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Abstract

Variational approximation to the intractable partition function using high-temperature
perturbation expansion, originally developed by Yedida and Georges [31], was shown to bring
significant improvements over the naive mean field approach in training restricted Boltzmann
machines after an appropriate adaptation [7]. RBM can serve as a general approximator of any
distribution over binary variables as well as a building block in pre-training deep multi-layer
neural networks. In this thesis I replicate the main results from the work of Gabrié et al.
Then, I propose a generalization of this deterministic procedure for pre-training deep belief
nets and demonstrate that this algorithm provides performance equal to persistent contrastive
divergence. Such pre-trained deep structures learn better lower-dimensional codes of digits
from the MNIST data set than principal component analysis or shallow structures. Moreover,
I compare three schedules of updates showing that the analysed method is robust to different
schemes as long as the updates are performed layer-wise. Furthermore, the approximation is
compared with annealed importance sampling to assess the quality of estimates of the free
energy however the analysed method seems to be rather biased. Nevertheless, the results
suggests that investigated deterministic approximation of the partition function might be used
as a ballpark estimate during training as it is computationally-wise very inexpensive method.
Further development are suggested as it should be possible to generalize this approach to
more general family of distributions with real-valued variables.
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Introduction

Statistical analysis and inference of multivariate phenomena might be performed in the context
of probabilistic graphical models that provides a natural framework for developing complicated
structures where the graph of the model defines the conditional dependence between random
variables. Markov random fields, a particular class of undirected graphical models, by
definition satisfy desired Markov property which says that two nodes are conditionally
independent given some evidence nodes that separate them. A strict connection between
Markov random fields and positive distributions that factorize enables us to analyse energy
based distributions, a fundamental class of probability distributions extensively used in
statistical physics, in the framework of graphical models.

A particular example of an undirected graphical model is Boltzmann machine – structure that
has been extensively investigated over last 30 years as it can be seen as a natural approximator
of any discrete probabilistic distribution [14]. A special class from this family is restricted
Boltzmann machine (RBM) – an undirected neural network that doesn’t have connections
between neighbouring nodes. It is believed that one of the main reasons for the resurgence of
deep architectures is the effective unsupervised pre-training of those structures with RBMs.
The advances in training deep neural networks over couple last years allowed us to train very
powerful statistical models that yield substantial improvements in many areas of machine
learning like speech or vision recognition, image processing or machine translation.

One of the main reasons for the development of deep methods in the last years was introduction
of effective and computationally efficient stochastic algorithms for unsupervised training. The
breakthrough came in 2006 with the contrastive divergence (CD) algorithm for training deep
belief networks (DBN) [11]. The deep structure might be formed by stacking single RBMs
pre-trained using contrastive divergence approach. It is empirically shown that unsupervised
pre-training guides the learning towards basins of attraction of minima that support better
generalization from the training data set [5].

However, an alternative deterministic procedure was proposed by Gabrié et al. [7] based on
the extended mean field approach originally derived in statistical physics [31]. Initially, there
were many attempts to train RBMs using the deterministic mean field approach were we
assume that the approximate distribution factorizes. The obtained results showed that such
assumption is too strong and this procedure provided poor performance when compared to
CD. However, variational approximation to the intractable free energy using high-temperature
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perturbation expansions brings significant improvements over the naive mean field approach
applied to bipartite structures, specifically to the restricted Boltzmann machine.

The thesis is organized as follows. In chapter 1 I will show strict mapping between Markov
random fields and energy based models and embed them into the framework of probabilistic
graphical models. Then, two variational approximations of the partition function will be
described – naive and extend mean field approximations. Finally, Boltzmann distribution
is introduced with analysis of main properties. Chapter 2 describes the experimental toy
framework used to evaluate the performance of the extended mean field approximation and
compares it to the naive approximation. Three schedules of updates are considered for
magnetizations of spins in a system – asynchronous, sequential and parallel. Two toy models
are used in experiments – grid toy model with periodic boundary conditions and a restricted
Boltzmann machine with 10 units per layer. The maximum likelihood training of restricted
Boltzmann machine is derived in chapter 3. Monte Carlo methods are introduced, namely
Gibbs sampling. Then, the contrastive divergence procedure is shown and compared to the
deterministic approach based on the extended mean field approximation. I replicate main
results obtained by Gabrié et al. – comparison of stochastic and deterministic trainings of
restricted Boltzmann machines using log-likelihood estimates and generated samples from
trained models. In chapter 4 three proposed schedules of updates are evaluated on the real
data set. Then, I compare two methods of estimating the free energy of the model – the
annealed importance sampling and approximation based on the extended mean field approach.
Furthermore, deep belief nets are introduced and greedily training of those structures is
reformulated using entirely deterministic approach. Stochastic and deterministic procedures
are compared by the analysis of reconstructions of samples from data.

A detailed derivation of the extended mean field approximation is shown in Appendix A.



Extended mean field approximation

1.1. Markov random fields as graphical models

One of the basic concepts in the theory of statistical modelling are graphical models which
greatly help in analysing multivariate phenomena. Visualization by graphs helps in efficient
development and understanding of analysed models while complex computations can be
performed exploiting graph’s properties. Consider a graph G = (V,E) which consists of a
finite set of vertices V and a collection of edges E ⊂ V ×V . Each edge ei ∈ E joins two
vertices and in general may have a direction. The vertex v ∈ V may be seen as a random
variable Xv defined on some space Xv that may be either continuous or discrete. Moreover,
an important concept related with every graph structure is the notion of clique which is
a subset of V in which all nodes are pairwise connected. One of the most useful class of
graphical models is a Markov random field (MRF) which is a type of undirected random field
that satisfies global Markov property, specifically:

Definition 1 An undirected graphical model G is a Markov random field if for any node Xv

in the graph the following conditional property holds:

P (Xi|XG\i) = P (Xi|XN(i)),

where XG\i denotes all the nodes except Xi, and XN(i) denotes the set of all vertices connected
to Xi.

