions generated by
motion capture usually require special equipments and actors performing movements. Thus,
this process can be expensive and time-consuming. With the increasing popularity of machine
learning methods in numerous applications, the utilisation of machine learning in motion
generation becomes more common. The state-of-the-art synthesised motion is produced by
Recurrent Neural Networks that are good at sequential modelling[7, 19, 15, 18]. Nonetheless,
the deterministic model lacks the ability to incorporate uncertainty through the sequences.
On the contrary, probabilistic models, such as Gaussian Processes, can deal with uncertainty.
The base model used in the research is a Recurrent Gaussian Process that is capable of
propagating uncertainty through a sequence[20].

The original RGP model[20] is modified into several variations and experimented on
both toy data and motion capture data. Moreover, stochastic variational inference is used in
implementation for efficient training. The latent RGP model variation with one hidden layer
has shown excellent performance. Its capability to predict and generate multiple motions
through one training further justifies the excellent representation power of RGPs. Even
though satisfying results are achieved, further studies are needed to improve the flexibility of
such models. Finally, potential future work are discussed at the end of the thesis.
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Chapter 1

Introduction

The increasing popularity of 3D animation and video games witnessed a rising demand for
diversified and realistic 3D human motion generation. Traditionally, human movements in
animation are created by animators drawing each key frame of the motion. This requires
careful observation and study of the human movements in video footage in order to draw
realistic human motions. As technology advances, an automation method using motion
capture became popular among animators. Motion capture requires for an actor to wear
a specially designed suit, which can capture optical as well as mechanical features during
the movement, and perform certain tasks. The recorded motions are then mapped to a 3D
character displayed on a computer. However, this process can be tedious and expensive.

As machine learning gains reputation in various industries on different types of problems,
a new type of human motion generation method occurred - the use of machine learning
method to produce 3D human motions. 3D human motion synthesis is the process of a
model generating human motion sequences based on a short window of initial movement.
Other than computer graphics, this process can be valuable in a variety of domains including
human-object interaction in robotics and driver maneuver anticipation in autonomous driving.

In this work, the focus is to model 3D human motions with Recurrent Gaussian Processes
(RGP) and compare with different variations in the architecture. The original RGP from [20]
is modified into a more scalable model using stochastic variational inference. The latent
RGP model proposed in the dissertation shows satisfying performance, which is able to
model multiple motions through one training. This model is also flexible to generate different
motions, which means it does not require modifications in its structure to accommodate the
training of different human motions. The data used in the modelling is the motion capture
(Mocap) data from Carnegie Mellon University(CMU) graphics lab[1]. The synthesised
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motions produced in this reasearch are publicly available at https://drive.google.com/open?
id=1J38DbMuSAb_UEHUEcl9ea3GIo1qKYqF3.

1.1 Background

There are two types of models used in numerous machine learning tasks: deterministic models
and probabilistic models. Deterministic sequence modelling, such as state space models and
neural networks, are popular and successful among speech and language modelling. The
state-of-the-art performances of human motion prediction and generation are achieved by
deep Recurrent Neural Networks(RNN). The recurrent and deep structure are able to capture
the complex human dynamics of spatial structure and temporal dependency shown in several
variants of RNN[15, 19, 28, 10, 7]. However, the deep networks is difficult to train and
require a large training dataset. Errors can easily be accumulated through the deep structure
and have a significant impact on the output. To avoid accumulating errors some authors add
noise to the input during training, which is to manually inject stochasticity into the model.
On the other side, Human motions are embedded with uncertainty and variability as no two
people have the exact same movements when performing one motion. Gaussian processes as
probabilistic models are able to capture and propagate the inherent stochasticity of human
motion. Given successful modelling, it is favourable to use recurrent structure in human
motion modelling.

Therefore, RGP is a good fit for the task due to its recurrent structure and probabilistic
feature. Simply, RGP is a Gaussian process with inherent recurrent structure making it an
autoregressive model. This makes it different from traditional Gaussian processes in that
the output of previous time step is used as input for current time step. The RGP model
shows excellent performance in system identification tasks[20]. The paper mainly focuses
on testing the model with system identification examples rather than motion sequences.
Nonetheless, this thesis systematically studies the application of RGP on human motion
modelling. One of the major differences between the two problems is the dimensionality
difference, where human motion has a much higher dimension. Furthermore, the modelling
of system identification also tries to learn the dynamics of the system and its relationship
with the input control signals. However, human motions do not have a direct control signal,
thus should not be simply treated the same as system identification. Despite the difference
the model is able to generate acceptable predictions of human motions.

https://drive.google.com/open?id=1J38DbMuSAb_UEHUEcl9ea3GIo1qKYqF3
https://drive.google.com/open?id=1J38DbMuSAb_UEHUEcl9ea3GIo1qKYqF3
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1.2 Motivations

The main motivation of this research is its potential applications in various fields. For
example, both the film and video game industry will benefit from the successful scalable
modelling of natural 3D human motions. The excessive cost and long hours of recording for
motion capture can be replaced by a few hours of model training. In addition, this work has
potential application in security, where computer vision tasks like people tracking is common
and non-trivial. Moreover, more applications can be extended into medical industry, where
motion monitoring can help predict and prevent the occurrence of stroke or cardiac arrest.
These events are very time-critical, early detection can make a great difference in treatment.
Last but not least, the model developed in this work is suitable for other sequence modelling.
Potentially, it can also be used to generate music or speech sequences.

1.3 Structure of the Chapters

The remaining chapters are organised as follows. Chapter 2 focuses on reviewing recent
literature. The literature review first covers the problem of 3D human motion generation and
the models used for motion synthesis and prediction tasks. The second part of this chapter
reviews literature about Gaussian processes, as well as some variations around them. Chapter
3 continues to introduce the theories involved in the research in detail. Interpretation of
Mocap data is firstly introduced, followed by detailed explanation of Gaussian process and
models based on Gaussian processes such as recurrent Gaussian processes and deep Gaussian
processes. Sparse Gaussian process formulation and variational inference are both described
in detail. Chapter 4 includes all the experiments, results and discussion on both toy data
and Mocap data, Finally, potential directions for future work are discussed and suggested in
chapter 5.





Chapter 2

Literature Review

Recent years of advancements in machine learning inspired interests in using machine
learning methods to predict and generate 3D human motions, known as 3D human motion
synthesis. Human motions can be represented in both 2 dimensions and 3 dimensions. 2D
human motion is common in computer vision tasks such as recognising human poses from
2D images and people tracking in videos. 3D motions are commonly used in animations
and video games. Many factors need to be taken into consideration when modelling human
motions as human body is highly structured and sequences of motions propagate uncertainty
through long time horizon.

Various models have occurred in literature modelling 3D human motions. One of the
two major types of models is the parametric models, where the generation of motions is
deterministic, for example dynamical models[7] and state space models[6]. Some recent
models focus on deep learning structure, therefore models evolving around recurrent neural
networks become popular. The other major type of models is non-parametric mainly evolving
around Gaussian processes, as GPs can accommodate uncertainty within long-term motion
sequence. Several variations aim to improve the scalability of the model, such as Gaussian
process dynamical models[30] and recurrent Gaussian processes[20].

This chapter reviews some of the models proposed in recent literature. Since the base
model for this project is a RGP, the literature review will also include Gaussian process and
related algorithms.
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2.1 3D Human Motions

There are limited literature that analyse the structure and details of human motions in Mocap
dataset. However, [14] explores the features of joint movements of a hand performing
natural tasks. As both the skeleton and the hand have the same representation, the analysis is
transferable. The joints are represented using approximately 20 degrees of freedom (DOF).
The paper shows that the dimensionality of the whole hand can be reduced to two major
components using Principle Component Analysis(PCA), which is greatly influenced by the
correlations between joints. For the fingers, more correlations are observed among joints
closer to the palm. On the other hand, joints closer to the finger tip are more correlated
within that finger. Similar observations can be found in human body joints.There are more
correlations for joints closer to the hip and less for joints that are further away. Furthermore,
the Mocap human skeletons also use degrees of freedom to represent each joint as a local
representation with respect to its parent. Fully incorporate these correlations in the model is
challenging, and some of the common models for human motion modelling are reviewed as
follows.

2.1.1 State Space Models

State Space Models (SSMs) are commonly used in time series modelling, which contain two
mappings: transition function and output function. Traditionally, they are both deterministic.
As it is often required to propagate or predict uncertainty in many modelling scenarios,
introducing uncertainty into SSMs becomes beneficial. Therefore, GP priors are introduced
to both transition function and output function in SSMs forming GP-SSMs. By introducing
GPs into SSMs, they become more suitable for modelling tasks such as human motion
synthesis where uncertainty is non-trivial. [8] proposed a variational formulation with GP-
SSMs, which provides an approximate posterior leading to fast probabilistic predictions.
More recently, [6] proposed a probabilistic recurrent SSM(PR-SSM) variation, which offers
efficient learning by combining gradient-based and sample-based inference.

