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Abstract

Deep neural networks have become significantly more powerful and ubiquitous. Used
for a plethora of different applications, they can be found in many consumer products and
enterprise applications. The rise in computational resources and sizes of datasets has made
these networks larger and more complex. However, deeper networks consume more energy
and limit applications due to their size.

Compressing these networks while maintaining accuracy is a popular area of research.
This project investigates an algorithm for compression, soft-weight sharing, and proposes
modifications to improve it. First, we study the effects of incorporating knowledge distil-
lation into the algorithm. Second, we allow each layer to be scaled differently to allow
more flexibility for compression. Lastly, we implement layer-wise compression, whereby
we mimic each layer of the fully-trained network in hopes of making optimisation easier.
Experiments are carried out and analysis is provided for all the modifications.
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Chapter 1

Introduction

Artificial intelligence has enjoyed a resurgence in recent years in large part due to avail-
ability of more data and faster computation. Deep learning in particular has successfully been
applied to many complex tasks. With deep learning becoming more and more prevalent, we
would like to reduce the computational resources required for a variety of different reasons.
This project investigates an algorithm for compressing neural networks, soft-weight sharing
[24], and modifies it with the aim of further improving compression.

1.1 Motivation

Deep Neural Networks (DNNs) have been successfully applied to a plethora of differ-
ent tasks in various domains such as computer vision, natural language and speech. An
unprecedented rise in both, the computational power in modern hardware, as well as the data
collected has allowed for more complex and accurate models to be trained. In order to further
increase accuracy, networks are often made larger, in order to find and represent the complex
underlying patterns in the data.

Larger DNNs pose significant drawbacks which hinder machine learning applications.
A large model requires greater storage capacity and bandwidth when transferred. More
processing and memory access cycles are required to carry out the computation if the size
of the model increases. This results in slower processing and greater energy usage [3] [6].
Increase in computation complexity and energy usage increases fixed and operating costs.
Many models cannot be implemented due to storage, battery and processing constraints. As
a result, data is collected from these devices and sent over the network for inference on more
powerful devices. The transfer of data introduces not only latency, but can also be a cause for
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privacy concerns for consumers.

If we divide computing hardware into 3 broad categories, we can see benefits at each
scale. The first is CPUs and GPUs without constraints of energy or space, commonly found
as desktops or servers in datacenters. These often contain 16GB or more memory, hundreds
of GPU cores and terabytes of storage. The second category is full-featured mobile devices,
with constraints of energy usage. This would include mobile phones, smartwatches and
single-board computers such as Raspberry Pi. In general, these devices hold 512MB - 3GB of
memory and low-powered ARM application processors (A-series). Lastly, we have ultra-low
power devices which are mainly used as sensors. This would include wearables such as fitness
trackers. Such devices normally have 16-32KB of memory and an ARM microcontroller
(M-series).

Processors Memory Storage

1 GPUs 16GB+ >0.5TB
2 Mobile CPUs 512MB - 3GB <0.5TB
3 Microcontrollers 16KB - 32KB <1MB

Table 1.1 Computational Devices Categorisation

The first set of hardware is mainly used in desktops or datacenters. While energy is not a
constraint per se as these devices are connected to the electric grid, computationally complex
programmes contribute to running costs. Furthermore, more hardware is required to match
processing demands, increasing fixed costs. A 2016 report estimates datacenters consume
3% of total electricity and produce 2% of global emissions [2]. Using less computation can
save energy, emissions and costs at this scale.

In case of full-featured mobile devices, inference can be carried out using smaller neural
networks where either the task is not complicated or the neural network has been compressed.
With limited storage, memory, energy and computational resources, most deep neural net-
works cannot be used on these devices directly and input data is transferred to a cloud service.
For example, inference for a single image using VGGNet model requires 800MB of memory,
and 160ms processing time on a mobile GPU [3]. Transferring input data to cloud increases
risk of breaches and privacy concerns and also requires connectivity, restricting certain
applications. Amazon Alexa and similar home assistants do not start listening for instructions
until a keyword is used but if the device could function without network connectivity and
input data remained on-device, it would not be risky for the device to keep listening. The
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home assistant can chime in without being prompted and customers would also be more open
to allowing webcam or video integration in virtual assistants. There are many other potential
applications that can be unlocked by on-device inference.

Ultra-low power microcontrollers cannot generally use complicated statistical models
and rely on rule-based models or simple signal processing techniques. The constraints on
memory and processing power are too great given current technology, but as we move to
a more connected world with the Internet of Things, we would like to use sensors which
can run inference on chip and send only the important alerts and information across. For
example, biosensors with complex models can be used to track different medical signs and
indicate anomalies.

Hence, reducing computation helps reduce energy consumption and costs for large-scale
datacenters and unlocks many new applications on smaller devices.

1.2 Contributions and Research Questions

Various techniques have been investigated to compress neural networks. In general, these
involve removing the least important parameters from the network, reducing the number of
bits needed to represent parameters or using a smaller network to mimic a larger network.
The thesis mainly studies and investigates potential improvements to a neural network com-
pression technique, soft-weight sharing.

Soft-weight sharing was initially introduced as a technique for regularisation [16] and
later shown to be very effective at compressing networks [24]. The technique involves re-
training a pre-trained neural network with a Gaussian Mixture Model (GMM) prior over the
parameters to force weights to cluster. The process is described in greater detail later in the
thesis. We try to improve upon this algorithm through three potential areas of improvements.

First, we would like to incorporate knowledge distillation into soft-weight sharing and
study the effects. Knowledge distillation is a technique whereby we use predictions from a
complex neural network, rather than the true labels, as targets to train a smaller or less com-
plex neural network. Using prediction targets, more information is provided to the smaller
network than hard labels. This allows smaller and more constrained networks to mimic larger
networks. Our first hypothesis is that using knowledge distillation with soft-weight sharing
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will improve compression.

Second, we investigate layer-wise modifications to improve soft-weight sharing. When a
single GMM prior is shared over the whole network, the densest layers dominate the GMM
prior loss and hence the means. Our hypothesis allowing the mixtures means to be multiplied
by different scales at each layer can improve accuracy by reducing constraints on smaller
layers.

Third, we would like more independence between the different layers of a neural network
during compression. Our last hypothesis is that having layer-by-layer compression should
further improve sparsity in the network as optimising each layer separately significantly
simplifies the optimisation problem to essentially a regression problem. The GMM prior
constraints should optimise better if the optimisation for accuracy becomes less complex.

Our three research questions are summarised below:

1. What effects does knowledge distillation have on soft-weight sharing?

2. Can we improve soft-weight sharing by allowing different scales for Gaussian mixtures
in each layer?

3. Is it better in terms of compression for a network to be mimicked layer-by-layer or as a
whole?

1.3 Thesis Outline

First we need to understand compression within neural networks, what it means and what
techniques are currently being used. Chapter 2 gives a brief overview of neural network
architecture followed by a review of various techniques currently being used to compress
neural networks.

As soft-weight sharing is a critical part of our thesis, we describe and study this in detail.
Similarly, the theory behind knowledge distillation along with potential improvements is also
presented in detail. Chapter 3 provides the theoretical details of the methods.

In Chapter 4 we present experiments and results to provide intuition into these algorithms
and help assess the quality of each of the methods.

Chapter 5 contains a discussion of the results to help answer the research questions.
The thesis in concluded in Chapter 6 with a brief summary of the work undertaken,

results and future areas of development.



Chapter 2

Background

This chapter provides a brief overview of neural networks and deep learning along with a
review of the work undertaken in compressing neural network so far. A brief description of
all major methods is provided here and chapter 3 will further expand on the techniques being
utilised for this thesis.

2.1 Neural Network Architecture

The artificial neural network (ANN) is loosely inspired from biological neurons which are
connected and cascaded to perform computation. Similarly, in deep learning a feedforward
neural network or multi-layer perceptron (MLP) is composed of separate functions which
feed into each other. ANNs act as universal function approximators, mapping an input x to
an output y using learned parameters. A single perceptron is shown in figure 2.1 with the
output equation.

...

x1

x2

xn

w1

w2

wn

σ(∑n
i wixi +b)

Fig. 2.1 Perceptron
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The weights (wn) and bias (b) in such a network are learned using labelled data. The
activation function (σ ) is a non-linearity that maps the nodes to the output. The Sigmoid or
ReLU (Rectified Linear Unit) functions are common examples of activation functions.
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x, x≥ 0
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(a) ReLU
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f(
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f (x) = 1
1+exp(−x)

(b) Sigmoid

Fig. 2.2 Activation Functions

An MLP consists of input, output and hidden layers. The addition of hidden layers
increases representational power of the neural network as cascading and non-linearities result
in more flexibility to approximate the underlying pattern in the data. Figure 2.3 shows the
diagrammatic representation of an m-class MLP with 2 hidden layers and n inputs.

...
...

...
...

x1

x2

x3

xn

y1

ym

Input
Layer

1st Hidden
Layer

2nd Hidden
Layer

Output
Layer

Fig. 2.3 Feedforward Neural Network

Optimization is performed using the training data and labels to train the neural network.
A loss function is used to indicate the error in the network’s prediction ŷ against the training
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labels y. This error is backpropagated and the weights in the neural network are adjusted
to minimize the error. Cross-entropy loss function is commonly used when the output is a
probability between 0 and 1.

LCE(w) = − 1
N

N

∑
i=1

yi log(ŷi) (2.1)

For real-valued targets, the mean-squared error loss can be used as a loss-function.

LMSE(w) =
1
N

N

∑
i=1

(yi− ŷi)
2 (2.2)

2.1.1 Examples of Popular Architectures

A special type of feedforward neural network, the convolutional neural network (CNN)
is commonly used for images [11]. CNNs exploit spatial locality in image data and use
3-dimensional neurons for learning. The filters in a convolutional layer are shared over
the complete visual field, reducing the number of parameters significantly compared to a
fully-connected network. Recurrent Neural Networks (RNNs) are another popular class of
neural networks for sequence data [5].

LeNet-5 was the first application of CNNs, with 7 layers and 61K parameters over 431K
connections [11]. The network introduced in 1998 and used for handwriting recognition.
AlexNet was a much larger CNN with 60m parameters, introduced in 2012. It used ReLU
activations to mitigate the vanishing gradient problem and dropout to reduce overfitting [10]
[20]. ZFNet made minor improvements to AlexNet with changes to convolutional filter sizes
and hyperparameters [27].

GoogLeNet, released in 2014, contains 22 layers [21] but only 4m parameters, as it
replaced the dense fully-connected layers with more convolutional layers. Even though the
number of parameters is reduced, the number of computational operations per parameter
increases due to excessive layering. VGGNet, released the same year, introduced 16 and 19
layer versions with 138m and 144m parameters respectively [19]. ResNet, released in 2015,
used skip connections to overcome vanishing gradients [8]. Hence, a 152-layer deep version
was successfully trained.