Thus, the MRF has a desired property that any two nodes are conditionally independent
given some evidence nodes that separate them. This property is closely related with the
notion of factorization of the joint probability distribution:

Definition 2 A probability distribution P (X), X = (X1, ...,Xn), defined on an undirected
graphical model G factorizes over G if there exists a set of non-negative functions (potentials)
on maximal cliques {ψC}C∈C that cover all the nodes and edges of G and we can write:

P (X1,X2, ...,Xn) = 1
Z

∏
C∈C

ψC(xC),

where C is a set of all cliques in G and Z is a normalization constant Z =∑
x
∏
C∈C ψC(XC)

which is often called a partition function.
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The following theorem shows a direct connection between those two family of probability
distributions that will be heavily exploited in the following sections:

Theorem 1 (Hammersley-Clifford) Strictly positive distribution P (X) is MRF w.r.t an
undirected graph G if and only if it factorizes over G.

Theorem 1 ensures us that there exists a general factorization form of the distribution of
MRFs. It follows from the strict positivity of P that we can write:

p(x1,x2, ...,xn) = 1
Z

∏
C∈C

ψC(xC) = 1
Z
e
∑

C∈C lnψC(xC) = 1
Z
e−E(x), (1.1)

where E(x) is called an energy function. This general form of distribution is usually defined as
Gibbs distribution. Hence, the probability distribution of every positive MRF can be expressed
as in 1.1. This relationship allows us to take advantage of both approaches to statistical
modelling as we can perform inference exploiting a graph structure as well as algebraic
properties of the Gibbs family. Moreover, this form of distribution is a natural candidate to
approximate and model phenomena which can be also visualise using graphical models. In
next sections we will analyse one particular class from family of Gibbs distributions which is
powerful enough to approximate any discrete distribution.

1.2. Boltzmann distribution

In this thesis, an undirected graphical model (which is a MRF) that will be extensively
analysed is the Boltzmann distribution. In the most general form it has the following joint
distribution:

p(x1,x2, ...,xn) = 1
Z

exp
(

− 1
T
E(x1,x2, ...,xn)

)
, (1.2)

where T is the temperature of the system and E is the energy of the system defined as:

E(X) = −
∑
(ij)

wijxixj −
∑
i

θixi,

and Z =∑
x exp(− 1

TE(x1,x2, ...,xn)) is the normalization constant often called the partition
function. The pair-wise potential function takes here the form:

ψi,j = exp(xiwijxj),

while the magnetic field is defined as:

ψi = exp(θixi).

Wide range of distributions having the form of 1.2 is extensively used in physics to compute
the energy of the system of particles. This model proves to be very useful in many other
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applications such as the error-correcting code, computer vision, medical diagnosis or statistical
mechanics [31]. This model may represent statistical dependencies between different variables
through the weight link wij as well as the evidence for the specific variable. However,
computing the partition function requires summation over a number of states that grows
exponentially with the number of variables and it is intractable even for a small number of
variables. That is why, we have to resort to some tractable approximations which two of
them will be considered in next sections.

1.3. Statistical physics perspective

Following the notation from the statistical physics consider a graphical model over a set of
random variables s taking the "spin" values {0,1}. In the context of statistical physics, these
values might represent the orientations of magnets in a field, or the existence of particles in a
gas. Let’s consider the Boltzmann distribution for such system:

P (s) = e− 1
T E(s)∑

s e
− 1

T E(s)
= 1
Z
e− 1

T E(s) (1.3)

where energy is defined as:

E ≡ E(s) = −
∑
(ij)

siwijsj −
∑
i

θisi.

This yields the well-known Ising model which plays a primarily role in the analysis of
phase transitions in many physical systems. By restricting the wij to be positive we obtain
the ferromagnetic Ising model. Finally, assuming that the wij are chosen from a random
distribution, we obtain the Ising spin glass model [31].

As it was mentioned previously, the number of configurations in the system scales exponentially
with the number of variables which forces us to resort to some kind of approximations. Instead
of imposing some restrictions on the model structure, we will try to find an approximate
distribution Q that poses useful characteristics and minimizes the relative entropy often
called the Kullback-Leibler divergence:

KL(Q||P ) = EQ
(

lnQ
P

)
=
∑

s
Q(s) lnQ(s)

P (s) . (1.4)

The KL-divergence is a non-symmetric measure of the difference between two distributions
which is always non-negative. Substituting P from 1.3 into the previous equation yields:

KL(Q||P ) = lnZ+ 1
T
E[Q]−H[Q],

where H stands for entropy of the distribution Q, lnZ is the free energy and E[Q] =∑
sQ(s)E(s) is called the variational energy where E refers to the average configuration under
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the Boltzmann measure [21]. The partition function Z doesn’t depend on Q and we need to
only focus on minimizing the variational free energy:

F [Q] := E[Q]−TH[Q]. (1.5)

At equilibrium i.e. when the approximate distribution would equal the desired one the
KL-divergence is 0 and the variational free energy is equal to the Helmholtz free energy
defined as:

F := −T lnZ. (1.6)

1.4. (Naive) Mean field approximation

The most widely used approximation to the family of models defined in 1.3 is the mean field
approximation which is obtained by taking as an approximator the family of distribution
that factorizes as following:

Q(s) =
∏
i

qi(si),

which results in neglecting the dependency between the random variables. The variational
free energy in this case takes the form:

FMF = −
∑
(ij)

∑
si,sj

wijqi(xi)qj(xj)−
∑
i

∑
si

θiqi(xi)+T
∑
i

∑
si

qi(si) lnqi(si), (1.7)

and the energy for a single spin is:

E(si) = −θisi− si
∑
j

wijmj ,

where adjacent spins are replaced by certain effective mean fields which are defined as:

mi = Eqi(si), i ∈ {1, ...,N}.