A similar structure for modelling discrete-time non-linear system is non-linear autoregres-
sive models with exogenous inputs(NARX), where the output depends both on the input and
its own sequence history. The mapping in a NARX network can be any non-linear functions
giving rise to different model variations. For example, the non-linear function can be a neural
network resulting in a NARX recurrent neural network[18]. Placing a Gaussian process prior
on the non-linear function gives Gaussian process NARX (GP-NARX) model.
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2.1.2 Dynamical Models

In mathematics, a dynamical system is one that uses a function to describe the time depen-
dency of a point in a geometrical space. The idea is used to form dynamical models which
describe the dynamics of a model evolving through time like human motion modelling. [2]
proposed using dynamical models to recognise human poses, which uses linear dynamical
mappings to describe human motions over time. [24] further proposed using kernels to learn
the parameters of the dynamical models. Due to the complexity and high dimensionality
of human motions, switching linear dynamical models were proposed to generate smoother
human motions by switching between different dynamical models that can better describe a
specific motion[22].

The Gaussian Process Dynamical Model (GPDM), an extension from traditional dy-
namical model, has a latent space of 3 dimensions including a mapping that describes the
transition of latent coordinates through time and a high dimensional observation space where
human motion sequences lie[30]. GPDM can also be viewed as a type of SSM, where the
non-linear mapping functions are linear combinations of basis functions where A and B are
corresponding mapping parameters in Fig 2.1[30, 31].

Fig. 2.1 Gaussian Process Dynamical Models. (a) A and B are the mapping parameters of
the latent dynamics and observation mapping. (b) Summary of GPDM model, where the
mapping parameters are marginalised over giving joint distribution of latent coordinates and
observed poses[30, 31].

2.1.3 Recurrent Neural Networks

Many recent works on 3D human motion prediction and generation focus on deep neural
networks. The state-of-the-art human motion modelling is generated by Recurrent Neural
Networks(RNNs). Although RNNs present excellent performance in speech applications,
some modifications are made to their original architecture in order to better suit human
motion modelling tasks.



8 Literature Review

[7] proposed the Encoder-Recurrent-Decoder(ERD) to predict the probability of human
motion of the next time instance. Within this network, the input is first fed to an encoder
transforming it into a representation where learning of motion dynamics is easy. The recurrent
layer takes the encoded representation as input and produce predictions which are then passed
into a decoder to be transcribed into readable form. Similar structures are adopted by [3, 13].
[15] takes a step further adding higher level spatial-temporal structure into RNNs giving
them the ability to interpret high dimensional structures in human motions. Looking at
motion modelling from a different angle, [19] proposed to improve short-term human motion
prediction using RNNs by modelling velocities of joints instead of their absolute angles.

Furthermore, a Dropout Auto-Encoder LSTM(DAE-LSTM) is proposed by [10] that
consists of two components: firstly, a RNN is used to model the time dependency of the
motion; secondly, a trained auto-encoder is used to recover spatial structures of human
skeletons. The two components are trained separately with the latter trained by removing
random joints in a skeleton and the former trained to predict future poses. Instead of looking
at changes to the overall architecture, [28] modifies parts within the architecture. It introduces
a temporal attention block to compute a history representation by giving different weights to
historical skeletons. This history is than fed into a Modified Highway Unit(MHU) which
selectively train the model based on activity-selected joints.

All above RNN-based models have one common limitation in spite of good results for
motion modelling. They all lack the ability to cope with uncertainty within the motion
sequences. This uncertainty can be introduced by different subjects or by the inherent
stochasticity of human motion. Therefore, the combination of recurrent structure and GP
becomes a reasonable proposal for the task.

2.2 Gaussian Processes

Gaussian processes are widely used in geostatistics field where it is known as kriging[25].
Gradually, GP prediction is used in general regression. Due to the increasing developments
in machine learning in the past years, GP was introduced into into machine learning by [32],
which also describes the optimisation of parameters in covariance function. Since then GPs
are commonly used for various regression problems, as well as for classification. In recent
years, variations of GPs and emerging approximation methods are continuing to enrich the
GP community.
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2.2.1 Gaussian Process Latent Variable Models

GP latent variable models (GPLVM) are proposed by [17], which is mainly used for dimen-
sion reduction in high dimensional data visualisation. GPLVM is essentially a generalisation
of the underlying probabilistic model for PCA. Manipulating covariance function can turn
GPLVM into PCA simply by constraining the covariance function to linear mapping. As
GPLVM allows non-linear covariance mapping and uncertainty in the latent space, it shows
more flexibility and robustness in dimension reduction tasks.

2.2.2 Recurrent Gaussian Processes

Although GPLVMs perform well with visualisation of high dimensional data, they lack
the ability to deal with sequences, such as human motions. This is where RGP suffice by
combining recurrent structure with GPs[20]. The paper develops a general non-parametric
model with recurrent GP priors and recurrent variational Bayes framework to represent
sequential data. The model is able to learn from a small dataset compared to parametric
models such as neural networks. The general RGP structure proposed by [20] is shown in
2.2.

Fig. 2.2 Recurrent Gaussian Process[20]

2.2.3 Gaussian Process Autoregressive Regression Model

In a recent literature[16], an autoregressive GP, named Gaussian Process Autoregressive
Regression model (GPAR), is presented as a multi-output regression model. Despite the
outstanding tractability and interpretability of GPs, it is based on the assumption that the
mapping between input and output is one-to-one, meaning there is a single output at each
input location. However, it is typical for functions to have multiple outputs. For example,
a sine wave in the autoregressive setting shown in Fig 2.3. Along time axis, a sinusoidal
waveform has one value at each time step. However, when the signal becomes autoregressive,
that is y(t +1) = f (y(t)), there are two outputs at each input position. GPARs propose to
deal with this type of mappings as well as capturing the dependencies between these outputs.
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(a) (b)

Fig. 2.3 (a) Sine wave along time. (b) Sine wave along its previous value.

2.2.4 Deep Gaussian Processes

As deep learning becomes increasingly popular, this structure is transferred into GPs giving
Deep Gaussian processes (DGPs). [5] mentions that deep learning structure are mainly
associated with Restricted Boltzmann Machine (RBM) based models. Given that the output
of RBMs only depends on a linear combination of the inputs, GPs show better representation
power because the likelihood is over a continuous variable space and the output is a non-linear
mapping of the input. The main contributions of the aforementioned paper is realising truly
deep hierarchies using variational approximations and its applicability on sparse data. [20]
also used a deep structure in its modelling, where all the latent layers are recurrent, shown in
Fig 2.2. However, the RGP deep structure vary from the DGP in [5] where the former only
requires passing on values from layer to layer and the latter requires a GP mapping between
the layers.

2.2.5 Learning Tricks

Sparse Gaussian Processes

Original full GP regression models has a kernel that increases significantly in size as the
amount of training data increases. This no doubt becomes a non-trivial problem in GP
regression learning. A sparse GP is described in [26] used to approximate the kernel with
some chosen input points, called pseudo-inputs. [29] later proposed variational learning
method to learn kernel hyper parameters and inducing inputs simultaneously by maximizing
the lower bound of log marginal likelihood.
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Variational Inference

In models with hidden variables, the posterior is not tractable in a lot of the cases. Variational
inference is one of the most prominent approximation method appealed to. As data sets
become increasingly large, traditional variational inference become extremely slow. This
is because to give an estimate for the value of kernel parameters, all input points must
be evaluated, thus more input points means more computing time. Stochastic variational
inference is proposed in [12] with specific application in latent Dirichlet allocation and the
hierarchical Dirichlet process topic model. [11] introduced statistical variational inference on
Gaussian processes and presented toy examples along with real life examples. With the use
of stochastic variational inference, hyper-parameters can be learned by mini-batch training as
estimates do not require complete training data. This makes the use of variational inference
scalable.

Both sparse GP and statistical variational inference are used in modelling 3D human
motions within this research. The details behind these two methods are further discussed in
the theory section together with other relevant models and techniques. All above reviewed
literature contribute to the multiple variations of models predicting human movements.





Chapter 3

Theory

This Chapter begins with an introduction of Mocap dataset, its structure and how it is
used within the modelling. Then, the theory behind Gaussian processes is introduced more
formally in Chapter 3.2 from the basic Gaussian distribution. In the following sections,
further variations based on GPs are explained, such as Deep Gaussian Processes(DGPs) and
Recurrent Gaussian Processes(RGPs). Sparse GP is also introduced as an approximation
method to reduce the computation complexity of a full GP, followed by variational inference
and its application in the RGP model. At the end of the chapter stochastic variational
inference with mini-batch training is briefly introduced as a training method for efficient
hyper-parameter learning.