Table 2.1 contains the summary of the networks with top 5 error rate on ImageNet for
each. A trend of increase in number of layers and parameters with decrease in error rate
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can be seen. Further reduction in error rates can be acheived by ensembling models, which
significantly increases the number of parameters.

Network Year Parameters Layers Top-5 Error Rate (%)

LeNet-5 1998 61K 7 N/A
AlexNet 2012 60m 8 15.3
ZFNet 2013 60m 8 11.7
GoogLeNet 2014 4m 22 6.7
VGGNet-16 2014 138m 16 7.3
ResNet 2015 60m 152 3.6

Table 2.1 ImageNet Neural Network Architectures Summary

2.2 Compression

Neural network model compression can be approached from different perspectives. The
first and most common view is simply the storage representation of a model. This is perhaps
the most relaxed and straightforward view of compression as it does not take into account pro-
cessing at all. Run-time memory usage can also be used to quantify compression, especially
if memory complexity of the algorithm is high. Processing complexity can be quantified in
floating-point operations or inference time to indicate compression. The latter two would
be heavily dependent on hardware and software implementations. We will be approaching
compression from the angle of storage as it is the easiest to quantify. All 3 cases generally
lead to lower model complexity.

Different criteria exist for model selection which account for model complexity. One
such criterion that also focuses on compression is the minimum description length (MDL)
principle. MDL is analogous to Occam’s razor and states that the best hypothesis, indicated
by model and parameters, is one that best compresses data. MDL can also be seen as a
variational learning problem. With data D and parameters w, the variational lower bound
can be decomposed into the complexity loss (L C) indicating the cost to describe the model,
and the error loss (L E) indicating the misfit between the model and data, where q(w) is the
approximation of the posterior p(w|D) [24].
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L (q(w),w) =−Eq(w)

[
log

(
p(D|w)p(w)

q(w)

)]
= Eq(w)[− log p(D|w)]︸ ︷︷ ︸

L E

+KL(q(w)||p(w))︸ ︷︷ ︸
L C

(2.3)
Figure 2.4 gives the intuition of the MDL principle applied to curve-fitting. Excessively

low complexity does not allow the model to learn from the data and results in high error. High
complexity allows the model to overfit to the data and not generalise well. MDL provides a
means to achieve a trade-off and produce a model that performs and generalises well.

(a) Low Complexity (b) Low Error (c) Error-Complexity Trade-off

Fig. 2.4 MDL Model Selection Example

Compressing neural networks has become a popular topic in the machine learning
community and much research has been done in this area. Most of the approaches roughly
fall into some combination of three approaches:

1. Pruning: Removing the least useful weights and operations in a network, leaving
behind a smaller or compressed network.

2. Quantisation: Reducing the number of bits needed to represent the weights in a
network.

3. Knowledge distillation or joint training: Training a smaller network to mimic a larger
network by transferring the knowledge from the complex network

Each of these are further explained in detail in the following subsections.

2.2.1 Pruning and Sparsity

Quite a few different approaches have been taken in order to prune neural networks
effectively. In general, pruning involves finding out which weights and operations are least
important and can be removed with minimal impact to accuracy. An interesting analogous
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observation is that the number of synapses in human brains increases in the first year but
drops off drastically in the second year and continue to decrease into adolescence [25].

Using a Bayesian approach to learning, a prior can be placed over the parameters with
higher density towards zero. An L2 penalty essentially imposes a Gaussian prior which
pushes weights towards zero. Dropout imposes a Bernoulli prior over the nodes and the
network trains without using the deactivated nodes [20]. Although these methods are mainly
used for regularisation, they demonstrate how significant portions of a network can be re-
moved without harming accuracy.

The effectiveness of pruning makes one wonder whether networks are overparameterised
in the first place and initialising smaller networks achieves a similar result. Li et. al [12]
attempt to gauge the difficulty of a machine learning problem by restricting the number of
dimensions of the parameter subspace that optimisation can be carried out in. Good solutions
with over 90% begin to appear at 750 dimensions for MNIST, fewer than the number of
pixels in each image. The authors referred to this figure as the intrinsic dimension and shows
that the number stays roughly constant for a given problem even while increasing number
of parameters in a network. Starting from scratch, a simple linear classifier would require
785 parameters for MNIST, and attains 88% accuracy [11]. The authors posit that extra
parameters allow more coverage of the solution subspace which makes training easier.

Franklin et. al [4] train a full neural network and pruned it away until a small portion
of non-zero parameters remain. They refer to this network as a winning ticket. They retrain
the winning ticket against a randomly structured network with similar initialisation to the
winning ticket. The winning ticket converges faster and achieves higher accuracy, indicating
it is easier to find these outperforming networks by training a complex network first and
pruning rather than optimising a smaller network. It is unclear whether the added structure
allows more flexible representation, or whether our optimisation algorithms are more suited
towards deep neural nets or perhaps something else entirely.

A few different methods exist which train full networks and then prune for compression.
Soft-weight sharing uses a Gaussian mixture prior over the weights [24], enabling clustering
at different Gaussian mixtures. These can be pruned and quantised to mixture means result-
ing in a negligible accuracy drop. Other approaches utilise variational dropout to introduce
sparsity in a deep neural network [15]. In sparse variational dropout a sparsity inducing
log-uniform prior is added over the weights. The loss function is modified to include the
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KL-divergence between the true posterior distribution and the prior. The method results in
over 98% sparsity for LeNet-300-100 on MNIST and is the current state-of-the-art method
for compression [15].

Researchers have looked into pruning at different levels of granularity. Figure 2.6 show
possible convolutional structures that can be pruned. Figure 2.5 shows connection and node-
level pruning in a fully-connected layer. In general, the more regular the pruned structure,
the easier it becomes to optimise the model for processing, especially for parallel processing
devices like GPUs. However, the restriction also reduces the percentage of parameters that
can be pruned away without a considerable loss in accuracy. Mao et. al show for AlexNet on
ImageNet, greater than 80% of parameters can be finely pruned without a loss in accuracy
but this is reduced to between 60% and 75% when restricted to kernels and vectors [14].
Furthermore, 3D filters could not be pruned without a significant loss in accuracy

Wen et. al [26] propose a learning method which incorporates a group lasso penalty over
regular structures to perform processing efficient pruning [7]. Similarly, hierarchical priors
have been introduced with variational dropout for group sparsity using variational methods
[13]. This project does not consider the hardware processing implications of pruning, and
will not attempt for regularity in pruning.

x1 x2 x3 xn

y1 ym

(a) No Pruning

x1 x2 x3 xn

y1 ym

(b) Connection Pruning

x1 x2 x3 xn

y1 ym

(c) Node Pruning

Fig. 2.5 Pruning in a Fully-Connected Layer
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Fig. 2.6 Structure in Pruning [14]

Yet another method to approach pruning is to use iterative pruning [7]. With iterative
pruning, the model is trained with an L2 penalty and connections close to zero are deemed
unimportant and pruned. Training is re-run with the pruned connections clamped to zero and
the network recovers. Iterative prune and retrain allows more sparsity at higher accuracy than
one-shot pruning with L2 regularisation.

2.2.2 Quantisation

To reduce the size of a neural network, we can also reduce the number of bits needed to
represent the weights inside a network. Normally, these weights are represented as single
precision floating points, occupying 32 bits each. Different approaches have been taken for
quantisation, with some involving training with quantised weights.

A very straightforward approach is to convert the floating point representation to limited
precision fixed point, limiting the dynamic range of the weights but allowing a more compact
representation. TensorFlow Lite, a version of the popular deep learning library for mobile
devices, allows for 8-bit fixed point quantisation [22]. This immediately reduces the model
size down to a quarter of the original size. As a result, less storage and memory access
operations are required. Furthermore, floating point arithmetic operations require more steps
than fixed point and are normally slower without dedicated hardware. Tests show that through
this technique, the drop in accuracy for MobileNet network for ImageNet challenge reduces
by a mere 1-2% [22]. This is quite remarkable as it is achieved without any additional



2.2 Compression 13

training or optimization unlike many other methods.

Several methods exist which train with quantised or low precision weights. One example
is a binarized neural network where the weights are restricted to −1,+1. The network is
trained with the binary constraint and results show no loss in accuracy for AlexNet on Ima-
geNet challenge even though 32× less memory is required and computation is ≈ 2× faster
due to multiplication being replaced by addition and subtraction [17]. Further restricting
the input data space to binary values of −1,+1, creates a network that can effectively carry
out nearly all computation using XNOR logic gates. This results in a ≈ 58× speedup but a
≈ 13% drop in accuracy for AlexNet on the ImageNet.

Extending the idea of binary quantised network further, a ternary quantisation method
allows for 3 weights in any given layer, W n

l ,0,W
p

l . W n
l and W p

l are negative and positive
weights respectively, for each layer. Hence, there are only 2 learnable values per layer. The
error backpropagates to the learnable values and also determines which of the values each
weight would occupy. The results show a no decrease in accuracy for ResNet-32, ResNet-44
and ResNet-56 on the CIFAR-10 dataset [1].

Further increasing the number of learnable weights, soft-weight sharing uses GMM prior
over the weights to cluster them around mixture means. The 0-mean mixture has a fixed
mean and a high mixing proportion, while the remaining mixtures’ means are free parameters.
A pre-trained network is then clustered using the GMMs. Once clustered, the network can
be quantised by setting each weight to the mean of the Gaussian mixture it belongs to. The
0-mean mixture is pruned while the remaining are quantised to their means. Codebook
quantisation is used for compression. The mixture mean values are stored in a codebook.
The index of the codebook, which requires fewer bits, can be used to represent the weight
matrix of the model instead of 32-bit floating points [24]. Codebook quantisation is further
discussed in section 4.2.4.

2.2.3 Distillation and Joint Training

Knowledge distillation, also commonly referred to as teacher-student training, uses a
smaller model (the student) to mimic a larger model (the teacher). This is especially useful
in the case of ensemble models but can also be used for deeper neural networks to replace
them with shallow ones. Distillation is essentially carried out by using the predictions of a
more complex neural network as the training targets for a smaller network [1] [9]. The input
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data with the predictions from the complex network form the transfer set for distillation.