In terms of magnetizations, 1.7 becomes:

FMF = −
∑
(ij)

wijmimj −
∑
i

θimi+T
∑
i

[mi lnmi+(1−mi) ln(1−mi)] . (1.8)

Minimizing 1.8 with respect to magnetizations yields the so-called mean field stationary
conditions:

mi = sigm
 1
T

∑
j

wijmj + 1
T
θi

 , i ∈ {1, ...,N}, (1.9)
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where N is the number of spins in the model. These equations are usually run sequentially.
As the free energy is convex [29], these updates can be seen as coordinate descent in m.
However, the domain over which magnetizations are optimized us no longer convex and there
might exist many solutions to 1.9 as well as some of them might not be even local minima.
Nonetheless, the MF approach is exact for the infinite-ranged Ising model where each node is
connected to every other node and all couplings wij are positive and takes the same value
[13].

Additionally, the variational mean field approximation yields an upper bound on the exact
free energy as the following holds:

lnZ = ln
∑

s
exp(− 1

T
E(s)) = ln

∑
s
Q(s)

exp(− 1
TE(s))

Q(s)

⩾
∑

s
Q(s) ln

exp(− 1
TE(s))

Q(s) = − 1
T
EQ(E(s))+H(Q)

where the middle inequality follows from the concavity of the log function and application of
Jensen’s inequality. We arrive at the bound by reversing the inequality:

F = −T lnZ ⩽ E[Q]−TH[Q] = F [Q].

1.5. Extended mean field approximation (EMF)

At the expense of loosing the rigorous upper bound on the Helmholtz free energy, we might
consider a different approximation for the magnetization dependant variational free energy
[8]. We will minimize 1.5 where instead of enforcing Q to be a product distribution we require
that magnetizations has appropriate values, i.e.:

EQ(s) = m, (1.10)

where m is fixed. Thus, the variational free energy is now defined as:

βF (m) = min
Q

{E(Q)−H(Q) | E(S) = m}, (1.11)

where β was introduced as a reciprocal of temperature – this will allow us to perform an
useful expansion w.r.t β later on. The constrained optimization problem can be transformed
into unconstrained using Lagrange multipliers, i.e.:

E(Q)−H(Q)−
∑
i

λi(E(si)−mi).

Thus, the minimizing distribution has the form:

Qm(s) = 1
Z
e−E(s)+λisi ,
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with partition function Z =∑
s e

−E(s)+
∑

iλisi . Putting this distribution back into 1.11 along
with making auxiliary fields λ temperature-dependant and suppressing (for the moment) the
λ and {mi} dependence of F we arrive at the objective function:

−βF = ln
∑

s
exp

β∑
(ij)

wijsisj +β
∑
i

θisi+
∑
i

λi(β)(si−mi)
 .

Let’s now expand −βF around β = 0:

−βF = −(βF )β=0 −
(
∂(βF )
∂β

)
β=0

β−
(
∂2(βF )
∂β2

)
β=0

β2

2 − ... (1.12)

In this case, the spins are entirely controlled by their auxiliary fields. Although it not a
desired assumption, it will allow us to obtain useful form of the expansion. Magnetizations
are fixed equal to EQ(s), particularly for β = 0 which gives an important conjugate relation
between magnetizations and auxiliary fields:

mi = Eβ=0(si) = exp(λi(0))
exp(λi(0))+1 = sigm(λi(0)). (1.13)

We can now choose which variable use in obtaining perturbation terms and this purely
depends on mathematical convenience. As the equation 1.13 is easy to invert, we will work
with magnetizations. The first term from the 1.12 takes now the form:

−(βF )β=0 =ln
∑

s
exp

(∑
i

λi(0)(si−mi)
)

=ln
{∑
s1

exp(λ1(0)(s1 −m1)) ...
∑
sn

exp(λn(0)(sn−mn))
}

=ln{(exp(λi(0))+1)exp(−λ1(0)m1)...(exp(λi(0))+1)exp(−λ1(0)mn)}

=
∑
i

{
ln
( 1

1−mi

)
−mi ln

(
mi

1−mi

)}
=−

∑
i

[mi ln(mi)+(1−mi) ln(1−mi)] ,

(1.14)

where using 1.13 we replace auxiliary variables by:

λi(0) = logit(mi) = ln
(

mi

1−mi

)
.

As we can see this is exactly the mean field entropy from the equation 1.8. Furthermore, the
first derivative is:

− ∂(βF )
∂β

∣∣∣∣∣
β=0

=
∑
(ij)

wijEβ=0(sisj)+
∑
i

θiEβ=0(si)−
∑
i

∂λi(β)
∂β

∣∣∣∣∣
β=0

E(si−mi), (1.15)
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and as it was observed earlier at β = 0 spins are independent and the expectation in the first
term of 1.15 factorizes. Thus, we obtain:

− ∂(βF )
∂β

∣∣∣∣∣
β=0

=
∑
(ij)

wijmimj +
∑
i

θimi. (1.16)

Comparing 1.16 and 1.14 with 1.8 we can see that we have already recovered the simple mean
field approximation. Yedida and Georges [8] showed how to continue this expansion to the
arbitrarily high order (detailed derivation in Appendix A). However, in next chapters the
expansion will be used only up to the third-order term:

−βFEMF =−
∑
i

[mi ln(mi)+(1−mi) ln(1−mi)]

+β
∑
(ij)

wijmimj +β
∑
i

θimi

+ β2

2
∑
(ij)

w2
ij(mi−m2

i )(mj −m2
j)

+ 2β3

3
∑
(ij)

w3
ij(mi−m2

i )(
1
2 −mi)(mj −m2

j)(
1
2 −mj)

+β3 ∑
(ijk)

wijwjkwki(mi−m2
i )(mj −m2

j)(mk −m2
k)+ ...

(1.17)

where (ijk) stands for coupled triplets of nodes. The second-order term is known in the
statistical physics literature as "Onsager reaction" or TAP term firstly derived by Thousless,
Anderson and Palmer [27]. Contrary to the mean field approximation, the extended approach
takes into account all distinct pairs and triplets of spins. This will lead to significant
improvements over naive mean field approach in learning graphical models from Boltzmann
family.

