Neural Processes

Arduin Findeis, Florian Langer, Andrius Ovsianas

Department of Engineering, University of Cambridge

Motivation

Neural processes (NPs) attempt to combine the best characteristics of Gaussian processes and neural networks.

al Network	Gaussian	Process
(+)	(+)) -
Scale well to large datasets Computation- ally efficient	Data efficient Probabilistic → good uncertainty estimates	Computation ally expensive
	+ Scale well to large datasets Computation- ally efficient	Al Network Gaussian + + + Scale well to large datasets Computation- ally efficient Probabilistic → good uncertainty estimates

The aim of NPs is to do inference for a set of target variables $y_{m+1:n}$ at location $x_{m+1:n}$ given some context $(x_{1:m}, y_{1:m})$.

For this purpose the context is passed through an **encoder** which returns a probability distribution over a latent variable z. In contrast to CNPs [1] this allows to model global uncertainty. Passing a sampled z and a target point x_i into the **decoder** one obtains a probability distribution $p(y_i|x_i, z)$ over the target.

Training

During training one has to maximise the evidence lower-bound (ELBO) which can be approximated by

 $\log p\left(y_{m+1:n}|x_{1:n}, y_{1:m}\right) \ge \mathbb{E}_{q(z|x_{1:n}, y_{1:n})} \left[\sum_{i=m+1}^{n} \log p\left(y_{i}|z, x_{i}\right) + \log \frac{q\left(z|x_{1:m}, y_{1:m}\right)}{q\left(z|x_{1:n}, y_{1:n}\right)}\right].$ (1)

The figure below shows the model and how the terms in equation (1) arise during the training procedure.

Figure: 1-D function regression with increasing number of context points (shown in red).

Number of context points				
10	100	300	784	
Context			5	
Sample 1	5	З	5	
Sample 2	5	в	5	
Sample 3	3	5	5	

Figure: Pixel-wise image completion can be framed as a 2-D regression task. Given a varying number of context points in the first row, rows two to four show sampled predictions for the MNIST dataset.

Number of context points					
15	30	90	1024		
Context					
Sample 1	6	Ð	9		
Sample 2	9	0	9		
Sample 3	9		9		

Figure: Image completion task for the CelebA dataset. For a small number of context points the predictions differ significantly. As the number of context points increases the variance across the samples decreases.

Applications

Neural Process	Gaussian Process	Random Search
0.27	0.13	1.00

Figure: Optimisation using Thompson sampling: Figures (a) - (d) show the optimisation over 4 iterations. Results in the table are the normalised average number of function evaluations needed to reach the global minimum of 10,000 functions randomly sampled from a GP.

Critique

- Compared to CNPs the variance of the predictions (marginalized over the latent variable) is large even with many context points.
- Thompson sampling experiment results are highly dependent on the chosen kernel parameters.

References

- Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J Rezende, and SM Eslami. Conditional neural processes. 2018.
- [2] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and Yee Whye Teh. Neural processes. 2018.