3.1 Motion Capture Dataset

Within Mocap dataset, human motions are represented by skeletons, whose joints are de-
scribed by degrees of freedom (DoF). DoF is a local representation of each joint and poses
constraints on the movement of the joint. This is natural as human joints have limited range
of movement. Human motions in Mocap dataset have pair-wise representations, such as
.asf/.amc files. The former describes the hierarchical structure of a skeleton and its joints,
whereas the latter stores the movement information of the skeleton[1]. Namely, the .amc file
has values of each joint of the skeleton at each time step, thus describing the motion of the
skeleton.
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Fig. 3.1 Hierarchical skeleton representation from .asf file [1]

The joints and skeleton structure described in the acclaim skeleton files (.asf) can be
represented in Fig 3.1. The root joint contains information in relation to the global coordinate
using the axis-angle representation that contains 6 values: TX, TY, TZ, AX, AY, AZ. The
first three values are the 3D global coordinates and the latter three are angles encoding the
orientation of the torso. Other than root, all other joints use local angle representation, degree
of freedom, with respect to their parent, which are constrained by rotation ranges. As shown
in Fig 3.1, where each joint has a unique ID, the parent of a joint is its previous joint according
to the ID sequence. For example, upperback(ID=12) is the parent of thorax(ID=13). There
are 29 joints in total, where each joint is represented by a vector of different dimensions. For
example, root(ID=0) is a joint of 6 dimensions and head(ID=16) is a joint of 3 dimensions.
These values of 62 dimensions in total are modified in the .amc file across all frames to
describe 3D movements of the skeleton across time steps.
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The 3D motion data used in the modelling are the locations and angles extracted directly
from the .amc file. These local representations are used to train and test various model
architectures of RGPs.

3.2 Gaussian Processes

A Gaussian Process (GP) can be seen as a distribution over functions[25]. GPs can be used in
various problems including regression and classification. Unlike most methods that describe
a function as a deterministic mapping between an input and an output, GPs provide an
probabilistic view of describing a function. The representation and understanding of GPs can
be expanded from the basic Gaussian distributions.

3.2.1 Gaussian Distribution

A Gaussian distribution is the most common distribution in statistics and machine learning
due to its intuitiveness and mathematical tractability. A variable x that is Gaussian distributed
is usually expressed as

N (x|µ,σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

(3.1)

where µ = E[x] is the mean of the distribution and σ2 = var(x) is the variance of the
distribution. For the Gaussian distributed variable x, the most likely value is the mean of the
distribution. The further away from the the mean, the less likely is x going to take that value.
A Gaussian distribution with zero mean and 0.5 variance is shown in Fig 3.2 and the area
underneath the curve sums up to 1.

Fig. 3.2 Gaussian Distribution, µ = 0, σ2 = 0.5



16 Theory

3.2.2 Multivariate Gaussian Distribution

When the random variable of a Gaussian distribution is a vector with D elements, it is
a multivariate Gaussian distribution that has D variables. The marginalisation of each
variable is a univariate Gaussian distribution as aforementioned. Therefore, each value in the
mean vector corresponds to the mean of each variable and the variance of the multivariate
distribution is a D×D covariance matrix as follows:

µ =

µ1
...

µD

 ,Σ =

k1,1 . . . k1,D
... . . . ...

kD,1 . . . kD,D

 (3.2)

Each element of covariance matrix describes the covariance between two variables. For
example, ki, j is the covariance between variable xi and x j. The multivariate Gaussian
distribution can then be expressed using the mean vector and covariance matrix:

N (X |µ,Σ) = 1√
(2π)D|Σ|

e−
1

2σ2 (X−µ)⊤Σ−1(X−µ) (3.3)

The shape and properties of multivariate Gaussian distributions are determined by the mean
vector and covariance matrix. The normalization constant from Equation (3.3), 1

(2π)D/2|Σ|1/2 ,
is chosen in such way that the area underneath the distribution sums up to 1.

1
(2π)D/2|Σ|1/2

∫
∞

−∞

...
∫

∞

−∞

exp
(
− 1

2σ2 (X −µ)⊤Σ
−1(X −µ)

)
= 1 (3.4)

An example of multivariate Gaussian distributions with 2 variables, xa,xb, is shown in
Fig 3.3. The bivariate Gaussian distribution has zero mean vector and diagonal covariance
matrix.

µ =

[
0
0

]
,Σ =

[
0.5 0
0 0.5

]
The covariance matrix defines that the two variables are independent from each other, as the
covariance between two variables equals to 0. Thus, the distribution has a perfectly even bell
shape centred at coordinate origin.
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Fig. 3.3 A Bivariate Gaussian distribution

A Gaussian distribution has nice properties that makes it a popular choice in many
statistics and machine learning problems. For example, marginalization and conditional
distribution of a Gaussian are still Gaussian distributed. Given random means and variances
for variable xa and xb, the joint bivariate distribution has the following decomposition

µ =

[
µa

µb

]
,Σ =

[
Kaa Kab

Kba Kbb

]
(3.5)

Therefore, the marginals are

p(xa) =
∫

p(xa,xb)dxb =N (µa,Kaa)

p(xb) =
∫

p(xa,xb)dxa =N (µb,Kbb)
(3.6)

Also, the conditional densities can be expressed as

xa|xb ∼N (µa +KabK−1
bb (xb −µb),Kaa −KabK−1

bb Kba)

xb|xa ∼N (µb +KbaK−1
aa (xa −µa),Kbb −KbaK−1

aa Kab)
(3.7)

Take the example in Fig 3.3, if the value of xa is known, then the values of xb can be inferred
based on the conditional distribution of xb given xa. In a multivariate distribution, the random
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variables are discrete. However, in real world modelling, the distribution is usually over a
continuous space where the variables are no longer discrete. Gaussian processes is used in
this scenario, where the variable space is continuous and infinite.

3.2.3 Gaussian Processes

Compared to multivariate Gaussian distributions, the mean and covariance function of a GP
replace the mean vector and covariance matrix of a Gaussian distribution. Hence, a sample
from a GP is a function, whereas a sample from a multi-variate Gaussian distribution is a
n-dimensional vector. Conveniently, GPs can be seen as the generalization of multivariate
Gaussian distribution. The formal definition of GPs from [25] is as follows:

Definition 1. A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution.

A GP, GP(x), can be fully specified by a mean function and covariance function, where
its mean function m(x) and covariance function k(x,x′) can be defined as

f (x)∼ GP
(
m(x),k(x,x′)

)
(3.8)

m(x) = E
[
GP(x)

]
, (3.9)

k(x,x′) = E
[
(GP(x)−m(x))(GP(x′)−m(x′))

]
, (3.10)

From the expression in Equation (3.9), the random variables in GP represent the value of a
function f (x) at location x. Although it is common to define GPs over time, i.e. the input
variable x represents time, the use of GPs in this thesis adopts the autoregressive form. This
will be further explained in section 3.4. Moreover, the covariance function specifies the
covariance between a pair of random variables,

cov( f (x1), f (x2)) = k(x1,x2) (3.11)

The covariance function can have a set of hyper-parameters to determine the mapping from
arbitrary inputs to the covariance domain. It is common to assign the mean of a GP to zero
as an uninformative prior. This is because usually we have little knowledge of the prior of
the distribution we are trying to solve. Zero mean also gives a simpler form of expression,
which leaves the distribution itself to be solely described by its covariance function. The
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hyper-parameters in the covariance functions, therefore, become essential for modelling.
More information about covariance functions will be given in section 3.2.3.

In real life modellings, despite the infinite representation power of GPs, only finite
number of data points are available in the input space. Therefore, the model is specified in a
form similar to a multivariate Gaussian distribution, but on a much larger scale. This utilises
the marginalisation property of Gaussian distributions, assuming the rest of the points in the
input space are marginalized out. This gives a finite representation of GPs, assuming zero
mean

p( f |x) =N ( f |0,K f f ) =
1√

(2π)NK f f
exp

(
− 1

2
f⊤K−1

f f f
)

(3.12)

The covariance matrix K f f = k f (x,x) is calculated over all N training inputs, which
makes K f f a N ×N matrix.1 f (x) is an observation based on input x and the observation
follows a Gaussian distribution. In the ideal case, observations can be noise free, which have
the density described in Equation (3.12). However, in realistic applications, it is typically
assumed that observations are noisy. Both cases are further discussed in the following
sections.

Noise-free observations

If the observation of a GP is noise-free, the observation is completely determined by the
random function sampled from a GP : f = f (x)[21]. The prediction joint distribution is
decomposed into [

f
f∗

]
=

[
0,

[
K K∗

K⊤
∗ K∗∗

]]
(3.13)

where the f is the training observations and f∗ is the prediction on n∗ testing inputs. Naturally,
µ∗ is the mean of the prediction and K∗∗ = k(x∗,x∗) is the covariance matrix computed from
all testing points. Similarly, K∗ denotes the n×n∗ covariance matrix evaluated between all
training and testing data pairs. Thus, the predictive posterior distribution conditioned on all
observations can be written as

p( f∗|X∗,X , f ) =N ( f∗|µ∗,Σ∗) (3.14)

1Here, for simplicity reasons, the expression ignores the dependency of covariance function on kernel
hyper-parameters.
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where

µ∗ = K⊤
∗ K−1 f (3.15)

Σ∗ = K∗∗−K⊤
∗ K−1K∗ (3.16)

Noisy observations

Realistically, it is more common to consider noise in the observations. The noisy observations
are often written as y = f (x)+ ε , where the noise ε has zero mean and diagonal covariance
matrix. For example, for one of the output dimension, εi ∼N (0,σ2

y ). The covariance matrix
of the noisy observations given some data points is written as

KY = cov(Y |X) = K +σ
2
y IN (3.17)