1.5.1. EMF approximation of the free energy

Although it is very straightforward to obtain naive mean field approximation from the
extended approach, unlike the former in general case this method doesn’t bound in any way
the free energy F . This follows from the fact that that the inferred marginal probabilities do
not necessarily correspond to a valid, joint Q distribution in the variational bound. Moreover,
the approximation was based on the Taylor expansion which poses a threat that the radius
of convergence of the expansion will be too small to obtain robust results for the different
values of β [31]. There are a few examples in statistical physics where this method works very
reliably in a wide variety of temperatures [22] however in general there aren’t any theoretical
foundations proving the robustness of this expansion. In the next chapter this approach will
be tested on various toy models to assess the quality of the approximation.
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1.6. Boltzmann machine

A particular example from the family of distributions defined in 1.2 is a Boltzmann machine
[1] which has a two-layer architecture with N visible units v = (v1, ...,vN ) and M hidden
units h = (h1, ...,hM ) that can take values 0 or 1. The energy function has the form:

E(v,h) = −
∑
i

aivi−
∑
j

bjhj −
∑
i,j

viWijhj −
∑
i<j

viVijvj −
∑
i<j

hiJijhj ,

where Wij , Vij , Hij are real-valued couplings between visible and hidden, visible and visible
and hidden and hidden units respectively for i ∈ {1, ...,n}, j ∈ {1, ...,M}. An example of
such structure presents Figure 1.1 (left). The connections between units from the same layer
makes this model hard to perform inference – for example even with given visible units we
are not able to compute the marginal probability p(v) as this requires summation that scales
exponentially with number of hidden units.

1.6.1. Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is a special case of Boltzmann machine which
overcomes difficulties associated with the general form at the same time preserving the
approximating power. The energy function takes the simplified form:

E(v,h) = −
∑
i

aivi−
∑
j

bjhj −
∑
i,j

viWijhj .

The graph of an RBM has connections between visible and hidden units but not between
any variables from the same layer (Figure 1.1, right). This results in independence between
variables from the same layer conditional on the states of the other layer. The RBM can
be interpreted as a stochastic neural network, where units and connections correspond to
neurons and synaptics respectively [6].

Input 1

Input 2

Input 3

Input 4

Hidden
layer

Input
layer

Input 1

Input 2

Input 3

Input 4

Hidden
layer

Input
layer

Fig. 1.1 Illustrative graphs of Boltzmann machine (left) and restricted Boltzmann Machine
(right) with 4 visible units and 5 hidden units.
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1.6.2. Approximator of any distribution

The power of RBMs comes from the fact that with data-dependent number of hidden units
they become non-parametric and possess universal approximation properties [14]. It can be
shown that with additional hidden units there exist weight values for these new units that
guarantee improvement in increasing the log-likelihood of observed data. Taking this process
to extreme, we can obtain a model with an unlimited expressive power:

Theorem 2 (LeRoux-Bengio, 2010) Any distribution over {0,1}n can be approximated
arbitrarily well (in the sense of the KL divergence) with an RBM with k+ 1 hidden units
where k is is the number of input vectors whose probability is not 0.

This theorem shows that an RBM is the natural candidate for modelling an arbitrary
distribution where we are interested in learning powerful generative model. In the next
chapters, analysed models will not have more hidden units than visible ones thus we lose the
guarantee of learning an unbiased approximate distribution. Nonetheless, the experiments
show that even then the models that are learnt provide effective generative approximator of
an unknown distribution.

1.6.3. Exploiting the RBM structure

The restrictions imposed on the structure allows for efficient computation of conditional
probabilities because the hidden variables are independent given the state of the visible
variables and vice versa and we can write:

p(h|v) =
M∏
i=1

p(hi|v),

p(v|h) =
N∏
i=1

p(vi|h).

The conditional probability of a single variable being one is also explicitly available:

p(hi = 1|v) = p(hi = 1|h−i,v) = p(hi = 1,h−i,v)
p(h−i,v)

= exp(−E(hi = 1,h−i,v))
exp(−E(hi = 1,h−i,v))+exp(−E(hi = 0,h−i,v))

= 1
1+exp(∑N

n=1Wi,nvn+an)

= sigm(
N∑
n=1

Wi,nvn+ bi)),

(1.18)
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and following the same steps we can show that:

p(vj = 1|h) = sigm(
M∑
m=1

W T
i,mhm+aj)), (1.19)

where sigm(x) = (1 + e−x)−1. The independence between the variables in one layer makes
sampling from conditional distributions 1.18 and 1.19 easy to perform. This will be crucial
for effective learning of this model when we don’t know a priori the parameters. Moreover,
the numerator from the p(v) factorizes over hidden variables and we can write:

∑
h
e−E(v,h) = eb′v∑

h1

...
∑
hm

e−E(v,h)

=eb′v∑
h1

eh1(c1+W1•v)...
∑
hm

ehm(cm+Wm•v)

=eb′v
m∏
j=1

(
1+ eci+Wi•v

)
,

(1.20)

where Wi• denotes the i-th row of the matrix W . These properties will be heavily exploited
later on when we will be interested in computing the probability of observed data points.



Evaluation on toy models

So far we have considered two variational approaches to the general Boltzmann distribution
where pair-wise connections might be defined between all nodes in the graph. However, we
are interested in the adaptation of the extended mean field approximation to the restricted
Boltzmann machine.