Figure 2.7 gives an intuition as to why distillation works using the example of the MNIST
handwritten digit recognition task. In the case of normal training, the target labels for each
digit are one-hot encoded. Therefore, the network must learn to fit to these 1s and 0s. Using
predictions from a more complex neural network provides more information to the smaller
neural network for training. In the different training cases shown in figure 2.7, we see that
prediction weighting is divided among digits, letting the network learn for all digits. The
first training case contains a 3 that resembles an 8, and so gives some prediction weighting to
8. Hinton et. al also show that removing all 3s from the transfer set and slightly tweaking
the bias results in 98.6% recognition accuracy for 3 despite the network never having seen a
3 [9]. The softer distribution given by the transfer set can also be modelled by the shallow
network more easily as distributions with sharp peaks require more representational power.

Distillation is discussed in more detail in chapter 3 as it forms one of the fundamental
building blocks of the thesis.
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Fig. 2.7 MNIST Distillation Targets

Joint-training uses a slightly different approach to produce similar results. Projection-Net
consists of two networks being trained simultaneously; a full-fledged deep neural network
and a projection network optimised for inference [18]. The projection network is smaller and
mainly contains efficient on-device operations. The projection network mimics the teacher
network with larger capacity and they are both trained jointly. Two loss functions are defined,
one for the true accuracy of the trainer network and the other for the distillation accuracy in
the projection network. Once trained, the two networks are decoupled. The trainer network
can be used for inference on more powerful devices, and the projection network can be
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transferred to mobile devices.

In the next chapter, we expand upon the methods relevant to our project and provide
theoretical details of soft-weight sharing and our modifications.





Chapter 3

Methods

Our project uses soft-weight sharing as a starting point for experimentation and imple-
ments potential improvements to the algorithm. This chapter explains the soft-weight sharing
algorithm, and our proposed modifications in detail.

3.1 Soft-weight Sharing

Originally, soft-weight sharing was proposed as a technique to improve generalisation
and penalize complexity in a neural network. In earlier days of machine learning, labelled
data was not as frequent which led to models that did not generalise well. A possible solution
to this was a technique called weight-sharing whereby a single weight was shared by multiple
connections. Another approach is to include a complexity penalty within the cost function
during training. This can be re-conciliated with the MDL view as error being the data-misfit
cost and complexity being the cost to describe a model. Similarly, complexity can also be
viewed as a prior belief on the appropriateness of the model.

Cost = Error + τ Complexity (3.1)

An example would be the use of regularisation or weight decay where ∑i w2
i is the com-

plexity term which pulls the weights closer to zero with the rate proportional to the weight’s
magnitude. The error term keeps the network accuracy and also prevents weights from
collapsing to zero.

However, the L2 penalty only places a single distribution with a mean of 0. In some
cases, this not optimal for reducing complexity. Take the case where two correlated units are
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present with weight w
2 . Instead of preferring to turn one off and doubling the other (i.e. w and

0) the network prefers to keep both of them at their current value as there is lower penalty.(
w
2

)2

+

(
w
2

)2

≤ w2 +02 (3.2)

One way to mitigate this is to use a spike-and-slab prior with narrow and broad Gaussian
mixtures:

p(w) = πn
1√

2πσn
exp−w2/2σ2

n +πn
1√

2πσb
exp−w2/2σ2

b (3.3)

The conditional probability that a particular mixture generated a particular weight is
given by responsibility:

r j(wi) =
π j p j(wi)

∑k πk pk(wi)
(3.4)

Weights with higher values will have greater responsibility for the broad mixture, and
weights with lower values will show greater responsibility for the narrow mixture. Building
upon this, we can implement multiple Gaussian mixtures with learnable parameters. The
complexity penalty can help cluster the weights effectively, grouping parameters that can be
shared.

p(w) =
I

∏
i=1

J

∑
j=0

π jN (wi|µ j,σ
2
j ) (3.5)

The prior is initialised with a fixed number of mixtures (J). The mean (µ j), variance (σ2
j )

and mixing proportions (π j) are learned during compression. One component has its mean
fixed at zero (µ j=0 = 0) and mixing proportion close to 1 (π j=0 ≈ 1) to ensure more weights
cluster around zero value. To prevent the mixtures from collapsing to single data points, we
impose inverse Gamma priors on the precisions of the mixtures. The Gaussian mixtures can
be initialised with high variance which can be reduced to push weights closer to mixture
means.

The loss function is updated to include the GMM prior loss. The trade-off parameter, τ

is used to balance the loss function between accuracy loss and complexity loss. A higher τ

would increase the clustering and sparsity in the network at the cost of accuracy and vice
versa. Eventually during training the gradients from the two loss penalties, accuracy and
complexity, will begin to cancel out, leading to a final optimised state. Cross-entropy or
mean-squared error loss function can be modified for use.
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LCE(w,{µ j,σ j,π j}J
j=0) =−

C

∑
c=1

yc log(ŷc)︸ ︷︷ ︸
Cross-Entropy Loss

−τ

I

∑
i=1

log
J

∑
j=0

π jN (wi|µ j,σ
2
j )︸ ︷︷ ︸

Gaussian Mixture Prior Loss

(3.6)

LMSE(w,{µ j,σ j,π j}J
j=0) =

1
N
(y− ŷ)2︸ ︷︷ ︸

MSE Loss

−τ

I

∑
i=1

log
J

∑
j=0

π jN (wi|µ j,σ
2
j )︸ ︷︷ ︸

Gaussian Mixture Prior Loss

(3.7)

Pruning and Quantisation

Once the weights have been clustered around the mixtures, each weight is set to the
mean of the mixture that takes the most responsibility. The original implementation [24] also
merges the mixtures if KL divergence between two mixtures is below a given threshold. Two
mixtures, i and j, and their parameters can be updated as follows:

πnew = πi +π j, µnew =
πiµi +π jµ j

πi +π j
, σ

2
new =

πiσ
2
i +π jσ

2
j

πi +π j
(3.8)

However, this introduces another hyperparameter which requires tuning and the merging
of mixtures does not help with compression unless the number of mixtures is at least halved
which would reduce the number of weight encoding by 1 bit per weight (see section 4.2.4).
In our implementation, we do not merge mixtures.

The complete algorithm for soft-weight sharing is presented in the listing Algorithm 1.
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Algorithm 1 Soft-weight Sharing for Neural Network Compression (adapted from Ullrich et.
al [24])
Input: Pre-trained Neural Network
Output: Sparse Neural Network with Quantised Parameter Values

1. Set Hyperparameters:
τ ← Trade-off between accuracy and complexity loss
η ← Learning rates for weight parameters and GMM prior parameters
µ,σ ← Configure inverse Gamma prior distribution on mixture precision
2. Initialise:
w← set network weights to pre-trained network weights
θ = {µ j,σ j,π j}J

j=1 initialize mixture parameters
3. Cluster:
while w,θ have not converged do

w,θ ← ∇w,θL E + τL C update parameters with error and complexity gradients
end
4. Prune and Quantise:
w← argminµk

(w−µk) set parameter values to closest mean

3.2 Knowledge Distillation

Knowledge distillation or teacher-student training, attempts to make a shallow student
network mimic a complex teacher network by using predictions from the teacher network
as targets. This allows a higher accuracy to be attained by a smaller network than would be
possible with normal training. A brief overview on distillation has already been presented in
section 2.2.3.

Initial work on distillation extracted logits (zi) from ensemble models and tried to have
shallow networks match the logits to mimic the complex network [1]. A mean-square error
loss was used between the two logits, with a trainable β parameter.

LKD(β ,w) =
1

2N

N

∑
i=1

(β z(S)i − z(T )i )2 (3.9)

A novel idea later presented in knowledge distillation is “dark knowledge”, which posits
that there is useful information in the tail-end of the output distribution [9]. The final layer
of a neural network typically converts the logits (zi) to a probability using a softmax (qi).
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Softmax pushes the highest value close to 1, and the remaining close to 0, resulting in hard
targets. Using common loss functions such as cross-entropy or mean-squared error, the
penalty for not matching the high-valued output with the correct label is significant, but
the remaining outputs in the tail-end produce negligible error gradients. To increase the
impact of the tail-end, we can train by directly using logits as the targets, before the softmax.
Another alternative is to use soft-targets which can be produced by dividing the logits by a
common value, called the temperature (T ) and then carrying out the softmax operation:

qi =
exp(zi/T )

∑ j exp(z j/T )
(3.10)

Figure 3.1 shows the effects of changing the temperature on targets. A higher temperature
pushes the tail-end further up and produces a smoother distribution. Hence, a smaller
temperature corresponds with greater information in the distribution, if viewed from an
entropy perspective. Greater variance in the temperature results in more constraints on the
weights to model the distribution. A higher temperature produces a more uniform distribution,
with less information. Taken to the extreme, modelling a perfectly uniform distribution should
only require a single bias parameter. Effectively, this should result in a trade-off between
accuracy and sparsity. Using soft-targets can minimize the effects of mislabelled data in the
training set and can also allow training without actual data as synthetic data can be used to
produce targets with the teacher model.

a) Logits: z
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b) Hard-targets: T = 1
0

0.5

1

c) Soft-targets: T = 5
0
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d) Soft-targets: T = 10
0

0.5

1

e) Soft-targets: T = 20
0

0.5

1

f) Soft-targets: T = 50
0

0.5

1

Fig. 3.1 Effects of Changing Temperature on Soft-Targets

Our hypothesis is that using these soft targets can help achieve further sparsity in the
compressed network produced by soft-weight sharing as it is easier to model a smoother
distribution. Whereas normally, the teacher network is much deeper and the student network
is shallower, we use the same network architecture for both student and teacher but have
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additional compression constraints on the student network. Additionally, using the transfer
set and changing our loss function to use soft-targets will zero out any initial error as our
network will already be configured to produce those predictions, effectively cancelling some
accuracy loss which may have discouraged weights from clustering.

Different loss functions can be used with knowledge distillation. The softened targets
(q(T )i ) can be used for training on their own or a dual-objective function with both true labels
(yi) and soft-targets can be used. A cross-entropy loss function with α trade-off parameter
between the two is suggested in the paper, with a T 2 multiplier for the soft-targets as gradients
scale in an inverse-squared relationship with the temperature (shown in appendix A).

LKD(α,w) = αT 2
[
− 1

N

N

∑
i=1

q(T )i log(ŷ(S)i )

]
︸ ︷︷ ︸

Soft-target Loss

+(1−α)

[
− 1

N

N

∑
i=1

yi log(ŷ(S)i )

]
︸ ︷︷ ︸

True label Loss

(3.11)

Other loss functions, such as the KL-divergence between the student and teacher distribu-
tions have also been used for distillation. Our implementation only uses soft-target losses as
using hard-targets adds the α parameter, requiring tuning, and adds further complexity to
backpropagation. The loss function remains similar to soft-weight sharing (eq. 3.6 and 3.7)
but with a T 2 multiplier for scaling accuracy gradients. Another potential benefit of using
only soft-targets is that training data may not be required at all as target labels are discarded
in the transfer set. Instead of using actual training input data, synthetically generated input
could be used. Hence, a model can be compressed without access to original data and this
could be beneficial if there are privacy or security restrictions on the original data.