The prediction joint distribution can be expressed as[
Y
f∗

]
=

[
0,

[
KY K∗

K⊤
∗ K∗∗

]]
(3.18)

The posterior predictive distribution density function given all noisy observations is

p( f∗|X∗,X ,Y ) =N ( f∗|µ∗,Σ∗) (3.19)

where

µ∗ = K⊤
∗ K−1

Y Y (3.20)

Σ∗ = K∗∗−K⊤
∗ K−1

Y K∗ (3.21)

The kernel parameters are the hyper-parameters of a GP. During training the optimal
hyper-parameters are often estimated by maximizing marginal likelihood, which can easily
be obtained according to Gaussian distribution’s marginalization property:

p(Y |X) =
∫

p(Y | f ,X)p( f |X)d f (3.22)

As p( f |X) and p(Y | f ) are known as

p( f |X) =N ( f |0,K), p(Y | f ) = ∏
i
N (yi| fi,σ

2
y ) (3.23)
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the log-marginal likelihood can be written as

log p(Y |X) = logN (Y |0,KY )

=−1
2

Y⊤K−1
Y Y − 1

2
log |KY |−

N
2

log(2π)

=−1
2

Y⊤(K +σ
2
y I)−1Y − 1

2
log |K +σ

2
y I|− N

2
log(2π)

(3.24)

Gradient descent is usually used to optimize the log-marginal likelihood. As latent
variables are introduced into a GP-based model, log-marginal likelihood can no longer be
solved easily. Approximation methods need to be considered to estimate posterior distribution
of latent variables. Variational inference is commonly applied during model training. Other
GP-based models and variational inference will be further explained later in this chapter.

Covariance Functions

A GP with zero mean is solely determined by its covariance function. One commonly used
covariance functions is squared-exponential kernel, also called Radius Basis Function(RBF)
kernel. One dimensional RBF can be expressed as

ky(xi,x j) = σ
2
f exp(− 1

2l2 (xi − x j)
2) (3.25)

where l is the length-scale parameter and σ2
f is the signal variance. These are the hyper-

parameters mentioned in the previous sections. The influence of the hyper-parameters are
shown in the following plots. Fig 3.4 shows a GP prior with (σ2

f , l,σ
2
n ) = (1,0.1,0.1) fitting

data points given by x, where σ2
n is the noise variance.

Fig. 3.4 A one dimension Gaussian process with following parameters: length scale=0.1,
signal variance=1, noise variance=0.1
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In general, length scale determines how relevant the data points are to each other. Namely,
how far apart should two input points be until they become uncorrelated. As shown in Fig
3.5, the length scale varies while the other two parameters stay the same. When length scale
is large, most input points are highly correlated meaning the curve is smooth. Whereas small
length scale makes the curve very wiggly, because input points are mostly independent from
each other.

(a) (b)

Fig. 3.5 One dimension GP with varying length scale. (a) has length scale of 0.01. (b) has
length scale of 1.

When the signal variance is small, a larger noise variance is needed to account for all the
data points. On the contrary, large signal variance means smaller noise variance is needed to
fit the data. This is shown in Fig 3.6 with fixed length scale and noise variance.

(a) (b)

Fig. 3.6 One dimension GP with varying signal variance. (a) has signal variance of 0.1. (b)
has noise variance of 5.
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The effect of noise variance is shown in Fig 3.7 with fixed length scale and signal variance
as baseline shown in Fig 3.4. When noise variance is high, there is more uncertainty in curve
fitting around each observation. On the contrary when noise variance is low, the curve has
more certainty around the given data points.

(a) (b)

Fig. 3.7 One dimension GP with varying noise variance. (a) has noise variance of 0.01. (b)
has noise variance of 1.

Assume the xi,x j in Equation (3.25) are both D-dimensional input vectors from input
space, the RBF kernel can also be expanded into the following form

ky(xi,x j) = σ
2
f exp

(
− 1

2l2

D

∑
k=1

(xi,k − x j,k)
2
)

(3.26)

In this expression, all input dimensions has the same length scale l. Realistically, all
dimensions may have different length scale to incorporate complex high-dimensional data.
Thus, the scaler length scale becomes a vector of D dimension: l = (l1, l2, . . . , lD). A new
notation is introduced for convenience, where ωk = 1/l2

k denotes a new parameter as ’weight’,
resulting in the new form of RBF covariance function[4].

ky(ARD)(xi,x j) = σ
2
ARDexp

(
− 1

2

D

∑
k=1

ωk(xi,k − x j,k)
2
)

(3.27)

This form introduces automatic relevance determination (ARD)[25] into kernel function.
The weight ωk is the inverse of length scale determining how relevant the inputs are along
dimension k. If the weight is small, indicating a large length scale, the covariance will be
small making the input more independent. When the weight is small enough, this effectively
removes that input from inference. As the name suggested, by learning length scale of each
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dimension the kernel has the ability to automatically determine the relevance of an input.
This form of RBF kernel is used to describe the GPs during RGP modelling.

3.3 Sparse Gaussian Processes

For a GP regression problem with N inputs, its time complexity is O(N3) during training and
O(N2) during prediction due to inverse of covariance matrix. As training dataset becomes
large, training a GP can be slow due to high computation costs. Therefore, in recent literature
a method of using few points M ≪ N to represent the full GP, known as inducing points, is
widely used. The use of inducing points reduces the size of covariance matrix from N ×N
to M ×M. As a result, the computation cost during training and prediction is reduced to
O(NM2) and O(M2)[27, 9].

The reason sparse GP works is because not all points are equally informative for recover-
ing a function. For example, a function that looks like the one in Fig 3.8. Only a few points
are needed to capture the behaviour at the flat region where x is greater than 5, thus more
points will not improve the regression posterior but increase the computational cost. A more
reasonable approach is to use more points within the active region, where x is less than 5,
and fewer points elsewhere. This is key idea behind sparse GP.

Fig. 3.8 Random Function

Some of the notations to describe sparse GP are introduced here to explain its formulation.
Let’s introduce M inducing points with Z denoting their locations. Let U = [u1, ...um]

⊤

denote the output values at the inducing points. The covariance matrix over the M inducing
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points is written as Kmm. Similarly, Knm is the covariance matrix between the input X and
inducing points Z and K∗m is the covariance matrix between prediction points X∗ and inducing
points. In the predictive distribution, the GP posterior can then be approximated by using
inducing points instead of the complete training data.

p( f∗|X∗,Y,X ,Z)≈
∫

N ( f∗|µm,Σm,X∗,Z)p(U |Z,Y,X)dU (3.28)

where

µm = K∗mK−1
mmU

Σm = K∗∗−K∗mK−1
mmKm∗

The inducing points Z can be treated as variational parameters in the above expression,
where a variational lower bound is used instead of the true marginal likelihood. Then Z
values can be optimised by maximising the lower bound. More details about variational
inference with sparse GP will be included in section 3.6.

Several sparse approximation methods described in the literature are with different focus.
A unifying view is provided in [23]. Different approximation methods vary by introducing
different additional assumptions regarding the two approximation conditional probabilities.
In this dissertation, details of these approximation variations won’t be further discussed.

3.4 Recurrent Gaussian Processes

A graphical representation of a general RGP[20] is shown in Fig 2.2. Multiple hidden layers
x1:H carry recurrent structures, where the mappings are sampled from GPs. Input layer, u,
and output layer, y, are both observed, where input layer passes on information to hidden
layers and output layer generates sequences based on the recurrent structure within the hidden
layers. This is how a RGP is defined in [20]. A RGP with one hidden layer can be written as

xi = f (x̄i−1, ūi−1)+ ε
x
i

yi = g(x̄i)+ ε
y
i

x̄i = [xi, ...xi−L+1]
⊤

ūi = [ui, ...ui−Lu+1]
⊤

(3.29)
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where L is the window size of the history in hidden layer, and Lu is the window size of the
input signal. The mappings are samples from two different GPs, where

f ∼ GP(0,K f ) (3.30)

g ∼ GP(0,Kg) (3.31)

Both of the GPs can be represented using above mentioned sparse GPs. For 3D human motion
modelling task, the models used are based on RGP architecture with some modifications.
The details about the models will be further explained in the next Chapter. The detailed
derivation of the RGP used can be found in the Appendix.

3.5 Deep Gaussian Processes

A Deep Gaussian Process (DGP) can be seen as a deep network with GPs as the mapping
between layers. Overall, the DGP model is no longer a GP, but something more sophisticated.
The depth is used to describe the number of layers in the DGP like neural networks. The
variables in hidden layers are going to be treated as latent variables. The stacking structure of
a DGP is shown in Fig 3.9. The GPs that correspond to different layers are different, hence a
unique mapping is sampled for each layer. The output of a GP from each layer serves as the
input of the GP of the next layer.