2.1. Adaptation of EMF to RBM

Adaptation of the extended mean field approximation derived in the first chapter to the
case of the RBM is rather straightforward. Let’s divide set of spins into visible and hidden
variables along with corresponding biases (a and b for visible and hidden units respectively).
We will denote by mv = {mi}Ni=1 and mh = {mi}Mj=1 corresponding sets of magnetizations
where N and M are the sizes of the visible and hidden layers accordingly. The energy in the
BM models is set to 1 thus we set β to 1 as well. This leads to the following free energy
expansion (up to the third term):

FEMF (mv,mh) ≃ H(mv,mh)
−
∑
i

aim
v
i −

∑
j

bjm
h
j

−
∑
i,j

(
mv
iwijm

h
j +

w2
ij

2 (mv
i − (mv

i )2)(mh
j − (mh

j )2)
)

−
∑
i,j

(2w3
ij

3 (mv
i − (mv

i )2)(1
2 −mv

i )(mh
j − (mh

j )2)(1
2 −mh

j )
)
,

(2.1)

where H(·) denotes the entropy of magnetizations. In the case of the RBM, the third term
consists only of the sum of pair connection because the coupled triplets are excluded by
the bipartite structure of the RBM [7]. To recover the true free energy we set the external
fields to 0 which by conjugacy yields the self-consistency constraints dG

dm = 0. This stationary
condition might be interpreted as a requirement that in the equilibrium, where magnetizations
perfectly describes the average configuration of spins under the Boltzmann measure, the
variational free energy reaches its minimum. This leads to the following constraint on the
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i-th visible magnetization:

∂FEMF

∂mv
i

= 1+lnmi−1− ln(1−mv
i )−R = 0,

where

R =ai+
∑
j

wijm
h
j −

∑
j

w2
ij

(
mv
i − 1

2

)(
mh
j − (mh

j )2
)

+
∑
j

w3
ij

3
(
mv
i − (3mv

i )2 +2(mv
i )3
)

(mh
j − (mh

j )2)(1
2 −mh

j ).

This can be regrouped as:

ln
(

mv
i

1−mv
i

)
=R,

which leads to the following relation:

mv
i = exp(R)

1+exp(R) = sigm(R), (2.2)

and similar condition can be obtained for {mh
j }Mj=1. These consistency relations can be

defined for an arbitrary order of approximation. Thus, the hidden and visible magnetizations
are the solutions of a set of non-linear equations that can be recognized as the extended mean
field equations for a spin system. We can pose a question how to efficiently define a schedule
of updates of magnetizations which will eventually satisfy self-consistency constraints. This
will allow us to compute the extended mean field approximation for the partition function
1.17.

2.2. Schedule of updates

The choice of the update procedure is of crucial importance for the convergence of the
magnetizations. It was observed in the case of mean field updates for Boltzmann machines
that they must be run sequentially in order to yield proper estimates [30]. Similarly, in the
case of the extended mean field approximation, it was proposed that an iterative, asynchronous
algorithm may serve as an update rule [7] following positive theoretical results proved in the
context of random spin glass model. However, there are many heuristically reasonable ways
to perform such sequential updates as well as it is interesting how different procedures might
affect the convergence. Thus, I will analyse three different update rules for magnetizations
on toy models and on the real life data set. The updates here are considered only up to the
second order.
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2.2.1. Asynchronous

The structure of the RBM suggests that updates might be performed layer-wise. At each
iteration the whole hidden layer is updated with visible magnetizations fixed to the values
from the previous step. Then, new visible magnetizations are obtained with updated hidden
magnetizations. This can be written using the time index t in the following way:

mh[t+1] = sigm
[
b+Wmv[t]−

(
mh[t]− 1

2

)T
⊙W 2

(
mv[t]− (mv[t])2

)]
,

mv[t+1] = sigm
[
a +W Tmh[t+1]−

(
mv[t]− 1

2

)
⊙ (W 2)T

(
mh[t+1]− (mh[t+1])2

)]
,

(2.3)

where ⊙ denotes Hadamard product.

2.2.2. Sequential

Previous procedure takes advantage of the bipartite structure of the model. However, we
might consider updates not in a vectorize way but rather in a sequential manner where we
loop over the hidden and visible variables:

mh
i [t+1] = sigm

bi+∑
j

(
wijm

v
j [t]−w2

ij(mh
i [t]− 1

2)
(
mv
j [t]− (mv

j [t])2
)) ,

mv
j=i+1[t+1] = sigm

ai+∑
l ̸=i

(
wijm

h
l [t]−w2

ij(mh
l [t]− 1

2)(mv
j [t]− (mv

j [t])2)
)

+
(
wijm

h
i [t+1]−w2

ij(mh
i [t+1]− 1

2)(mv
j [t]− (mv

j [t])2)
)]
,

(2.4)

where i ∈ {1, ...,M}, j ∈ {1, ...,N}. This implies imbalance in numbers of updates performed
between hidden and visible layers if N ̸=M .

2.2.3. Parallel

Finally, one could consider parallel updates where both visible and hidden magnetizations
are updated at the same time. This might be summarized as follows:

mh[t+1] = sigm
[
b+Wmv[t]−

(
mh[t]− 1

2

)T
⊙W 2

(
mv[t]− (mv[t])2

)]
,

mv[t+1] = sigm
[
a +W Tmh[t]−

(
mv[t]− 1

2

)
⊙ (W 2)T

(
mh[t]− (mh[t])2

)]
.

This schedule of updates poses a risk that the model might not learn the proper transfer
of information from one layer to another which is in contrast with the structure of the
RBM.
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Figure 2.1 presents graphically all proposed procedures.
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Fig. 2.1 Graphical visualisations of three different schedule of updates considered for the
RBM toy model. Numbers above the coloured arrows denotes the order of updates.

In the case of fixed point algorithms, it is a common practice to use damped updates [18]
where as a new value for given magnetization we take weighted average of its value from the
previous step and after performing an update. The weight λ is a hyper-parameter that is
usually in the range of [0,1]. Damping operation helps in avoiding unnecessary artefacts and
oscillations. In all experiments conducted in this and the following chapters updates will be
damped with λ set to 0.5 following other authors [7], [30].

2.3. Toy models

As it was mentioned in the previous chapter, unlike the naive mean field approach, the
extended approximation doesn’t yield either an upper or lower bound for the variational free
energy. Moreover, in order to adapt the EMF approximation to the RBM model we set β
to 1 which means that the temperature is also 1 while the approximation was derived for
an infinite temperature. Thus, the radius of convergence for the Taylor expansion might be
not big enough to obtain reliable estimate of magnetizations. That is why, two toy models
(a grid model and a small RBM) were used in order to perform an exact inference which
will allow us to assess the quality of the EMF approximation before turning to real data set
which requires much bigger and more powerful modelling structures. The analysis will be
made with an assumption that the parameters of the models are known a priori. The toy
grid model will have 16 nodes while the toy RBM model will have 20 nodes (10 hidden and
10 visible).