3.3 Layer-wise Scaling

When using L2-regularisation or similar priors over weights which force clustering, we
notice that the denser layers cluster more. Normally, neural networks are designed with
denser input layers to extract features and further layers condense information. Hence there
is greater flexibility in initial dense layers and the spread or the standard deviation can be
reduced without hurting accuracy more so than condensed layers.

Another modification we would like to examine is whether allowing the mixtures in
each layer to have different scales will improve the compression. The underlying belief this
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modification attempts to model is that each layer has a different spread of weights. We allow
relative scaling of weight values by allowing a scaling multiplier for each layer. The scale
of first layer is fixed to 1 and hence the mixture means in this layer equal the GMM prior
means. The remaining layers will have scaling multipliers as free parameters.

Scaling should allow priors to be more flexible for each layer, encouraging compression.
In terms of storage and codebook quantisation, only 1 32-bit value is required to be stored
per layer which is a small cost.

3.4 Layer-wise Compression

The final area of potential improvement we would like to explore is carrying out compres-
sion layer-wise. Our hypothesis is that if we use the transfer set from knowledge distillation
and attempt to mimic each layer separately instead of the final predictions at the output of
the network, it should lead to greater compression as single layer models are less complex
and easier to optimise.

Ideally, we would prefer for each of the layers to be compressed completely indepen-
dently so that the workload to compress a deep neural network can be split across multiple
computational devices. This is visualised in figure 3.2. Computation is also simplified as
each layer is simply carrying out logistic regression. However, this would also require each
layer to have separate priors, which would increase the number of weights that need to be
stored in the codebook and the bits-per-weight required for storing the weight matrix (see
section 4.2.4). Another drawback is that error from the final layers is not backpropagated to
initial layers at all. Relying on only the local error can be unfeasible as the error may amplify
in the layers ahead and this would not be registered in the local loss function.
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Fig. 3.2 Independent Compression

Another approach is to share the prior amongst all layers and use a loss function that
accumulates losses for all layers. A mean-square error loss function can be defined which
penalises the prediction at each hidden layer to keep it as close to original prediction as
possible:

LMSE(w,{µ j,σ j,π j}J
j=0) = T 2

L

∑
l=1

1
nl
(yl− ŷl)

2

︸ ︷︷ ︸
MSE Loss for all Layers

−τ

I

∑
i=1

log
J

∑
j=0

π jN (wi|µ j,σ
2
j )︸ ︷︷ ︸

Gaussian Mixture Prior Loss

(3.12)

In this manner, a single GMM prior is shared over the whole network and error is also
backpropagated, ensuring any small error does not amplify and cause a large drop in accuracy.
At the same time, the layers are being mimicked at each level.

In the next chapter, we implement our methods to verify whether out hypotheses are
correct.



Chapter 4

Experiments

In this chapter, we discuss the implementation of soft-weight sharing and the suggested
modifications. Results from the experiments are presented along with analysis. Chapter 5
will report and provide discussion on the outcomes of the experiments in view of the research
questions.

Training Data

Pre-train

Cluster

Prune and Quantise

Generate Codebook

Compressed Model

Fig. 4.1 Experimental Setup

4.1 Setup

This section describes our experimental setup and the networks and the machine learning
tasks compression will be tested on.
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A demonstration code for soft-weight sharing has been publicly shared by original authors
in Keras [23]. Our implementation uses PyTorch to make use of its automatic differenti-
ation feature which makes customisations simpler. Most of the soft-weight sharing code
was rewritten but the demo code was extremely useful as it provided clear logic and rough
hyperparameter values to begin testing.

4.1.1 Dataset

The MNIST handwriting recognition task is popularly used for building and comparing
machine learning models. The dataset consists of the 60,000 training and 10,000 test 28
× 28 pixel examples of the 10 digits. The task is to classify which one of the 10 digits
the handwritten scan belongs to. Examples from the dataset are shown in figure 4.2. For
hyperparameter tuning, the last 10,000 examples of the training set were used as the validation
set and the results presented use the complete training set after tuning.

Fig. 4.2 Image Examples from the MNIST Database

T-Shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

Fig. 4.3 Image Examples from the FashionMNIST Database

While any experimentation, searches and tuning are to be carried out on MNIST, the
FashionMNIST dataset is used to verify some results and compare different methods. Fash-
ionMNIST is similar to MNIST, in that it contains 28×28 pixel images belonging to one of
ten categories that need to be classified. However, the images are different clothing items
and harder to classify compared to handwritten digits. Figure 4.3 shows examples from the
FashionMNIST dataset for all categories.



4.1 Setup 27

4.1.2 Model Architecture

Most of our experimentation is carried out on the LeNet 300-100 architecture. This
neural network consists of 2 hidden layers with 300 and 100 hidden units. There are 266,610
parameters contained in the network in total. The LeNet 300-100 is not considered very deep
by today’s standards but we expect the experimental results to be indicative of compression
on larger neural networks. Ideally, we would like to carry out compression directly on much
larger networks where the results should be more pronounced. The LeNet 300-100 was used
due to its practicality as time and computational power are limited.

Layer Type Activation Dimensions Parameters

1 Fully Connected ReLU 784×300+300 235500
2 Fully Connected ReLU 300×100+100 30100
3 Fully Connected Softmax 100×10+10 1010

Total 266610

Table 4.1 LeNet 300-100 Architecture

To verify some final results and strengthen our conclusion, a custom convolutional net
is used. The architecture, hereafter referred to as Custom CNN, has been taken from the
publicly available demo code of soft-weight sharing[23]. This network has 4 layers, of which
the first 2 are convolutional and the remaining 2 are fully connected.

Layer Type Activation Dimensions Parameters

1 Convolutional ReLU 1×25× (5×5)+25 650
2 Convolutional ReLU 25×50× (3×3)+50 11300
3 Fully Connected ReLU 1250×500+500 625500
4 Fully Connected Softmax 500×10+10 5010

Total 642460

Table 4.2 Custom Convolutional Network Architecture



28 Experiments

4.2 Compression Pipeline

The compression pipeline describes the complete stages from training to creating a
compressed storage representation of a neural network. The input for the pipeline is sim-
ply the training dataset and the output is a codebook quantised parameter matrix for the model.

The pipeline to compression is divided in 4 sections:

1. Pre-training: Original training of the neural network with no complexity penalty

2. Clustering: Implementation of soft-weight sharing and other modifications to enable
clustering of weights

3. Pruning and Quantisation: Setting Gaussian mixtures to their mean values, resulting in
pruning for the zero-mean mixture and quantisation for the rest

4. Codebook Generation and Compression Rate Calculation: Generate the codebook and
compressed representation of parameter matrices in the neural network and determine
the ratio of compression

4.2.1 Pre-training

The pre-training step simply produces a trained model that we want to compress. A
cross-entropy loss function is used here without any regularisation for 100 epochs. The LeNet-
300-100 model reaches 98.26% test accuracy on the MNIST dataset with this configuration.
The fully trained model’s weights are clustered in the next step.

4.2.2 Clustering

The soft-weight sharing algorithm is used here to force the parameters to cluster towards
one of Gaussian mixtures. This is by far the most computationally complex and time-
consuming part of processing as error from two separate loss functions is backpropagated.

Hyperparameters

Many different hyperparameters are involved at this stage making the search for the
pareto front incredibly complex. The original paper searched over 13 hyperparameters with
18,000 updates of Bayesian Optimization and still posited the search space may not have
been explored well enough [24]. The main hyperparameters involved are listed below:
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• τ : Trade-off between accuracy and complexity loss functions (see eq. 3.1, 3.6, 3.7). If
the τ value is too low, the model will not remain accurate. On the other hand a low
value will form weak clusters with large spreads and drop in accuracy if pruned and
quantised to means.

• Temperature: The temperature is used to soften the prediction distribution (see 3.1).
A softer distribution is produced by a higher temperature which should be simpler to
model but reduces distinction between different outputs. A lower temperature produces
sharp distributions but loses dark knowledge from the tail-end.

• Learning Rates: Multiple learning rates are specified at this step. In normal training, a
learning rate is only required for the weights and the weights are only affected by accu-
racy loss. In soft-weight sharing, the weights are affected by accuracy and complexity
loss functions, hence the parameter learning rate becomes more sensitive. Furthermore,
the GMM prior has means, mixing proportions and precisions as free parameters, each
with separate learning rates. Due to constraints of time and computation, learning rates
in the publicly available implementation of soft-weight sharing [23] were used with
minor tuning. The layer-wise mixture scaling modification adds another free parameter
with a learning rate.

• Inverse Gamma Prior on Gaussian Mixture Precisions: To prevent any of the Gaus-
sian mixtures from collapsing to single data points, an inverse Gamma distribution
prior is imposed upon the mixtures. The mean and variance needs to be specified
for mixture precisions, with higher means encouraging clusters with smaller spread.
Furthermore, we define different distributions for zero and non-zero components. The
inverse Gamma prior mean for zero-mixture component is kept higher as we expect
most elements to fall within this, and would prefer stronger clustering.

In order to ensure a fair comparison between the different methods, hyperparameter
searches are carried out to find optimal parameters for each method. Initial attempts at using
constrained bayesian optimization and random searches using low-discrepancy sequences
did find some optimal points, but finding the pareto front was difficult due to limited compute.
Instead, the hyperparameter searches were carried out using either low-dimensional grid
searches or hand-tuning. While the priors on mixture precision, loss function trade-off
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parameter and temperature were searched, learning rates were only coarsely tuned due to
limited computational resources.

Initialisation

The means, variances and mixing proportions of the Gaussian mixtures need to be ini-
tialised before they are optimised as free parameters. The zero-mean mixtures is fixed and the
remaining means are distributed over -1.0 to +1.0, as this is the approximately the range of
values of the pre-trained model weights. Variances are initialised to 0.25. Mixing proportion
of the zero-component are set to 0.99, with the remaining 0.01 equally distributed amongst
the remaining mixtures. Layer-wise multiplier scaling, where used, is initiated as the standard
deviation of each layer relative to the first layer.

4.2.3 Pruning and Quantisation

Once the parameters have clustered into Gaussian mixtures, we quantise them to their
means. The zero-mean mixture is effectively pruned leading to a sparse model. The original
implementation computed responsibilities for each mixture and merged mixtures if the KL-
divergence between them was low. This added a threshold hyperparameter which worsen the
already complex search. The mergers do not improve compression either unless mixtures are
reduced to a lower multiple of 2 reducing the number of bits per weight needed for represen-
tation (e.g. 9 and 16 mixtures require same number of bits per weight for representation).
Another downside is the low mixing proportion mixtures are effectively unused. Setting the
parameters to their closest mean was found to be more robust during experimentation and
used as the method for quantisation.