Fig. 3.9 A deep Gaussian process with two hidden layers [5]

In a more general case, for a DGP that has H layers the output Y can be expressed
recursively as

Y = f1:H + ε (3.32)

Y = f1( f2(( fH(z))...))+ ε (3.33)
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where ε is the observation noise at the output. [4] also proposed a probabilistic definition for
DGPs. The joint distribution of latent layers and the output is

p(y,h1:H) = p(y|h1)p(h1|h2)...p(hH−1|hH)p(hH) (3.34)

where p(hH) is the prior for the Hth hidden layer. The conditional probability of the interme-
diate layer is

p(hl−1|hl) =
∫

p(hl−1| fl−1)p( fl−1|hl)d fl−1 (3.35)

The two terms in Equation (3.35) can be expressed using Equations in (3.23). Due to the
intractability of the joint representation, approximation methods are often applied during
inference. The details of variational inference will be discussed in the next section.

3.6 Variational Inference

Variational inference is used to approximate the intractable posterior. Assume that x = x1:n

are observations and z = z1:m are hidden variables, the posterior distribution of the latent
variables is

p(z|x) = p(z,x)∫
z p(z,x)

=
p(z,x)
p(x)

(3.36)

A variational distribution, q(z1:m|ν), determined by variational parameters is chosen to
approximate the distribution over latent variables. The posterior is approximated using q
with fitted parameters.

Kullback-Leibler (KL) divergence measures the distance between two distributions.

KL(q||p) = Eq
[

log
q(z)

p(z|x)
]

(3.37)

where p(z|x) is the true posterior distribution and q(z) is its variational approximation. In
order to find a variational distribution that is closest to the original distribution, the KL
divergence between the two distributions should be minimized. However, this cannot be
achieved by minimizing KL divergence directly. Therefore, an alternative is used to maximize
the evidence lower bound (ELBO) of observation sequence. Hence, minimising the KL
divergence between the two distributions.
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According to Jensen’s inequality, the lower bound of the log marginal likelihood can be
found,

log p(x) = log
∫

p(x,z)dz

= log
∫

p(x,z)
q(z)
q(z)

dz

= logEq
[ p(x,z)

q(z)

]
≥ Eq

[
log p(x,z)

]
−Eq

[
logq(z)

]
= ELBO

(3.38)

Considering the relationship between KL divergence and ELBO,

KL(q(z)||p(z|x)) = Eq
[

log
q(z)

p(z|x)
]

= Eq
[

log
q(z)p(x)

p(x,z)

]
= Eq[logq(z)]−Eq[log p(x,z)]+Eq[log p(x)]

=−ELBO+ log p(x)

(3.39)

Thus, minimizing the KL divergence is equivalent to maximizing the ELBO.

There are many methods to approximate the variational distribution with respect to
variance parameters. In [20], mean field approximation is used. In mean field variational
inference, the variational distribution factorizes as

q(z1, ...,zm) =
m

∏
j=1

q(z j) (3.40)

The detailed derivation for RGP is included in the Appendix.

3.6.1 Variational Inference with Sparse Gaussian Process

Sparse GP is often used to represent a GP and variational inference is a common approxima-
tion method for GP inference. Thus, variational inference with sparse GP is introduced in
detail in this section. The following notations are used for arriving at the objective function
for training a sparse GP with variational inference. X denotes the input, Y denotes outputs
corresponding to input positions, f denotes the mapping function sampled from GP, and U
denotes the output of inducing points Z. Find the variational lower bound of the log marginal
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likelihood after introducing inducing points and factorisation:

log p(Y |X) = log
∫

p(Y | f )p( f |X ,U)p(U)d(U, f )

≥
∫

p( f |X ,U)q(U) log
p(Y | f )p(U)

q(U)
d(U, f )

= Eq
[∫

p( f |X ,U) log p(Y | f )d f + log p(U)− logq(U)
] (3.41)

For simplicity reasons, the dependency of Z is dropped in p(U |Z), giving p(U). Each term
in Equation (3.41) can be expanded as follows:

∫
p( f |X ,U) log p(Y | f )d f =

∫
p( f |X ,U)

n

∑
i=1

log p(Yi| fi)d f

=
n

∑
i=1

∫
p( f1, . . . , fn|X ,U) log p(Yi| fi)d( f1, . . . , fn)

=
n

∑
i=1

∫
log p(Yi| fi)

(∫
p( f1:n|X ,U)d( f−i)

)
d fi

=
n

∑
i=1

∫
p( fi|Xi,U) log p(Yi| fi)d fi

(3.42)

where f−i refers to f1, . . . , fi−1, fi+1, . . . , fn.

p(Yi| fi) =N (Yi| fi,β
−1I)

= (2πβ
−1)−d/2exp

(
− β

2
(Yi − fi)(Yi − fi)

⊤) (3.43)

∫
p( fi|Xi,U) log p(Yi| fi)d fi = Ep( fi|Xi,U)

[
− d

2
log(2πβ

−1)− β

2
(YiY⊤

i −2 fiY⊤
i + fi f⊤i )

]
=−d

2
log(2πβ

−1)− β

2
YiY⊤

i +βEp( fi)[ fiY⊤
i ]− β

2
Ep( fi)[ fi f⊤i ]

(3.44)
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∫
p( fi|Xi,U) log p(Yi| fi)d fi =−d

2
log(2πβ

−1)− β

2
YiY⊤

i +βKimK−1
mmUY⊤

i

− β

2
d
(
ki,i −KimK−1

mmKmi
)
− β

2
KimK−1

mmUU⊤K−1
mmKmi (3.45)

Kmm, Kim and ki,i are respectively the covariance matrix between the M inducing points, the
covariance matrix between ith input and M inducing points, and the covariance between input
Xi and itself.

log p(U |Z) = log(2π)−nd/2 − d
2

log |Kmm|−
1
2

Tr(U⊤K−1
mmU) (3.46)

The variational distribution over latent variables is defined as

logq(U) = logN (U |µU ,ΣU) (3.47)

In traditional variational sparse GP, the optimal form of mean and covariance matrix can
be solved analytically by using calculus of variations and Lagrange multipliers[9]. In this
way, it is assumed that all training data is available when updating parameters. This means
the update can only happen after all training data are evaluated, namely, each iteration has
to go through all training data points. Learning parameters, obviously, becomes very slow
unless training dataset is very small. Stochastic variational inference is then proposed to deal
with the scalability of variational inference.

Stochastic Variational Inference

As datasets become increasingly large, the scalability of variational inference is a key factor
to its value in practice. For previous example, if both µU and ΣU are treated as variational
parameters, they can be learned during optimisation. There is no need to derive their
expression analytically. As ΣU needs to be positive definite, it can be written in the following
form

ΣU =WW⊤+diag(c)

introducing two training parameters. Therefore, µU , together with W and c are learned and
updated as the model trains through iterations. In other words, they can be updated with
estimates given subsets of the training data. Therefore, in each iteration the training only



3.6 Variational Inference 31

evaluate a subset of complete training data to give estimate of the parameters. This process
repeats until all training data are evaluates.

This method is called stochastic variational inference[11, 12] and this is the method
adopted in the implementation of RGP in this thesis. Compared to traditional variational
inference, a large part of derivation is replace by direct model training. It also has the ability
to deal with large dataset unlike traditional variational inference. In traditional variational
inference parameter updates can only happen after evaluating the complete training data in
each iteration, which proves to be extremely slow as datasets become larger. The advantage
of statistical variational inference is that the parameters can be updated after seeing some
subset of data and this makes training on big dataset much more efficient.





Chapter 4

Experiments and Discussion

In this chapter, different experiments are conducted to explore the representation power of
RGPs on human motion modelling with several variations in architecture. There are two
main variations investigated. The first one is a fully observed model, which is a RGP with no
hidden layer. This structure is also known as GP-NARX. The other is a RGP with one latent
layer, called latent model. Unlike GP-SSMs, this architecture has recurrent structure in both
hidden and observation layers. Both architectures are experimented on toy data and Mocap
dataset. Walking and running are the two main motions the modelling is focused on. Golf
and jumping motions are also tested on the same model after the successful modelling of
walking and running sequences.

4.1 Experiment Set-up

The experiments are run on GPU with Azure data science virtual machines. The library used
for building the model is MxNet and GPy. MxNet can perform automatic differentiation
useful for deriving the objective function. GPy is used to process the data. The data used are
downloaded from CMU motion capture data website [1]. Jupyter notebooks containing all
experiments are available at https://github.com/MaggieWYZW/humanmotionRGP.git.

4.1.1 Fully-observed Model

A fully observed one layer RGP is shown in Fig 4.1, where x is the control signal and y is the
observation sequence. In a model without control signal, current observation only depends
on the previous observations. Fig 4.1 shows the case where the observation is dependent on

https://github.com/MaggieWYZW/humanmotionRGP.git
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one previous time step. However, the model can expand the dependency window making
current observation dependent on more than one observation from previous time steps. The
same principle goes to control signal, where current observation can be controlled by current
control signal as well as multiple previous control signals. This arrangement gives the model
the ability to consider longer term dependencies which could be potentially beneficial to
long-term predictions.

Fig. 4.1 Fully-observed Model with Control signal

The window size of control signal and history can vary. In Fig 4.1, the window size for
both signal are 0, meaning only current control signal and previous one step are considered for
predicting current observation. However, the window size in experiments on Mocap dataset
is chosen to be 20 to allow longer history information to contribute to current prediction.