2.3.1. Grid toy model

A small grid toy model was considered of size 4×4 with periodic boundary conditions in order
to avoid edge effects – Figure 2.2 shows this model from the graphical model’s perspective.
The nature of this model implies that the sequential updates of magnetizations seem as



2.3 Toy models 17

the most natural to obtain statistics of the system in the equilibrium and that is why only
updates of the form 2.4 will be considered here. In this case each magnetization mi is updated
one at a time using equation 2.2.

Fig. 2.2 4×4 grid toy model used for an exact inference.

Initially, external fields were set to 0 and I considered the case when all couplings have the
same value that ranges from −1 to 1. As it was expected, the naive mean field approach
becomes an upper bound for the variational free energy. However, even in the case of this
small model the TAP approximation for different values of couplings is either upper or lower
bound. We can see that the approximation is closest to the ground truth when the couplings
are close to zero. This is consistent with the fact that the approximation was performed
around point where the temperature T is infinite which means that spins are independent –
small values of couplings imitate this state.

Another computational inference problem that can be evaluated thanks to the TAP method
is obtaining a mode of the marginal density for a given spin – in this case we can estimate
average value of the spin under the Boltzmann distribution. The right plot in the Figure 2.3
shows the mean squared error (MSE) between the real and estimated magnetizations for all
spins. In this case, the TAP approach provides much better estimates than the naive method
– we can see that adding a second term to the approximation allows to properly model the
connections between the spins in the system.
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Fig. 2.3 Comparison of two variational approaches – free energy estimates (left) with the
true free energy (green line) and MSE between real and estimated magnetisations (right) as
a function of the couplings strength ranging from −1 to 1.
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In the next experiment, all couplings were initialised to random values around "mean" strength
which varies from 0 to 1 and then randomly assigned with positive or negative sign. The
results are similar to the one observed previously (Figure 2.4). The naive approach gives
consistently better approximation for the F while the TAP method performs better in the
case of estimating an average value of a spin.
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Fig. 2.4 Absolute difference between true free energy and the one computed by the naive and
the extended mean field approach (left) and MSE between real and estimated magnetisations
(right) as a function of the absolute value of couplings strength.

The addition of external fields didn’t change substantially the performance of both methods
and the results are not included here.

2.3.2. RBM toy model

Due to the different structure of connections between states, the RBM toy model is less
trivial to approximate. This should lead to considerably different results in the performance
comparing to the toy mode and it will be an another motivation to use the extended mean
field approach on the real data model.

Unlike in the previous case, there is no strong heuristics how the updates of self-consistency
relations should be performed. The literature suggests that in the case of the naive approach
it is necessary to run self-consistency equations sequentially [30]. To assess the impact on the
final estimates, all three different schedules of updates will be considered here. Following the
analysis from the previous section, initially all couplings were set to the same value ranging
from −1 to 1 (Figure 2.5).

Unlike the case of the grid model, the estimation of the free energy is almost exact in the
case of the TAP method while the naive mean field method again provides a slightly biased
upper bound. As it was the case with the grid model, the magnetizations estimated using
extended approximation are very precise while MF magnetizations shows discrepancies from
true values when connections become stronger in the model. No significant differences were
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Fig. 2.5 Comparison of two variational approaches – free energy estimates (left)with the true
free energy (green line) and MSE between real and estimated magnetisations (right) as a
function of the couplings strength ranging from −1 to 1.

observed between different schedules of updates and thus results for sequential updates
weren’t included here.

When couplings are random with randomly assigned negative or positive signs the TAP
approximation again yields consistently much better estimates that most of the time are
exact at the same time having much smaller variance then the naive counterpart (Figure
2.6). Again, differences between schedules of updates were negligible and thus the results for
sequential updates weren’t included as they were almost identical to the ones obtained with
asynchronous iterations.
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Fig. 2.6 Absolute difference between the true free energy and the one computed by the
naive and the extended mean field approach (left) and MSE between real and estimated
magnetisations (right) as a function of the absolute value of couplings strength.

The randomness associated with choosing the sign of connections might have averaged
the overall statistics of the model, which in turn might affect the effectiveness of different
schedules of updates. Thus, to assess how robust the analysed extended method is with
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different schedules the couplings were chosen again randomly around given mean values but
this time the sign of the weight was chosen sequentially (Figure 2.7).
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Fig. 2.7 Absolute difference between the true free energy and the one computed by the naive
and the extended mean field approach (left) and MSE between real and estimated magneti-
sations (right) as a function of the absolute value of couplings strength with sequentially
opposite signs.

Interestingly, TAP estimates are now not exact for couplings with an absolute strength
around values 0.2 or 0.3. Moreover, the sequential updates yield very poor estimates for
magnetizations – the MSE is almost the same as with the naive approach. The addition of
external fields this time extensify the differences in performance between updates (Figure
2.8). The MSE between true and estimated magnetizations is higher for the TAP model with
sequential updates than for the corresponding naive model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
absolute couplings strength

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ab
s.

 d
iff

er
en

ce
 fr

om
 tr

ue
 fr

ee
 e

ne
rg

y

asynchronous MF
asynchronous TAP
sequential MF
sequential TAP
parallel MF
parallel TAP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
absolute couplings strength

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
SE

asynchronous MF magn.
asynchronous TAP magn.
parallel MF magn.
parallel TAP magn.
sequential MF magn.
sequential TAP magn.

Fig. 2.8 Absolute difference between true free energy and the one computed by naive and
extended mean field approach (left) an MSE between real and estimated magnetisations
(right) as a function of the absolute value of couplings strength with sequential changes of
signs.