4.2.4 Codebook Quantisation

Quantised and pruned weights can be represented using compressed storage matrices. At
the end of our compression process, we should have pruned the majority of the connections
in the network and have the remaining weights set to small number of quantised values, i.e.
the means of each of the GMM mixtures. We want to be able to compress and store these
weights efficiently and also generate a compression rate metric for comparison.
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The method used to compress weights is originally given in Han et. al [6]. A slight
modification is applied for practicality. In the original paper a compressed sparse column
(CSC) format matrix is used which generates data, column index and recursive index pointer
array which keeps a relative count of non-zero elements in each row. Due to presence of
multiple layers and 3-dimensional convolutional matrices, we reshape the model into a vector
before compressing it, hence only generating the data and column index array as there is only
one row.

Number of Elements Bits per Element

Original Network #[W ] 32
Weight Codebook #[M] 32
Scale Codebook (if enabled) #[S] 32
Weights #[W ̸= 0]+ zero-padding ⌈log2(#[M])⌉
Index Empirically determined ≈ 6−9

Table 4.3 Compressed Storage Vector Sizes

Table 4.3 gives a summary of vector sizes involved in compression rate calculation.
#[M],#[S],#[W ] are the number of mixtures, layer scales and weights respectively. Originally,
the storage required for the network is calculated as the number of parameters multiplied
by 32-bits for single-precision floating points. We generate a quantised codebook which
stores the GMM mixture means as single-precision floating points, allowing us to use low
precision integers to map to the floating points instead. Similarly, if layer scaling is enabled,
the scales are also stored as floating points, occupying 32 bits each. We then generate the
weight matrix which stores all the non-zero weights and place-holder zeroes, representing
them by an integer according to the codebook mapping. The bits occupied per non-zero
weight depends on the number of mixtures means, scaling as the ceiling of log2 with the
number of mixtures.

Lastly, an index needs to be generated to indicate the position of each non-zero weight.
Instead of storing an absolute index position of each non-zero weight, a relative index is
used as it requires less bits per element. With an absolute index, a meagre neural network
such as the LeNet 300-100 with 266K parameters would require 19 bits per element. Instead,
if we use a relative index, we can use a lower number of bits depending on how far we
expect consecutive non-zero weights to be. Furthermore, if a gap is too large, we can store
a place-holder 0 as demonstrated in figure 4.4 where two consecutive weights cannot be
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more than 64 spaces apart due to 6-bit representation of relative indices. Depending upon
the sparsity and the relative spread of the non-zero weights of the compressed network, the
optimum number of bits to use for the relative index can change.

Absolute Index 10 45 128 145 . . .
Non-Zero Weights 2 4 1 3 . . .

Absolute Index 10 45 99 128 145 . . .
Relative Index 10 35 64 29 17 . . .

Weights 2 4 0 1 3 . . .

Fig. 4.4 Using 0 as a Place-holder for 6-bit Relative Index

To calculate the compression rate, we simply divide the size of the original network with
the combined size of the weights, relative index and codebooks. The compressed representa-
tions are generated in code as they are required to determine the size of the weight and index
vectors. The compression rate provides a metric that takes both pruning and quantisation
into account, whereas network sparsity only accounts for pruning.

4.3 Results

This section presents the results of our experiments along with analysis. Further discus-
sion and analysis takes place in the next chapter in view of the research questions.

4.3.1 Soft-weight Sharing

Initially we tested the pure soft-weight sharing algorithm, without any modifications.
Figure 4.5 shows the plots for accuracy and loss functions. The accuracy loss is the cross-
entropy on the labels and the complexity loss is from the GMM prior. At epoch 10, we see a
cliff where the accuracy falls and so does the complexity loss. This indicates that the weights
have moved sufficiently to cluster within the mixtures. 10th epoch onwards, the accuracies
begin to gradually rise while the complexity loss stays nearly constant. This behaviour can
be thought of as analogous to dropout whereby constraints are placed on the network and it
tries to recover and gain accuracy in the constrained state.
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Fig. 4.5 Optimisation Curves for Soft-weight Sharing

The free parameters for each of the non-zero Gaussian mixtures can be seen in figure 4.6.
The zero-mean mixture only has a free parameter for precision as µ j=0 = 0 and π j=0 = 0.99
are fixed. We see that most means stay roughly near where they are initialised. Some mixtures
move around quite significantly as they capture more and more mass. The inverse Gamma
prior on the mixture precision has a mean of 100, hence the standard deviation falls to 0.1,
ensuring better clustering. We see from the mixing proportions that a few mixtures gain most
of the mass while most lose mass almost completely as clustering continues.
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Fig. 4.6 Free Parameters for Gaussian Mixtures in Soft-weight Sharing

The model outputs of the first three steps of the compression pipeline can be seen in
figure 4.7. The histograms are log-scaled and show the distributions of weight values in
the entire network. The pre-training histogram has a roughly Gaussian distribution with a
mean at ≈ 0. The clustering pushes the zero-mixture values much closer to enable pruning,
however the precision on the non-zero mixtures is lower and there is greater spread. The
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plot here shows each of the mixture means as a dark blue line and the shaded area represents
2 standard deviations. We set all the values to the closest mixture means as we prune and
quantise.

Fig. 4.7 Weight Distributions Changes During Soft-weight Sharing

We can map the movement of parameters during clustering by comparing the pre-trained
and clustered distributions. Figure 4.8 shows a joint-plot of weight distributions before and
after clustering. The horizontal lines indicate mixture means with 2 standard deviations. At
epoch 0, we can imagine the data points being distributed on a diagonal y = x line. The
results are given for epoch 50 and majority of the mass from -0.5 to +0.5 has been pulled
into zero. The remaining parameters have deviated from their position to fall closer to means
of a mixture. A joint-plot for each layer is provided in appendix B.
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Fig. 4.8 Soft-weight Sharing Distribution Joint-plot

Inverse Gamma Prior

We investigated the hyperparameters for the inverse Gamma prior on precision of mix-
tures. A mean and variance is defined for the zero-mean mixture and another mean and
variance for the remaining non-fixed mixtures. Figure 4.9 shows two heatmaps which report
the accuracy and sparsity over a grid of mean values. In general the algorithm is fairly robust
to zero-mixture precision mean, as this has a much higher mixing proportion and easily
captures mass. However, if the precision for the free mixtures is too high, it becomes harder
for them to capture mass and more parameters head to zero. This leads to slightly higher
sparsity at the cost of accuracy as seen in the plot.
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Fig. 4.9 Grid Search for Inverse Gamma Prior Mean for Mixture Precision

Number of Mixtures

The effect of specifying different number of Gaussian mixtures for soft-weight sharing is
shown in figure 4.10. We would like to keep the number of mixtures low, as it reduces the
number of bits required per weight for codebook quantisation. However, an extra bit is only
consumed for increasing mixtures by an order of 2. We see in the figure at 4 mixtures or less,
the algorithm does not perform better than random selection. After 6 mixtures we achieve
80%+ accuracy and at 10 mixtures we achieve 97%+ accuracy. Lower number of mixtures
slightly favour more sparsity as there are few non-zero mixtures to capture weight values,
but this comes at the cost of accuracy. In general, 16 is an appropriate number of mixtures
for current setup as it achieves nearly the uncompressed accuracy whereas 8 mixtures still
suffer a 3% drop.
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τ Trade-off Parameter

τ is the trade-off parameter between the accuracy and complexity loss (see eq. 3.1).
Increasing τ increases the weighting given to the GMM prior loss. Figure 4.11 shows how
increasing τ increases the sparsity at the cost of accuracy. We can vary the accuracy between
97% and 70% for sparsity between 95.5% and 99.5%. Hence, it allows us to easily build
either more compressed or more accurate models, depending upon the requirements.
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Fig. 4.11 Soft-weight Sharing with Change in τ

Summary Results

Breaking the compression down by each layer, we see that the densest layer achieves
the most sparsity in both model architectures as shown in table 4.4. Intuitively, the fewer
the parameters in a particular layer, the more information it should contain per parameter.
Hence, dense layers have more flexibility to remove parameters without harming perfor-
mance. The LeNet-300-100 after compression contains 6010 parameters whereas the custom
CNN contains 5422 parameters but still achieves higher performance. The CNN has more
representational power due to an extra layer and convolutional features, allowing better
performance. This finding further supports the idea presented early on that it is easier to
train a larger model and compress to achieve a better accuracy than training a smaller model
ground-up.
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Layer #[W] (%) #[W̸=0]

FC1 235500 98.46 3625
FC2 30100 94.13 1767
FC3 1010 38.81 618

Total 266610 97.75 6010

Layer #[W] (%) #[W̸=0]

Conv1 650 49.54 328
Conv2 11300 88.65 1283
FC1 625500 99.50 3144
FC2 5010 86.69 667

Total 642460 99.16 5422

Table 4.4 Layer-wise Sparsity on MNIST with Soft-weight Sharing

Left: LeNet-300-100. Right: Custom CNN

Alongside MNIST, the compression was also tested on the FashionMNIST dataset.
Whereas MNIST achieves ≈ 99% accuracy on our pre-trained models, FashionMNIST
achieves ≈ 90%. The FashionMNIST proves to be a harder problem as not only was the
original network unable to achieve the same accuracy but the compression also results in
greater accuracy drop and slightly lower compression. The LeNet-300-100 faced a 3%
greater accuracy drop on FashionMNIST than regular MNIST. The Custom CNN performs
much better in this case. On MNIST, the CNN achieves 99.2% sparsity for 0.8% drop in
accuracy, and on FashionMNIST it achieves 98% sparsity for a 1.4% drop in accuracy.

Model
MNIST FashionMNIST

OAC AC SP CR OAC AC SP CR
LeNet-300-100 98.3 97.5 97.8 92.3 89.6 85.8 97.4 86.3
Custom CNN 99.0 98.2 99.2 183.7 89.9 88.5 98.0 150.6

Table 4.5 Soft-weight Sharing Compression Summary Results

*Key: OAC: Original Test Accuracy (%), AC: Compressed Test Accuracy (%), SP: Compressed
Sparsity(%), CR: Compression Rate

The LeNet-300-100 can be compressed 92.3× for storage by using codebook quantisation
with 6 bits per index value. Table 4.6 shows the breakdown of how space is used amongst the
different arrays in the compressed storage format for the MNIST, with the relative indexing
array using the majority of the space.
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Array Space Occupied (%)

Codebook 0.5
Weights 39.8
Index 59.7

Table 4.6 Space Occupied as a Percentage for Each Array in Compressed Format

This section has fully explored the original soft-weight sharing algorithm and shown
that it is extremely effective at compression. The next sections examine modifications to
soft-weight sharing by carrying out similar experimentation.