Human skeletons in Mocap data are structured in 29 joints. As the fully observed model
uses the motion sequence directly, it can be used to model each joint independently. On the
other hand, the model can also be varied to take into account the dependencies between joints.
Considering skeleton natural structure and possible variations of the RGP fully-observed
model, four different experiments are conducted making small variations on the baseline
model described above. The details of the models and results are listed in later sections
within this chapter.

4.1.2 Latent Model

Unlike fully observed models, where each joint can be modelled independently, the latent
RGP requires a collective model for all body parts. Because the latent layer is used to
summarise high dimensional human motion sequences to a low dimension. In other words,
the 62 dimensional skeleton representation is used to train one model where all the dimensions
in the observation sequence are generated from a lower dimensional latent space. For the
observation layer, there are two configurations shown in Fig 4.2 where the observation
is either solely dependent on latent representation or dependent on both latent layer and
previous observation sequence.
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The experiments are conducted with the architecture in Fig 4.2(a), where the history
of both hidden layer and observation are used in predicting motion at current time step.
Similar to previous fully-observed model, the latent model also has the flexibility to include
or exclude control signal.

(a) (b)

Fig. 4.2 Model with one hidden layer, where shaded nodes are observed and non-shaded
is latent. (a) has recurrent relations in the observation layer and latent layer, meaning the
observation sequence depends both on the latent representation and previous motion. In (b)
the observation sequence only depends on the latent representation.

4.2 Experiments with Toy Examples

A very simple sine wave is used as toy data to test the performance of the RGPs. The sine
wave contains 200 samples with frequency of 5Hz and sampling rate of 20. The test sine
wave has the same frequency as training sequence and only an initial window of 20 samples
are needed to predict the waveform.

4.2.1 Fully-observed Model

The fully observed model without control signal is tested on a sinusoidal waveform. In
this toy example, the sine wave is the observation sequence and the model is trained on the
observation sequence only. The history window size is 20 samples.

As the model output is probabilistic, the predictions are generated by taking the average
of 100 samples from the output. Fig 4.3a shows that the model generates sine wave that
matches the testing waveform well, with red line being the ground truth and blue being
the prediction. The dashed lines are calculated by computing the variance of 100 samples.
Naturally, as prediction goes further into the future more uncertainty is displayed at the
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output. This phenomenon becomes more obvious as the model continues to predict longer
sequences, as shown in Fig 4.3b. Nonetheless, the average perfectly predicts the frequency
of the waveform, with the amplitude of the waveform decreasing slightly.

(a) (b)

Fig. 4.3 (a) Prediction of Sinusoidal waveforms using fully-observed RGP model. (b) is
prediction of a long sequence.

4.2.2 Latent Model

The latent model without control signal is used to test on the toy data, where one hidden
layer is added to the original fully-observed RGP. The window length is still 20 samples.

(a) (b)

Fig. 4.4 (a) Sine wave prediction of original sequence length. (b) is prediction of a long
sequence.

The experiment results are shown in Fig 4.4. Fig 4.4a shows little uncertainty in the
prediction compared to fully-observed model, so does Fig 4.4b when prediction horizon is
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doubled. The reason can be that the expressive power of a latent model is more than sufficient
for modelling a simple sine wave. The model fully captured and learnt the features in the
data during training. From the initial results of the toy data, it can be concluded that latent
model has more representation power over simple fully-observed model.

4.3 Experiments with Mocap Data

4.3.1 Fully-observed Models

It is natural that the joints of a person have structured correlations. In Mocap dataset, the
joints of a skeleton follow certain hierarchy as shown in Fig 4.5. Each joint is represented
with a local degree of freedom based on its parent joint. For example, ‘thorax’ is dependent
on ‘upperback’. The only special joint is ‘root’ having a global coordinate and angle
representation. Given this structure, several variations of the fully-observed model is explored
to find a more suitable model for producing natural human motions.

Fig. 4.5 Skeleton Hierarchical Structure

The motions to be modelled are walking and running sequences. The original test motion
sequences are shown in Fig 4.6 as ground truth, where Fig 4.6a shows the walking motion
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and Fig 4.6b shows the running motion. All prediction results are rendered into videos
available at https://drive.google.com/open?id=1J38DbMuSAb_UEHUEcl9ea3GIo1qKYqF3.

(a) (b)

Fig. 4.6 (a) is the original test walking sequence. (b) is the original test running sequence.

Variation One: Fully-observed Independent Models without Control Signals

A fully-observed independent model is one that doesn’t consider the dependencies between
joints. Namely, each joint forms its own RGP independent from each other. The joint
probability of the motion can therefore be factorised into the multiplication of each joint
probability shown in Equation 4.1. As each joint has much fewer dimension compared to
the whole skeleton, it is considered easier to model independently. For example, joint ‘root’
p(y1) has its own covariance matrix and so does every other joint.

p(y) = p(y1)p(y2)...p(y29) (4.1)

For prediction, the initial 20 frames of the test sequence are fed into the trained model for
motion generation. The prediction sequence length is the length of the testing sequence.

(a) (b)

Fig. 4.7 Synthesised human motions. (a) is generated walking sequence, and (b) is the
generated running sequence.

From the results shown in Fig 4.7, the model can capture the basic movements of the
walking and running motion. The most obvious differences between these two motions are
the arm swing and feet position. Walking has a small range of arm swing and both feet
always stay on the ground, whereas running has a large range of arm swing and one of the

https://drive.google.com/open?id=1J38DbMuSAb_UEHUEcl9ea3GIo1qKYqF3
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feet is in the air during every leap forward. The synthesised walking motion is recognisable
although not perfect, but the synthesised running motion has uneven step length on each foot
step resulting in limping motion.

(a) (b) (c)

Fig. 4.8 Prediction for Single Dimensions of walking motion with fully-observed independent
model without control signal. (a) is one of the dimensions from hand joint, which displays
very high frequency content with less periodic feature. (b) is the third dimension of the ‘root’
joint which is linear throughout time. (c) is the 5th dimension of the ’root’, which has the
most common periodicity among all joint dimensions.

There are three typical types of waveforms among all joints as shown in Fig 4.8. Fig
4.8c shows the most common type of waveform, a somewhat periodic waveform that is
expected from walking cycles. Fig 4.8b shows a linear line indicating the body position
moving forward. Fig 4.8a and Fig 4.8c have similar overall periodicity, but the waveform in
Fig 4.8a has high frequency content. Evidently, the model fails to capture the high frequency
details in some dimensions like feet and hands despite the global periodicity. This explains
the results of the overall synthesised motion with missing or incorrect details.

Variation Two: Fully-observed Correlated Model with Control Signal

The fully-observed correlated model refers to one that considers the dependencies of joints in
a skeleton, where each joint is dependent on its parent. In implementation of such a model,
each joint model has its parent joint as control signal input. There is only one overall control
signal, which is the delta of ‘root’ joint that can be computed from

u = ∆ = [0,y2 − y1, ...,yt − yt−1, ...yN − yN−1] (4.2)

The delta computed is a 6-dimensional vector sequence. The overall model of the whole
skeleton can be written as

p(y) = p(y1|∆1)p(y2|y1)...p(y29|y28) (4.3)
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In this case, each joint is conditionally independent from each other given its parent joint.
The window size for both control signal and observation sequence is 20 frames.

ȳi = [yi, ...yi−19]
⊤, ūi = [ui, ...ui−19]

⊤ (4.4)

(a) (b)

Fig. 4.9 Fully-observed model with correlated joint and control signal. (a) walking, (b)
running.

(a) (b) (c)

Fig. 4.10 Prediction for Single Dimensions of walking motion with fully-observed correlated
model with delta control signal. (a) is one of the dimensions from ‘hand’ joint, which
displays very high frequency content with less periodic feature. (b) is the third dimension of
the ‘root’ joint which is linear throughout time. (c) is the 5th dimension of the root, which
has the most common periodicity among all joint dimensions.

On the single dimension level, improvements can be seen on three different types of
waveforms in Fig 4.10. Fig 4.10a shows that the ‘hand’ joint is modelled with more high
frequency details. Both Fig 4.10b and Fig 4.10c shows better prediction compared to ground
truth and lower uncertainty.

At the complete motion level, similar results are observed for generated walking se-
quences despite some foot slip and glitch on body position. Unfortunately, this model did not
improve the running motion generation as expected. It resolved the problem in Variation
One, that two sides of the body have uneven motions, but new problem arose. As prediction
goes further into the future, the step size and leg swing become so small that it fails to
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represent a running step. This may be due to the conditional independences of each joint.
The joint further away from ‘root’ are less aware of the global body position. This inspired
the next variation where the delta control signal for ‘root’ is applied to all joints.

Variation Three: Fully-observed Correlated Model with Full Control Signal

The fully-observed correlated model with full control signal considers the dependencies
between joints, the same method presented in Variation Two. The full control signal means
each joint model not only depends on its parent, but also has control signal as input which is
the global delta of the ‘root’ joint.

p(y) = p(y1|∆1)p(y2|y1,∆1)...p(y29|y28,∆1) (4.5)

(a) (b)

Fig. 4.11 Fully-observed model with correlated joints and control signal on all joints. (a)
generated walking sequence, (b) generated running sequence.