Taking into consideration all results we can infer that the extended approximation yields
robust results even though the expansion is evaluated at β = 1 and the couplings between
spins might have strong connections. Moreover, the real benefits of modelling the relationship
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between the spins can be observed when the MRF has the RBM structure. In this case the
estimates of the free energy and the magnetizations were almost exact for the EMF-based
model. However, contrary to the heuristics parallel updates perform just as well as the
asynchronous ones while the sequential updates might drastically worsen the quality of
estimates for the EMF-based models.



Learning of Boltzmann machine

3.1. Unsupervised learning

So far it was assumed that the couplings in analysed structures (along with bias terms) were
known a priori. However, in general when we analyse some phenomena we don’t know this
values and we are interested in learning an unknown distribution Q based on some observed
data D. The theoretical results suggests that the RBM structure is a natural candidate
for approximating underlying distribution from which the data were generated. Thus, the
unsupervised learning in this case consists of learning the parameters θ of the approximate
distribution P . Therefore, our general goal is to maximize the probability of D under the
MRF distribution i.e. we are looking for the vector of parameters θ that maximizes the
likelihood given the training data:

max
θ

lnL(θ|D) = max
θ

ln
N∏
i=1

p(vi|θ) = max
θ

N∑
i=1

lnp(vi|θ),

where N is the size of D.

The results on toy models suggest that the initial unsatisfactory performance of naive mean
field approaches [28] might be greatly improved if we include additional terms responsible for
connections between spins.

3.2. Training of Boltzmann machine

With large graphical models it is not possible to find an analytical solution to the maximum
likelihood estimation of parameters and we need to resort to some approximation methods.
That is also the case of the RBM and learning the parameters of this structure relies on
the gradient ascent of the log-likelihood. At time t during training the update of the vector
containing all parameters of the RBM θ has the form:

θt = θt−1 +η∇θt−1 lnL(θ|D).

This relies on the fact that the gradient w.r.t. parameters θ informs us how fast function
increases in the current point θt−1. By taking appropriately small learning rate, these iterative
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updates converge to stationary points. With large data set it is common to use a stochastic
gradient ascent method [24] where we sample a minibatch of datapoints and take a noisy
gradient estimate which results in the update rule:

θt+1 = θt+η
1
M

M∑
m=1

∇θt−1 lnL(θ|x(m)), (3.1)

where M is the size of the minibatch. It can be shown that updates via 3.1 guarantee to
converge to a local optimum under weak conditions [4].

For a given data point v the log-likelihood can be seen as the difference between two
energies:

L = lnP (v) = − ln(
∑
h
e−E(v,h))− lnZ = F c(v)+F, (3.2)

where F is the free energy of the RBM and F c denotes the clamped free energy as we operate
on the fixed visible units v. The gradient of the log-likelihood w.r.t θ given a training example
v takes the form:

∂ logL(θ|v)
∂θ

= ∂F c

∂θ
− ∂F

∂θ

= −
∑

h e
−E(v,h) ∂E(v,h)

∂θ∑
h e−E(v,h) +

∑
v,h e

−E(v,h) ∂E(v,h)
∂θ∑

v,h e−E(v,h)

= −
∑
h
p(h|v)∂E(v,h)

∂θ
+
∑
v,h

p(v,h)∂E(v,h)
∂θ

= −Ep(h|v)

(
∂E(v,h)

∂θ

)
+Ep(v,h)

(
∂E(v,h)

∂θ

)
.

(3.3)

As we can see the gradient is the difference of two expectations – the expected value of
the gradient of the energy function under the model distribution and under the conditional
distribution of the hidden variables given the observed variables v. Thanks to restrictions
imposed on the structure of the Boltzmann machine, the clamped free energy can be computed
explicitly. However, as it was mentioned previously direct calculations of the second term
leads to the complexity that is exponential in the number of variables in the model.

3.3. Monte Carlo methods

The second expectation from the gradient in 3.3 is intractable to compute explicitly in the
case of large models and we have to resort to some kind of approximations. Monte Carlo
methods rely on stochastic generations of random variables w.r.t. the desired expectation
needs to be computed. Denote by:

θ = Ep(f(X)) =
∫
f(x)p(x)dx
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the quantity of interest where X ∼ p(·). The Monte Carlo estimate has the form:

θ̂ = 1
N

N∑
i=1

f(xi),

where xi, i ∈ {1, ...,N}, are random samples from X and N is the number of samples. This
simple procedure provides unbiased and consistent estimate of θ as n→ ∞.

3.3.1. Markov chain Monte Carlo

Monte Carlo method relies on the fact that we are able to generate independent random
samples from the distribution of interest. In the case of the RBM, we are not able to generate
random samples {v,h} from the complex joint posterior to approximate the expectation of
interest. However, we can use Monte Carlo Markov chain (MCMC) framework to generate
approximate samples from the joint distribution p(v,h).

A discrete stochastic process X = {Xt, t ∈ N} which takes values in discrete set S is a Markov
chain if the Markov property holds, i.e.

ptij = P (Xt = j|Xt−1 = i, ...,X0 = i0) = P (Xt = j|Xt−1 = i)

for every t ∈ N and i, j, i0 ∈ S. In the case of the discrete process, we usually operate on
the transition matrix defined as P = (pij)i,j∈S . The fundamental concept of the theory of
the MCMC is stationarity or a stationary distribution π for which it holds π = Pπ. MCMC
methods focus on constructing an appropriate Markov chain that converges to the desired
distribution.

3.3.2. Gibbs sampling

A particular class of MCMC algorithms is the Gibbs sampling algorithm which enables us to
produce samples from the joint probability distribution using full conditional distributions.
This method is also often called "block-at-a-time" as the transition probabilities are derived
for subblocks of the vector x. Let x be divided into two blocks of variables x1 and x2. The
Gibbs sampler subsequently generates samples from xi1 = p(x1|x2) and xi2 = p(x2|x1) which
forms samples from the joint (xi1,xi2) assuming we reached a convergence of the chain.