4.3.2 Knowledge Distillation with Soft-weight Sharing

This section details the experiments carried out on soft-weight sharing using predictions
as targets rather than the hard-labels originally used for training and clustering. Using
distillation, we see a smaller neural network can learn to mimic a larger one, but we would
like to see if the same neural network’s constraints can be relaxed to allow more sparsity
under soft-weight sharing.

The algorithm for soft-weight sharing is the same after incorporating knowledge distil-
lation, the only difference is the use of a transfer set with prediction targets rather than the
original training set with hard labels.

Inverse Gamma Prior

Some hyperparameter searches were carried out to study their effects with knowledge
distillation. Figure 4.12 shows the effect on accuracy and sparsity for different inverse
Gamma prior means on Gaussian mixture precisions. The accuracy stays relatively fixed
around 97% but the sparsity can vary somewhat significantly, especially as the zero-mixture
mean is increased. Overall, it shows more sensitivity than pure soft-weight sharing which
likely due to softer target constraints in knowledge distillation.
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Fig. 4.12 Grid Search for Inverse Gamma Prior Mean for Mixture Precision

τ and Temperature

τ and the temperature on the prediction targets were then tested together in a grid-search.
A higher temperature leads to a smoother target distribution with less information contained,
and a higher τ leads to greater sparsity at the cost of accuracy. Figure 4.13 shows a grid
search over τ and temperature. The temperature on the prediction targets and τ can both be
used to control the trade-off between accuracy and sparsity. High τ and temperature both
lead to increased sparsity but this also coincides with low accuracy, as seen in the bottom
right of the heatmap. At the opposite end, there is much higher accuracy but lower sparsity.
Ideally, we would like to tread on the diagonal between the two to achieve high levels of
compression and accuracy.

Overall, τ and temperature have not helped increase compression but moved results along
the pareto front. The effects of τ and temperature are similar in that they help trade accuracy
for sparsity.
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Fig. 4.13 Temperature and τ Grid Search

The schedule for the trade-off parameter τ was also investigated. 3 different schemes
were tried, as shown in figure 4.14 (a). The constant schedule stays at the maximum τ . The
warmup pattern starts at a low value to decrease the accuracy drop during the clustering
readjustment. The sawtooth pattern tries to find the optimal state for accuracy after each τ

increase.

As we are using knowledge distillation, both test and training accuracy loss begin at zero.
We see the accuracy loss increase and complexity loss decrease as the parameters readjust
for clustering as before. Using a lower τ does decrease the accuracy drop at this stage, but
regardless of the schedule, they converge to similar results. Table 4.7 shows slight differences
between the different schedules, essentially placing them along different points of the pareto
front. The use of low initial τ value also delays the clustering readjustment as can be seen in
figure 4.14 (c). We use a constant τ for the remaining experiments.
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Fig. 4.14 Effects of Different τ Schedules

τ Schedule Accuracy (%) Sparsity (%)

Constant 97.7 97.2
Warmup 97.8 96.5
Sawtooth 97.6 96.9

Table 4.7 Results for Different τ Schedules

Loss Functions

Once we start using the transfer set, we can use a choice of different loss functions.
The original implementation of knowledge distillation by Caruana et. al [1] used the logits
directly (see eq. 3.9). Later on, temperature controlled targets were used to soften the output
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distribution and a cross-entropy loss function was used (see eq. 3.11) [9]. Another option is
to use the mean-squared error loss on the temperature controlled predictions.

Figure 4.15 shows the accuracy and sparsity scatter plots for all 3 techniques with dif-
ferent complexity and accuracy trade-offs. If we were to draw a pareto front for each of
the different loss functions, it is quite clear that using pure logits does not let the model
exceed 93% accuracy with over 90% sparsity, making it a far worse performer than either
cross-entropy or mean-squared error loss. Between mean-squared error and cross-entropy,
the difference in performance is smaller with mean-squared error loss performing marginally
better.
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Fig. 4.15 Effects of Different Loss Functions on Soft-weight Sharing with Distillation

To build an intuition as to why these loss functions performed differently, we assume a
simple distribution of logits where the maximum logit has a target value of 10. The value of
the prediction for this logit is varied from 0 to 20. Figure 4.16 plots the errors and negative
error gradients for different loss functions. The error has been normalised from 0 to 1 for
all loss functions. Pure logits exhibit a gradient throughout, adding severe constraints to
the algorithm and not allowing it to optimise alongside the complexity constraints. Using a
softmax remedies this by reducing error gradients if the distance from target becomes too
large.
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Cross-entropy with temperature tries to increase the value beyond 10 whereas mean-
squared error tries to keep the prediction at its correct value of 10. The largest prediction
attaining a higher value should not cause accuracy problems, however, with a softened distri-
bution many values are brought closer together and optimisation becomes more constrained
if all targets try to increase beyond actual values.

The derivatives of the two loss function with respect to the logits (zi) also explain this
behaviour as MSE gradient is proportional to L1 distance between target and prediction.
Cross-entropy gradient on the other hand divides true target by prediction, ensuring prediction
to be somewhat larger than actual target. The loss functions are presented below with detailed
derivation in appendix A.

∂LCE

∂ zi
=−∑

i
yi

1
σi
× ∂σi

∂ zi
(4.1)

∂LMSE

∂ zi
=

1
N

N

∑
i=1

2(σi− yi)×
∂σi

∂ zi
(4.2)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro
r

MSE on Logit 
MSE w/ Temp
CE w/ Temp

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Prediciton

−0.3

−0.2

−0.1

0.0

0.1

0.2

Ne
ga

tiv
e 
Gr

ad
ie
nt

MSE on Logit 
MSE w/ Temp
CE w/ Temp

Fig. 4.16 Error and Gradients for Different Loss Functions

Mean-squared error is used from here onwards for distillation as it performs better.
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Synthetic Data

One of the advantages of using knowledge distillation is that true labels are not required.
If we have a sufficiently accurate input data generator or a large amount of unlabelled data,
we can still carry out compression without access to the original dataset. We experiment with
the use of synthetic data created from 1,000 images from the MNIST and FashionMNIST
dataset. The mean and variance of each pixel is calculated over 1,000 images and Gaussian
sampling is used to create 10,000 synthetic images.

Soft-weight sharing with and without distillation is carried out using the 1,000 digits.
The synthetic data with 10,000 points is then used to carry out soft-weight sharing with
distillation. Table 4.8 shows the results of this experiment, comparing all 3 procedures.
Without the use of synthetic data, the algorithms perform poorly with larger drops of nearly
50% in accuracy. The synthetic data provides additional constraints that mitigate the accuracy
loss, reducing it to roughly 15%, while still providing a high level of sparsity.

Method
MNIST FashionMNIST

AC SP AC SP
Soft-weight Sharing (SWS) 42.7 99.2 57.8 97.7
SWS with Knowledge Distillation (KD) 46.2 99.7 35.0 98.7
SWS with KD on Synthetic Data 84.7 99.5 73.8 98.3

Table 4.8 Use of Synthetic Data for Compression

*Key: AC: Compressed Test Accuracy (%), SP: Compressed Sparsity(%)

Summary Results

The layer-by-layer breakdown for sparsity after incorporating distillation into soft-weight
sharing is given in figure 4.9. The patterns are similar to pure soft-weight sharing, with the
densest layer accounting for majority of the sparsity.
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Layer #[W] (%) #[W̸=0]

FC1 235500 98.13 4414
FC2 30100 92.77 2175
FC3 1010 28.22 725

Total 266610 97.3 7314

Layer #[W] (%) #[W̸=0]

Conv1 650 34.62 425
Conv2 11300 80.99 2148
FC1 625500 99.44 3526
FC2 5010 75.37 1234

Total 642460 98.9 7333

Table 4.9 Layer-wise Sparsity on MNIST with Distillation

Left: LeNet-300-100. Right: Custom CNN

Further experiments were run on the FashionMNIST dataset and the custom CNN model.
Incorporating knowledge distillation has not improved on the soft-weight sharing results and
achieves roughly similar performance.

Model
MNIST FashionMNIST

OAC AC SP CR OAC AC SP CR
LeNet-300-100 98.3 97.6 97.3 81.8 89.6 84.4 98.1 103.2
Custom CNN 99.0 97.9 98.9 129.3 89.9 87.0 98.4 115.5

Table 4.10 Summary Results for Soft-weight Sharing Compression with Distillation

*Key: OAC: Original Test Accuracy (%), AC: Compressed Test Accuracy (%), SP: Compressed
Sparsity(%), CR: Compression Rate

Some additional results for distillation have been presented in appendix B.

4.3.3 Layer-wise Scaling

A proposed improvement to soft-weight sharing algorithm is allow each of the layers of
the neural network to have a different scale for the mixture means. Table 4.11 shows the
standard deviation of each layer after pre-training on MNIST, with the densest layer having
the lowest spread. In soft-weight sharing, we found that the densest layer achieves the most
sparsity and hence contributes to complexity loss to a greater extent. The remaining layers
may not be able to achieve reasonable accuracy given the complexity constraints.
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Layer σL
σL

σFC1

FC1 0.15 1.00
FC2 0.17 1.13
FC3 0.23 1.47

Layer σL
σL

σConv1

Conv1 0.30 1.00
Conv2 0.23 0.78
FC1 0.16 0.52
FC2 0.20 0.67

Table 4.11 Absolute and Relative Standard Deviation in a Pre-trained MNIST Network

Left: LeNet-300-100. Right: Custom CNN

We allow for each of the layers to have a different scale. A scaling multiplier is introduced
that divides the weight values during the calculation of complexity loss. Experiments are
carried out with both fixed scaling multipliers and allowing the scales to be a free parameter.
In the first case, we simply set the scaling multiplier as the relative standard deviation from
the first layer, as in table 4.11. In the second case, we initialise the scale parameter as the
relative standard deviation from the first layer. As the scaling is meant to be relative to the
first layer, the first scaling multiplier is fixed to one with the remaining multipliers acting as
free parameters.
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Fig. 4.17 Soft-weight Sharing with Layer-wise Scaling on MNIST

The accuracy and sparsity scatter plot is shown in figure 4.17 for both fixed and vari-
able scaling. With variable scaling multipliers, the sparsity increases but the accuracy has
decreased considerably. In the case of Custom CNN, the free scaling multiplier breaks the
classifier completely when used with knowledge distillation.
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Fig. 4.18 Soft-weight Sharing with Layer-wise Scaling on MNIST

Using scaling as a free parameter has given disappointing results. To help understand
why scaling does not work with soft-weight sharing, we plot the scales for each of the two
networks but with high learning rate for the scale parameter in figure 4.18. The scales for all
layers in both models rise quickly and keep an upward trend. The increased sparsity indicates
that more parameters have been pruned to 0-value. This proves that zero-mean mixture
with high mixing proportion (π j = 0.99) can effectively attract parameters in other layers by
increasing the scale as it squeezes all the weights or effectively widens the mixtures about 0.
As more and more parameters are attracted to the zero-mean mixture due to the complexity
loss, the unpruned accuracy remains high while the pruned accuracy falls drastically.