(a) (b) (c)

Fig. 4.12 Prediction for Single Dimensions of walking motion with fully-observed correlated
model with control signal on all joints. (a) is one of the dimensions from ‘hand’ joint, which
displays very high frequency content with less periodic feature. (b) is the third dimension of
the ’root’ joint which is linear throughout time. (c) is the 5th dimension of the ’root’, which
has the most common periodicity among all joint dimensions.

This model variation shows similar synthesis results for both walking and running motions.
Firstly, the single dimension prediction results in Fig 4.12 show similar prediction mean
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values but higher uncertainty. This may be due to additional control signal for each joint
model. Provided the motion is generated from the mean values of the samples, the predicted
motions do not vary much. However, the larger uncertainty in this model means that it can
incorporate more variations from the original training motion, which is potentially beneficial
for tracking tasks.

Variation Four: Mixed Model

If one model is able to capture and generate multiple motions, it will save a lot of training
time. In order to test the representation power of the RGP model on multiple motions, both
walking and running sequences are trained on one model. The architecture of the model used
here is the same as Variation Three. After the model is trained, it is used to predict walking
and running sequences independently.

(a) (b)

Fig. 4.13 Fully-observed model with correlated joints and control signal on all joints trained
on both walking and running sequences. (a) generated walking sequence, (b) generated
running sequence.

Qualitatively, few differences in modelling results are shown across different variations.
To compare the results quantitatively, mean squared error(MSE) of testing sequences are
computed, shown in Table 4.1. Compared to benchmark model, Variation One, all other
variations have some improvements based on MSE values of each test sequence. The
synthesised motions show obvious features of walking and running. However, the problem
of foot slip is amplified in the mixed modelling where the skeleton, at times, looks like it
is sliding on ice. This can hardly be observed from Fig 4.13 but very obvious in the video
rendered from motion files. Reasons for the performance may be that in some joints the
difference between walking and running motion is not very significant, therefore, the model
fails to learn two different dynamics. Looking at the local values at a global perspective,
they can both influence the movement of the skeleton making the whole movement coherent.
Considering the highly structured nature of human motions, a hidden layer may be able
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to capture high level structures in the latent space. The latent model and experiments are
presented in section 4.3.2.

Walk Run
Model & Variations seq1 seq2 seq3 seq4 seq1 seq2 seq3 seq4

Fully-observed
Model

Variation One 0.458 0.432 0.405 0.443 0.413 0.492 0.416 0.424
Variation Two 0.366 0.274 0.280 0.357 0.439 0.481 0.353 0.389

Variation Three 0.408 0.269 0.298 0.357 0.466 0.550 0.406 0.431
Variation Four 0.387 0.307 0.266 0.343 0.380 0.347 0.367 0.370

Latent
Model

Variation One 0.337 0.245 0.308 0.311 0.347 0.346 0.303 0.335
Variation Two 0.365 0.260 0.315 0.341 0.357 0.342 0.318 0.347

Variation Three 0.339 0.260 0.272 0.355 0.330 0.305 0.296 0.343
Table 4.1 MSE of prediction sequences

Golf

(a)

(b)

Fig. 4.14 Fully-observed model with delta control on all joints for golf motion. (a) is the
ground truth of the golf motion, (b) is generated golf sequence.

Variation Four of fully-observed model is used to model golf swing motion. Golf is very
different from walking and running where the movement range is similar in four limbs. It
has small range of movements in the lower body but large swing movements in the arms.
Nevertheless, the model successfully modelled golf swing motion, despite of some undesired
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body rotation, showing that it is able handle large range of movements in human motion
modelling. The synthesised swing movement is shown in Fig 4.14b, and the original golf
motion sequence is in Fig 4.14a.

Jumping

Another motion, jumping, is also trained and tested using the same model as golf motion
modelling. The generated skeleton is able to jump forward with compression at the start,
pause in the air and landing motion. The three stages can be seen from Fig 4.15b. However,
some details in the body and arm joints are missing from the original jumping motion in Fig
4.15a.

(a)

(b)

Fig. 4.15 Fully-observed model with delta control on all joints for jumping motion. (a) is the
ground truth of the jump motion, (b) is generated jumping sequence.

4.3.2 Latent Models

The latent models used in the experiments have one hidden layer between input signal and
observation sequence i.e. motion sequence. The structure implemented is shown in Fig 4.2a
where current motion is dependent on latent history and observation history. Latent models
treat a human skeleton as a whole and train one model that is able to generate values for all
joints.
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Variation One: One Hidden Layer without Control Signal

The first variation of the latent model does not have control signal as input, thus only having
two layers in the graphical representation. This variation test the representation power of
latent model without external influence. In this case, the latent nodes only depends on
information passed from its own history.

(a) (b)

Fig. 4.16 Latent model without control signal (a) generated walking motion, (b) generated
running motion.

Quantitatively and qualitatively, the synthesised motions by latent model behave more
naturally than fully-observed models. One of the biggest improvement is the motion decay
throughout time, where the step size and movements remain in the same range even as the
prediction goes further into the future. Foot slip, one of the most significant problem in
previous fully-observed models, also improved in the latent model. It is observed that the
body position and body parts movements are more in sync and the foot slip between steps is
greatly reduced.

Variation Two: One Hidden Layer with Control Signal

In addition to Variation One, this model has a control signal as input to the latent layer.
The control signal used in this experiment is the same as in the fully-observed model, see
Equation 4.2. The delta control value is computed from the 6-dimensional ‘root’ global
coordinates and angles.
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(a) (b)

Fig. 4.17 Latent model with control signal (a) generated walking motion, (b) generated
running motion.

The generated motions are shown in Fig 4.18. The synthesised motion sequences perform
similar to those without control signals, showing that introducing control signal in this
scenario does not improve the performance.

There are a few explanation for this result. On the one hand, the control signal is
input to the hidden layer rather than directly inputted to the observation layer like in the
fully-observed model. This may cause the input to have less influence on the observation
sequence. On the other hand, the control signal has 6 dimensions and observation layer
has 62 dimensions. When the 1-dimensional hidden layer is trying to capture the features
from both the 62-dimensional space and 6-dimensional space, the higher dimension is more
dominant leading to the input signal having little influence on the output.

Variation Three: One Hidden Layer Mixed Model

The third variation of latent model uses the same model as in Variation Two, but trained
on both walking and running sequences. In order for the model to represent the differences
between different models, the global mean and variance across all sequences are used to
normalise both walking and running data.

(a) (b)

Fig. 4.18 Latent model with control signal trained on both walking and running sequences.
(a) generated walking sequence, (b) generated running sequence.
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The prediction from the trained model gives satisfying results on both walking and
running motions. The skeleton shows the most natural motions among all other models with
accurate foot placement and body position. The motion no longer looks like it is sliding
on ice. For running motion, the skeleton can leap forward evenly on both sides and have a
reasonable step size as it leaps forward.

Fig 4.19 shows the prediction from the model when a skeleton is in transition from a
walking to running motion. To control the motion, the delta of the walking and running
sequence are concatenated together for controlling the transition. To recover the motion
to the correct scale, different means and variances are extracted from walking and running
sequences. The motion can be separated into three sections: walking, transition and running.
Walking and running sections are recovered using their corresponding mean and variances,
while transition period is rescaled using the average of the mean and variance from the
walking and running sequences.

(a) (b)

Fig. 4.19 Latent model with control signal trained on both walking and running sequences.
(a) transition from walking to running with initial window as walking, (b) transition from
walking to running with initial window as running.

Depending on the initial window, the two sequences have different behaviours. When
the initial window is in walking motion, the overall body position is based on walking. This
leads to short step distance when the skeleton starts to run. The opposite is observed in Fig
4.19b when the initial window is in running motion. At the start of the motion sequence
the skeleton has walking motions but it is also sliding ‘on the ground’, as the step size for
running is larger.

The number of dimensions for the hidden layer is also tested and the MSEs for each
dimension are shown in Table 4.2. From the results, increasing the dimensionality of the
latent layer does not guarantee an improvement in performance. Therefore, a simpler model
is preferred for the same performance.
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Models HD Walk Run

Variation One:
Latent Model

without Control

1 0.337 0.245 0.308 0.311 0.336 0.36 0.297 0.339
2 0.367 0.235 0.305 0.315 0.347 0.346 0.303 0.335
3 0.361 0.259 0.306 0.333 0.353 0.335 0.311 0.342

Variation Three:
Latent Mixed

Model

1 0.351 0.256 0.266 0.334 0.338 0.318 0.306 0.340
2 0.339 0.260 0.272 0.355 0.327 0.311 0.296 0.343
3 0.352 0.260 0.277 0.328 0.326 0.313 0.294 0.322

Table 4.2 MSE of prediction sequences with varying hidden layer dimensions (HD: hidden
layer)

Golf

A latent model without control signal is used to generate golf motion. The motion sequence
shown in Fig 4.20 is smoother than produced from fully-observed model. The skeleton seems
to be able to present more structures behind the movements. For example, at the end of the
swing the skeleton has one foot stay flat on the ground and the other one tip-toe as both hands
swing above the head. The fully-observed model fails to capture details like this. However, it
is the details that make the motions more natural and realistic.

