

Introduction

In search of greater accuracy, neural networks have exponentially increased in size. Larger models present significant drawbacks:

- Slower inference
- Increased **energy** consumption
- Increased **bandwidth** usage
- More **storage** required
- Unable to run inference on mobile devices
- Data transfer to cloud increases **privacy** concerns

Our project attempts to compress models with minimal effect on inference accuracy.

Method

1. Gaussian Mixture Prior on Parameters: Adding a prior

over the weights will cluster the weights for pruning and quantization.

$$\mathcal{L}(\hat{y}_{T,L}, \hat{y}_{S,L}, \mathbf{w}, \{\mu_j, \sigma_j, \pi_j\}_{j=0}^J) = \underbrace{-\frac{1}{n} (\hat{y}_{S,L} - \hat{y}_{T,L})^2}_{\text{MSE Loss}} - \tau \sum_{i=1}^I \log \sum_{j=0}^J \pi_j \mathcal{N}(n)$$
Gaussian Mixture H

- MSE loss ensures the retraining remains accurate
- Gaussian Mixture Prior on parameters forces weights to cluster
- 0-mean parameter clusters are pruned and the remaining quantized to their means
- Trade-off hyperparameter τ balances accuracy and compression

Teacher-Student Training: Use the predictions of a fully trained "teacher" network as output labels to train a "student" network can allow a smaller network to mimic a more powerful network.

$$\hat{y}_{Ti} = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

- Temperature parameter T softens output softmax distribution
- Mean squared error used as loss function to match smoothed softmax distributions
- A smaller or less parametrized network can learn to mimic a larger network

Neural Network Compression

Osman Zubair¹ and Ted Meeds²

¹Cambridge University Engineering Department & ²Microsoft Research Cambridge

Table 1: MNIST Classifier Sparsity

Total

92.3%

642460

	Original	Retrained	Pruned
Accuracy	98.79%	98.59%	$\boldsymbol{98.14\%}$
Table 2: MNIST Classifier Accuracy			

- on accuracy
- potentially allow for new applications

Conclusion

• Model size can be substantially reduced without a significant impact

• Implementing such methods will save energy, costs, time and