Figure 4.19 shows the first layer (Conv1) and third layer (FC1) of the Custom CNN which
fails with scaling. The scale for the first layer is fixed to 1, hence there are many mixture
means each point can be quantised to. The means deviate far out for FC1 with zero-mean
mixture pruning away almost all the values. The pre-prune test accuracy 98.9% falls to 9.8%
after pruning.
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(a) Conv1 (b) FC1
NB: Remaining mixtures are outside -1<wi<1

Fig. 4.19 Mixture Scaling in Custom CNN

The scaling has an effect on the precisions of the Gaussian mixtures which does not
register in the accuracy loss. The spread of the mixtures increases with the scale. The
accuracy drop only occurs once the pruning step is carried out. As pruning and quantisation
are discontinuous processes, we cannot directly incorporate this error into our optimisation.
A possible remedy for this effect is to scale the precisions of the Gaussian mixtures using
the scaling multiplier, ensuring when a weight is scaled to a lower value, the spread of
the zero-mean mixture is also effectively reduced. Hence, avoiding the pruning of critical
parameters.

The fixed scaling multiplier is slightly more accurate and less sparse in the Custom CNN
and slightly more sparse at the expense of accuracy for LeNet-300-100. The topology of the
two networks can explain the results. Our implementation defines scaling relative from the
initial layer. In the LeNet-300-100, the initial layer is the densest with the smallest spread
making the relative scaling >1. In the Custom CNN, the initial layer has the largest spread,
making the relative scaling <1. Dividing the weights by <1 effectively allows the parameters
in the layer to quantise to mixtures means further away from zero, increasing accuracy but
decreasing sparsity.

The effect is more pronounced for the distilled version of soft-weight sharing. The soft
targets allow more flexibility during optimisation due to the smoother distribution. Soft-
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weight sharing’s harder constraints can help mitigate accuracy drops.

Layer #[W] (%) #[W̸=0]

FC1 235500 98.40 3771
FC2 30100 93.36 1999
FC3 1010 34.16 665

Total 266610 97.6 6435

Layer #[W] (%) #[W̸=0]

Conv1 650 52.92 306
Conv2 11300 89.25 1215
FC1 625500 98.85 7176
FC2 5010 87.94 604

Total 642460 98.6 9301

Table 4.12 Layer-wise Sparsity on with Soft-weight Sharing with Fixed Scaling on MNIST.

Left: LeNet-300-100. Right: Custom CNN

Table 4.12 shows the sparsity broken down by each layer for soft-weight sharing with a
fixed scale multiplier. Incorporating a fixed scale multiplier, we hoped to increase sparsity in
the layers with greatest standard deviation. In FC3 for LeNet-300-100 and Conv1 for the
Custom CNN, the sparsity is still quite low.

Figure 4.20 shows the results of a fixed scaling multiplier with soft-weight sharing and
distillation modification. Both perform reasonably well, roughly at similar performance as
vanilla soft-weight sharing.
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Fig. 4.20 Accuracy and Sparsity for Soft-weight Sharing with Layer-wise Scaling on MNIST
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Table 4.13 presents the results of the fixed scaling multiplier. The models still achieve
above 80× compression with less than 1% accuracy drop. Both methods perform roughly
similarly on LeNet-300-100 while Custom CNN compresses better with pure soft-weight
sharing.

Model
SWS SWS and Distillation

OAC AC SP CR OAC AC SP CR
LeNet-300-100 98.3 97.7 97.6 89.8 98.3 97.7 97.4 85.7
Custom CNN 99.0 98.0 98.6 124.3 99.0 98.0 98.1 103.8

Table 4.13 Summary Results for Soft-weight Sharing with Fixed Scale Multiplier on MNIST

*Key: OAC: Original Test Accuracy (%), AC: Compressed Test Accuracy (%), SP: Compressed
Sparsity(%), CR: Compression Rate

Table 4.14 shows similar testing carried out on the FashionMNIST dataset. The LeNet-
300-100 has a fall in accuracy but compresses well. Between the original and distilled
soft-weight sharing there is a trade-off between sparsity and accuracy. The remaining models
compress well at over 80× compression rate.

Model
SWS SWS and Distillation

OAC AC SP CR OAC AC SP CR
LeNet-300-100 89.6 85.4 97.4 86.1 89.6 83.2 98.2 106.4
Custom CNN 89.9 88.0 97.3 89.5 89.9 88.5 97.1 80.4

Table 4.14 Summary Results for Soft-weight Sharing with Fixed Scale Multiplier on Fash-
ionMNIST

*Key: OAC: Original Test Accuracy (%), AC: Compressed Test Accuracy (%), SP: Compressed
Sparsity(%), CR: Compression Rate

4.3.4 Layer-wise Compression

Layer-wise compression is carried out to test whether better optimization can be per-
formed with soft-weight sharing when the objective is to mimic each layer. For knowledge
distillation, we extracted a transfer set of predictions for the targets. Similarly, for layer-wise
compression, we can extract pre-trained network’s predictions at each hidden layer. To test
the hypothesis successfully, we need to match the clustered activations to the pre-trained
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activations at each hidden layer. We have proposed two methods for this.

Method 1: Independent Compression

In the first method, all the layers are trained completely independent of each other. Each
layer will has a separate GMM prior and error is not backpropagated between the different
layers.

Since compression is carried out independent of other layers, we can examine the effect
of compression in a particular layer by taking a fully trained network and replacing the
original layer with the compressed layer. Our initial experiments checks whether the use of
ReLU activation in hidden layer loss calculation causes any problems. Figure 4.21 shows
that the performance is similar with or without the use of activation. We continue without the
use of activation in remaining experiments.
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Fig. 4.21 Effect of Activations for Layer-wise Compression

A major source of error for this method is that no error is backpropagated from the targets,
hence each layer can introduce errors that may not be corrected. On the other hand, as all the
layers are compressed independently, different hyperparameters can be assigned throughout.
We use different trade-off parameters to find the sparsest compressed layer model for a given
accuracy drop (ε).

Table 4.15 shows the sparsest layer found in our search for 1%, 2%, 3%, and 10%
accuracy fall per layer. Although FC3 compresses much better at 81% against soft-weight
sharing’s 39%, and FC2 performs at nearly a similar level, the method is unable to compress
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FC1 to the degree needed for this modification to be advantageous. FC1 is much denser and
accounts for over 88% of the weights in the network, hence dominating the compression.
Yet, even with a 6% drop in accuracy, it only attains 95.9% sparsity compared to 98.5% in
the original algorithm. The first layer alone effectively caps the amount of compression that
can be carried out.

Furthermore, we see that even if ε ≤ 1 for all 3 layers, the error compounds significantly.
Despite each layer holding less than 1% accuracy drop from a fully-trained network, the
overall accuracy drop when combined is 7%. This is unfeasible, especially for deep neural
networks with hundreds of layers.

One possible method to remedy this is to rejoin and retrain the network for a few epochs
to fix these misalignment errors. However, this defeats the purpose of carrying out com-
pression of each layer independently and potentially in parallel. Furthermore, the reason
why FC3 can achieve a high level for sparsity and accuracy here is that normally the densest
layer dominates the prior. By assigning each layer different hyperparameters and priors,
greater sparsity has been acheived. Unifying the network and sharing hyperparameters and
priors will not only significantly change the final optimised state, requiring more epochs for
clustering but also would also lose the benefits of separately tuned and trained compressed
layers.

Another possible but untested remedy is to include random noise at the input of each
layer while keeping the same targets. This is somewhat analogous to the encoder in the
de-noising autoencoder, with the latent representation replaced by the targets. The neural
network should become more robust to the minute changes between the layers, decreasing the
accuracy drop when connecting the layers. However, since the densest FC1 layer is not able
to compress to the same extent as soft-weight sharing in the first place, any methods to reduce
accuracy loss at the unification step will still not help achieve state of the art compression.
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Accuracy (%) Sparsity (%)
ε Layer

1.0

FC1 97.48 76.91
FC2 97.36 93.90
FC3 97.46 81.49

Overall 91.27 78.41

2.0

FC1 96.63 92.91
FC2 96.38 95.87
FC3 97.46 81.49

Overall 84.28 92.73

3.0

FC1 96.63 92.91
FC2 95.51 96.67
FC3 97.46 81.49

Overall 85.56 92.88

10.0

FC1 91.18 95.91
FC2 93.23 98.21
FC3 97.46 81.49

Overall 74.80 95.96
Table 4.15 Results of Method 1 for Layer-wise Compression

Method 2: Layer-wise Loss Accumulation

In the second method, we train the whole network together but incorporate a loss at each
layer (see eq. 3.12). The GMM prior is shared over the whole network and hence the number
of quantised values required for the codebook are simply the number of mixtures. The error
is also backpropagated, ensuring the whole network is perfectly aligned.

Figure 4.22 shows the scatter plot of accuracy against sparsity. Method 2 clearly outper-
forms method 1. A higher accuracy region of > 95% and > 95% sparsity is present which
was not the case with the first method which was unable to attain an accuracy greater than
91.3%. This compression method is severely sensitive to the trade-off parameter. The pareto
front travels from 96% accuracy at 72% sparsity to 98% sparsity at roughly the same accuracy.
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Fig. 4.22 Soft-weight Sharing with Layer-wise Compression (Method 2) on MNIST

Table 4.16 shows the layer-wise sparsity when accuracy of over 96% is required. We
can only attain a sparsity of 65% in LeNet-300-100 but the Custom CNN fairs better. The
constraints from the activations of FC1 did not allow sufficient compression as FC1 could
only attain 63% sparsity whereas it normally attains 90%+.

Layer #[W] (%) #[W̸=0]

FC1 235500 62.66 87947
FC2 30100 83.22 5052
FC3 1010 33.56 671

Total 266610 64.9 93670

Layer #[W] (%) #[W̸=0]

Conv1 650 30.31 453
Conv2 11300 80.63 2189
FC1 625500 99.16 5227
FC2 5010 27.78 3618

Total 642460 98.2 11487

Table 4.16 Layer-wise Sparsity for Layer-wise Compression on MNIST.