Fig. 4.20 Latent model without control: Golf

Jumping

A latent model with control signal is used to generate jumping motions. The control signal is
used to control the height of the jump. As the upright direction has the most drastic value
fluctuation among all joint dimensions, a control signal is used to amplify the influence of
that particular dimension. The resulting motions are shown in Fig 4.21. There is also reduced
sliding before jumping and after landing.
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Fig. 4.21 Latent model with control: Jumping

4.4 Summary

Overall, the latent model is able to generate more realistic motions. The hidden layer is able
to capture some higher level structure of the skeleton and movements, therefore, providing
more precise movement predictions. One of the most important improvement is the foot slip
across all motions. After adding the hidden layer, the sliding is greatly reduced resulting in
more natural motions. The latent model is also more robust as shown in latent mixed model
experiment. The input signal has little, nearly none, impact on the generated signal given the
initial window in prediction. This is a challenge to be further addressed as a model that has
the flexibility to be controlled by an input signal is desirable. Therefore, there needs to be a
balance between robustness and sensitiveness toward inputs signals.
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Summary and Conclusion

5.1 Future Work

Human motion modelling is a challenging task as it is hard to capture the complex skeleton
structure, and have total flexibility to control the motions at the same time. This dissertation
successfully presented models based on RGPs that are able to model human motions such as
walking, running, golf and jumping. The results provide evidence for the high representation
power of the model architecture of RGP, especially the latent model.

However, some issues still need to be addressed. First of all, the unnatural sliding of
the skeleton during movements still remains a problem despite the good performance from
latent model. The sliding is most obvious when transitioning from initial window to the first
few frames of prediction, where the transition is less smooth. One possible solution to this
problem is to consider the global position of the feet. If the skeleton can learn to fix on these
positions, it is more likely to avoid sliding during movements.

Secondly, the control signal has less control over the movements than expected, especially
in the latent model. Even though one model can generate more than one motion, the control
signal cannot effectively tell the model to switch between different motions. This is limiting
the flexibility and scalability of the model. One potential way to improve this could be to
consider variations on the model architecture, for example feeding the control signal as an
additional input to the observation layer, which provides a more direct way of influencing the
motion itself. Another solution could be using mixtures of GPs[25]. The idea is that different
GPs are used at some local regions for a mixture of different GP models. In other words,
as the joints of a skeleton can be grouped based on its movement features, these groups
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of dimensions can be modelled with different GPs jointly forming a mixture of Gaussian
process model.

Finally, we can look at human motion modelling problem at a higher level, considering
the human skeleton structures and inherent common features between motions. This leads to
a better lower-dimensional representation extracted from the movements. Additionally, the
lower-dimensional data can be used to train similar autoregressive models. As a result, it
requires the predictions to be remapped to the original higher dimension space. The control
signal can be applied directly to the lower dimension space, which will determine the motions
in the higher dimension.

5.2 Conclusions

In this dissertation, the problem of 3D human motion modelling is discussed. The focus is
on skeleton structured 3D motion representation for motion synthesis. The different types of
models in the literature for this modelling task are also reviewed with particular focus on
model variations on Gaussian processes. The dissertation also dives into details of Gaussian
processes and approximation methods such as variational inference and sparse Gaussian
processes. Especially, stochastic variational inference is introduced and implemented in the
modelling. Moreover, sparse GP is also non-trivial when it comes to elegant representation
and efficient computation. Furthermore, several experiments are presented and the results are
discussed on different model variations based on RGP.

The final synthesised motions from the latent model show the great representation power
of the RGP model. The comparison is made in both quantitative and qualitative manner,
where the latent models outperform the rest. The positive results open doors for future
improvements on the human motion modelling and possible future applications.
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Appendix A

RGP Derivation

ht = f (x̄t , h̄t−1)+ ε f

gt = g(h̄t , ȳt−1)+ εg
(A.1)

where

x̄t = [xt , . . . ,xt−Lx+1]

h̄t = [ht , . . . ,ht−Lh+1]

ȳt = [yt , . . . ,ht−Ly+1]

(A.2)

For simplicity, assume Lx = Lh = Ly = L.
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The log marginal likelihood can then be written as the following expression along with
the definition for evidence lower bound.

log p(Y |X)

=
∫

p(Y |g,ug,H,u f ,X)p(g|ug,H)p(H| f ,u f ,X)p( f |u f ,X)p(u f )p(ug)d(u f ,ug, f ,g,H)

≥
∫

Q log
p(Y |g,ug,H,u f ,X)p(g|ug,H)p(H| f ,u f ,X)p( f |u f ,X)p(u f )p(ug)

Q
d(u f ,ug, f ,g,H)

:= L
(A.3)

where the variational distribution Q is

Q = p( f |u f ,X)p(g|ug,H)q(u f )q(ug)q(H) (A.4)

Considering a mean-field approximation, each term in is given by the following:

p(Y |g,ug,H,u f ,X) =
N

∏
t=L+1

p(yt |gt ,ug, h̄t , ȳt−1)

=
N

∏
t=L+1

N (yt |gt ,σ
2
y I)

(A.5)

p(g|ug,H) =
N

∏
L+1

p(gt |ug, h̄t)

=
N

∏
L+1

N (gt |KgugK−1
ug

ug,Kgg−KgugK−1
ug

K⊤
gug

(A.6)

Kgug is the covariance matrix between input point of g and its inducing points, Kgg is the
covariance matrix between the inputs of g and Kug is the covariance matrix between inducing
points.

p(H| f ,u f ,x) =
N

∏
t=L+1

p(hi| fi,u f , x̄t)

=
N

∏
t=L+1

N (ht | ft ,σ2
g I)

(A.7)
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p( f |u f ,X) =
N

∏
i=L+1

p( ft |u f , x̄t)

=
N

∏
i=L+1

N ( ft |K f u f K
−1
u f

u f ,K f f −K f u f K
−1
u f

K⊤
f u f

(A.8)

K f u f is the covariance matrix between input point of f and its inducing points, K f f is the
covariance matrix between the inputs of f and Ku f is the covariance matrix between inducing
points.

p(u f ) =N (u f |0,Ku f ) (A.9)

p(ug) =N (ug|0,Kug) (A.10)

Here u f is dependent on the input positions(Z f ) of the inducing points and ug is dependent
on the input positions(Zg) of its inducing points.

The variational distributions are :

q(u f ) =N (u f |mu f ,Σu f ) (A.11)

q(ug) =N (ug|mug ,Σug) (A.12)

q(H) =
N

∏
t=L+1

q(ht |ĥt−1, x̂t) =
N

∏
t=L+1

N (ht |µht ,Σht) (A.13)

In the above, mu f , Σu f , mug , Σug , µht and Σht are all variational parameters.

The covariance matrix of q(u f ) and q(u f ) need to satisfy the criteria to be positive definite.
Therefore, they can be written as Σu f =WfW⊤

f +diag(c f ) and Σug =WgW⊤
g +diag(cg). This

form gives the parameters to train:

Wf ,c f ,Wg,cg,mu f ,mug

As for q(H), its mean and covariance matrix are both constructed as fully connected neural
networks.
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The log term in the lower bound is

log
p(Y |g,ug,H,u f ,X)p(g|ug,H)p(H| f ,u f ,X)p( f |u f ,X)p(u f )p(ug)

Q

= log
p(Y |g,ug,H,u f ,X)������p(g|ug,H) p(H| f ,u f ,X)������p( f |u f ,X) p(u f )p(ug)

������p( f |u f ,X)������p(g|ug,H)q(u f )q(ug)q(H)

= log
p(Y |g,ug,H,u f ,X)p(H| f ,u f ,X)p(u f )p(ug)

q(u f )q(ug)q(H)

(A.14)

The log expressions for each term are shown as follows:

log p(u f ) = log(2π)−nd f /2 −
d f

2
log |Ku f |−

1
2

tr
(
u⊤f K−1

u f
u f )

)
(A.15)

log p(ug) = log(2π)−ndg/2 −
dg

2
log |Kug |−

1
2

tr
(
u⊤g K−1

ug
ug)

)
(A.16)

logq(u f ) = log(2π)−nd f /2 −
d f

2
log |Σu f |−

1
2

tr
(
(u f −mu f )

⊤
Σ
−1
u f
(u f −mu f )

)
(A.17)

logq(u f ) = log(2π)−ndg/2 −
dg

2
log |Σug|−

1
2

tr
(
(ug −mug)

⊤
Σ
−1
ug
(ug −mug)

)
(A.18)

logq(H) =
N

∑
t=L+1

log(2π)−nd f /2 −
d f

2
log |Σt |−

1
2

tr
(
(ht −µt)

⊤
Σ
−1
t (ht −µt)

)
(A.19)

(A.20)

log p(Y |g,ug,H,u f ,X) =
N

∑
t=L+1

log(2π)−ndg/2 −
dg

2
logσ

2
y −

1
2

σ
2
y (yt −gt)

⊤(yt −gt)

(A.21)

log p(H| f ,u f ,X) =
N

∑
t=L+1

log(2π)−nd f /2 −
d f

2
logσ

2
h −

1
2

σ
2
h (ht − ft)⊤(ht − ft)

(A.22)
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