Left: LeNet-300-100. Right: Custom CNN

Table 4.17 shows results on different datasets and models. The LeNet-300-100 fails
to compress sufficiently while trying to maintain high accuracy. The Custom CNN still
achieves over 100× compression, but this is still worse off than previous methods. The added
constraints which were meant to help optimise the model instead only hindered compression.
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Model
MNIST FashionMNIST

OAC AC SP CR OAC AC SP CR
LeNet-300-100 98.3 97.6 55.4 7.2 89.6 79.7 54.2 7.0
Custom CNN 99.0 97.0 98.2 105.6 89.9 82.1 98.4 108.5

Table 4.17 Summary Results for Layer-wise Compression

*Key: OAC: Original Test Accuracy (%), AC: Compressed Test Accuracy (%), SP: Compressed
Sparsity(%), CR: Compression Rate

This chapter has presented detailed results and analysis which will help us answer our
research questions in the next chapter.



Chapter 5

Discussion

We investigated 3 research questions posed earlier in the thesis. The results from exper-
iments carried out in chapter 4 can help us answer these questions sufficiently. Summary
results are presented in the form of a plot for accuracy and sparsity on LeNet-300-100 in
figure 5.1. Table 5.1 gives the summary results across different datasets and models with the
compression rate and accuracy change. The results for variable layer scaling and independent
layer compression (method 1) are not listed as these methods were not able to maintain
accuracy. Fixed scaling, and layer-wise loss accumulation (method 2) results are present.
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Method
LeNet-300-100 Custom CNN

MNIST FashionMNIST MNIST FashionMNIST

∆ACC CR ∆ACC CR ∆ACC CR ∆ACC CR

SWS 0.8 92.3 3.8 86.3 0.8 183.7 1.4 150.6
SWS + KD 0.7 81.8 5.2 103.2 1.1 129.3 2.9 115.5
SWS + Fixed Scaling 0.6 89.8 4.2 86.1 1 124.3 1.9 89.5
SWS + KD + Fixed Scaling 0.6 85.7 6.4 106.4 1 103.8 1.4 80.4
Layerwise 0.7 7.2 9.9 7 2 105.6 7.8 108.5

Table 5.1 Summary Results for Experiments

Top: LeNet-300-100 Bottom: Custom CNN

*Key: ∆ACC: Accuracy Drop (%), CR: Compression Rate, SWS: Soft-weight Sharing, KD:
Knowledge Distillation

5.1 Effects of Knowledge Distillation

The first research question examines the effects of distillation on soft-weight sharing.
Attempting distillation with pure logits added unnecessary constraints, degrading perfor-
mance. However, the use of mean-squared error with temperature controlled logits gives
nearly similar results to soft-weight sharing. The pareto front for soft-weight sharing, with
and without distillation in figure 5.1 is seen to be quite close.

The use of distillation adds another hyperparameter, temperature, which smoothes the
target distribution. The effect of this is essentially similar to τ , trading compression for
accuracy. The temperature moves around the pareto front but does not give significantly
better results. However, with the smoother distribution, the method becomes less robust.
Tuning of inverse Gamma prior on the mixture precisions has shown greater stochasticity
with knowledge distillation than without. Similarly, table 5.1 shows that distillation performs
worse on the Custom CNN than soft-weight sharing while showing comparable performance
in LeNet-300-100. This could be due to insufficient hyperparameter tuning.

The one area where distillation has shown to be significantly helpful is the use of synthetic
data without labels. Experiments have shown that with only 1,000 points the accuracies
of soft-weight sharing drop by 50%, but creating 10,000 synthetic data points and using
distillation stops the accuracy drop around 15%. A better data augmentation method that
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Gaussian sampling with more data points should perform even better.

Overall, knowledge distillation performs are roughly similar levels to soft-weight sharing
with higher sensitivity to hyperparameters but no need for true labels on the training set.

5.2 Effects of Incorporating Layer-wise Scaling

The second research questions asks whether incorporating scaling into soft-weight sharing
can help improve compression. A variable scaling method and a fixed scaling method were
tried. The variable scaling method did not work with soft-weight sharing as it encourages
scalable layer weights to simply collapse to the zero-mean mixture due to its high mixing
proportion. At the pruning stage, there is a significant drop in accuracy as most of the scalable
layers are pruned.

Using fixed scaling by simply assuming the relative standard deviation from the pre-
trained networks distribution does not allow the collapse to zero-mean. However, there little
to no improvement on the actual results with our without distillation. In either case, the
performance simply moves along the pareto front, either increasing accuracy at the cost of
compression or vice versa.

In current experimental setup, scaling does not improve soft-weight sharing. Methods
to overcome the collapse of scalable layer to zero-mean mixture should be investigated.
Independent layer-wise compression shows that the FC3 in LeNet-300-100 could achieve
81% sparsity with less than 1% drop in accuracy when trained with an independent prior.
Hence, it is likely that these layers can be further compressed if these issues are overcome.

5.3 Is Layer-wise Compression Better?

The third research question looks into whether better compression can be acheived if we
compress layer-wise and mimic each layer in the pre-trained network. Carrying out such
compression completely independently gave disappointing results. We could not attain higher
sparsity than 93% without significantly degrading accuracy in the densest layer. This shows
that the constraints of layer-wise compression simply do not encourage sparsity. Although
the model simply translates to a regression problem, matching the hidden layer activations
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reduce flexibility by far too much.

Further testing was done by using a loss function that trained the network as a whole,
but also accounted for the hidden unit activations. This method improved compression
over the previous method while mimicking each layer. However, it is extremely sensitive
to the trade-off hyperparameter and did not improve upon the original soft-weight sharing.
Figure 5.1 shows layer-wise compression further away from the pareto front. The results on
LeNet-300-100 for also show the compression rate to be merely 7 for less than 1% accuracy
drop on MNIST and 10% accuracy drop on FashionMNIST.

Both methods verify that layer-wise compression degrades performance of soft-weight
sharing as it adds unnecessary constraints on the network, reducing sparsity.

All 3 research questions proposed improvements to soft-weight sharing which seemed
viable initially. Through experimentation, we have found that soft-weight sharing has per-
formed remarkably well and the modifications did not yield the benefits we expected. The
results, while not positive, are informative.
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Conclusion

The thesis investigated neural network compression by attempting to improve a near
state-of-the-art algorithm. All in all, we found that the original soft-weight sharing performs
quite well and the suggested modifications could not improve upon it for various reasons.

Knowledge distillation can still be somewhat useful in some applications as it does
not require training data labels and can also make use of synthetic data. Variable scaling
should be further investigated with methods that prevent layers from collapsing to zero-mean
mixture. The results showed that carrying out compression layer-wise does not help overall
compression but also showed that the less dense layers had capacity to be further compressed.

Although experiments and tests were run across different models and datasets, the limita-
tion on computing resources mean that we could not actually try our methods on an actual
deep neural network. An epoch of clustering takes roughly 1 minute on an Nvidia K80 with
LeNet-300-100, making deeper models with millions of parameters unfeasible. It would be
interesting to see how deeper and more parametrised networks perform with these algorithms
as these networks are where compression will likely be used.

Many new avenues and methods for compression are being introduced. Currently, varia-
tional dropout methods achieve state-of-the-art compression, with soft-weight sharing not
far behind. Methods which look for regularity in pruning provide more pratical benefits and
could be incorporated with soft-weight sharing. Results and intuition from this thesis can
help inform research directions for various methods as neural network compression is likely
to remain a topic of interest for some time.
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Appendix A

Mathematical Derivations

A.1 Backpropogation Derivatives

Derivative of Softmax with Temperature

Approximation at high temperature:

σi =
exp(zi/T )

∑k exp(zk/T )
≈ 1+(zi)/T

N +∑k zk/T

σiσ j =
exp((zi + z j)/T )
(∑k exp(zk/T ))2 ≈

1+(zi + z j)/T
(N +∑k zk/T )2

(A.1)

Approximation assuming zero-mean logits (∑k zk/T = 0):

σi ≈
1+(zi)/T

N +∑k zk/T
≈ 1+ zi

NT

σiσ j ≈
1+(zi + z j)/T
(N +∑k zk/T )2 ≈

1+ zi + z j

N2T

(A.2)
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Softmax derivative if i = j:

σi =
exp(zi/T )

∑k exp(zk/T )

∂σi

∂ z j
=

1
T exp(zi/T )∑k exp(zk/T )− 1

T

(
exp(zi/T )

)2(
∑k exp(zk/T )

)2

∂σi

∂ z j
=

1
T exp(zi/T )

[
∑k exp(zk/T )− exp(zi/T )

](
∑k exp(zk/T )

)2

∂σi

∂ z j
=

1
T

exp(zi/T )
∑k exp(zk/T )

[
∑k exp(zk/T )− exp(zi/T )

]
∑k exp(zk/T )

∂σi

∂ z j
=

1
T

σi(1−σi)

∂σi

∂ z j
≈ 1+ zi

NT 2 −
1+2zi

N2T 2

(A.3)

Softmax derivative if i ̸= j:

σi =
exp(zi/T )

∑k exp(zk/T )

∂σi

∂ z j
=

0− 1
T

[
exp(zi/T )exp(z j/T )

](
∑k exp(zk/T )

)2

∂σi

∂ z j
=− 1

T
exp(zi/T )

∑k exp(zk/T )
exp(z j/T )

∑k exp(zk/T )
∂σi

∂ z j
=− 1

T
σiσ j

∂σi

∂ z j
≈−

1+ zi + z j

N2T 2

(A.4)

Hence proving, error gradient ∝ 1/T 2
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Derivative of Cross-Entropy Error

LCE =−∑
i

yi log(σi)

∂LCE

∂ zi
=−∑

i
yi

∂ log(σi)

∂ zi

∂LCE

∂ zi
=−∑

i
yi

∂ log(σi)

∂σi
× ∂σi

∂ zi

∂LCE

∂ zi
=−∑

i
yi

1
σi
× ∂σi

∂ zi

(A.5)

Derivative of Mean-Squared Error

LMSE =
1
N

N

∑
i=1

(σi− yi)
2

∂LMSE

∂ zi
=

1
N

N

∑
i=1

2(σi− yi)×
∂σi

∂ zi

(A.6)





Appendix B

Additional Results

Soft-weight Sharing

(a) FC1 (b) FC2 (c) FC3

Fig. B.1 Layer-wise Clustering in LeNet-300-100
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Soft-weight Sharing with Distillation

Fig. B.2 Clustering with Distillation in LeNet-300-100

4 6 8 10 12 14 16
Mixtures

97.0

97.5

98.0

98.5

99.0

99.5

Ac
cu

ra
cy

 (%
)

Accuracy
Sparsity

20

40

60

80

100

Sp
ar

sit
y 

(%
)

Fig. B.3 Effect of Number of Mixtures in Soft-weight Sharing with Distillation
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