In the case of the RBM, the structure of the model suggests that we can divide the variables
from the joint into two blocks – visible and hidden units. No connections between variables
from the same layer enables us to efficiently sample from conditionals p(v|h) and p(h|v)
using 1.18 and 1.19.
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3.4. Contrastive divergence

The main challenge related with MCMC methods is the computational burden related with
ensuring that the Markov chain has been run sufficiently long to ensure convergence to a
stationary distribution. However, it was proven empirically that the chain might be run only
a few steps in order to train an effective model [9] which is called contrastive divergence (CD)
learning.

There are two steps which differ CD from the naive MCMC sampling to approximate the
second expectation from the gradient 3.3. Firstly, instead of running the Markov chain until
it obtains a stationary distribution, the chain is initialized using training data point v0 from
the training data set. Secondly, the Gibbs chain is run only for k steps (CD-k) where k is
usually smaller than 20. Figure 3.1 presents the procedure for the CD-1:

1st
ste

p 2nd step

v0 v0

h1

v1

h1

Fig. 3.1 The first step of the Gibbs sampler for the RBM for a particular data point v0 ∈ D.

The approximation to the gradient by the single data point v0 in the case of CD-k takes the
form:

−
∑
h
p(h|v0)∂E(v0,h)

∂θ
+
∑
h
p(h|vk)∂E(vk,h)

∂θ
. (3.4)

It should be noted here that as we run the Gibbs chain only a few (k) steps, the samples
{vk,hk} don’t come from the stationary distribution and the approximation 3.4 is biased as
it doesn’t maximize the likelihood of the data but the difference of two KL-divergences [9],
[6]:

KL(Q|P )−KL(Pk|P ),

where Q is the empirical distribution and Pk is the distribution after k step of the Gibbs
chain and this explains the name of the algorithm.

3.4.1. Persistent contrastive divergence

It was observed that the contrastive divergence procedure still requires many steps to be
run in order to learn a good generative model. The rate of learning might be significantly
improved when we don’t reinitialize the Markov chains with a new training batch in order to
obtain a sample {vki }Mi=1 but rather keep "persistent" chains (PCD) [28]. Thus, the starting
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state for the Gibbs chain is equal to the last step from the previous update. The assumption
made here is that between parameter updates the model changes only slightly in terms of
parameters’ values [19]. Thus, the initialization from the last state of the Gibbs chain taken
from the previous model should be closer to the model distribution. The empirical results
suggest to keep one persistent chain per one training data point in a batch.

3.5. Learning using extended mean field approxima-
tion

The stochastic procedure described in the previous section can be replaced with the fully
deterministic approach as the log-likelihood in the case of the EMF approximation has the
form:

L = lnP (v) = F c(v)−FEMF . (3.5)

As the first term from 3.2 can be computed explicitly, it is independent from the approach
taken during training and we only have to derive the updates using the EMF approximation
of the free energy.

Let’s now fix visible and hidden magnetizations {mv,mh}. The gradient of the log-likelihood
w.r.t a coupling parameter Wij up to the third-order term is:

∂FEMF

∂Wij
=−mv

im
h
j −W t

ij(mv
i − (mv

i )2)(mh
j − (mh

j )2)

−2W 2
ij(mv

i − (mv
i )2)(1

2 −mv
i )(mh

j − (mh
j )2)(1

2 −mh
j ),

while the updates for the bias terms are just negative of the fixed-point magnetizations:

∂FEMF

∂ai
= −mv

i ,

∂FEMF

∂bj
= −mh

j .

Thus, the training procedure using a deterministic approach goes as follows: given a data
point v we obtain expected values of the hidden units h = sigm(Wv +b) which are starting
points for magnetizations, i.e. mv

0 = v and mh
0 = h. Then, we perform an iterative algorithm

(which can have the form as presented in the previous chapter) until convergence to obtain
magnetizations {mv,mh} that satisfy self-consistency relations. Those magnetizations can
then be used to obtain gradient w.r.t the parameters of the model and to compute the
approximation of the free energy.
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3.6. Approximating the log-likelihood

The problems related with intractability of the partition function makes training RBMs very
difficult as we cannot observe directly progress of learning. Thus, we need to resort to some
approximations. One of the most popular approaches to measure progress in training RBMs
is due to Besag [3] – consider the following approximation of n-dimensional distribution:

P (x;θ) =
∏
i

p(xi|x1, ...,xi−1;θ) ≈
∏
i

p(xi|x1, ...,xi−1,xi+1, ...,xn;θ) =
∏
i

p(xi|x−i;θ) :=PL(x;θ),

where the first equation comes from the chain rule and x−i denotes the set of all variables
except variable xi. We assume here that marginals given all other are independent of each
other. The likelihood has then the form:

lnPL(x;θ) =
∑
i

lnP (xi|xi−1;θ).

If the analysed phenomenon has many dimensions this approximation is still computationally
expensive. Thus, another simplification is to choose only one marginal as a proxy, i.e.

lnPL(x;θ) = n lnP (xi|x−i;θ),

where i is randomly chosen from {1,2, ...,n}. It can be shown that this pseudo-likelihood is
maximized by the true parameters of the model. In the case of the RBM, this estimator
takes especially efficient form:

lnPL(x;θ) ≈ n log
(

exp{−F c(x)}
exp{−F c(x̂)}+exp{−F c(x)}

)
= n ln(sigm(F c(x̂)−F c(x)) , (3.6)

where x̂ represents the vector x with i-th variable flipped, i.e. 1−xi.

3.7. Real data model – MNIST data set

The data set that will be used for the comparison and the evaluation of EMF and CD training
algorithms is the MNIST set [15] which is a well-known benchmark image classification
dataset that consists of 60000 training and 10000 testing images of digit numbers. They are
represented on 28-by-28 grey-scale grid of pixels. Thus, the first visible layer in all analysed
models consists of 784 visible units. Following [7], [25] all images were rescaled to [0,1] and
binarized by setting all non-zero pixels to 1 in all experiments. The data set was divided into
600 mini-batches which results in 100 training points per batch.
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3.7.1. Comparison of both approaches

In order to test the efficiency of the EMF learning algorithm, I used three expansions of 1.17
– up to the first-order (MF),up to the second-order (TAP2) and up to the third-order (TAP3)
term. Moreover, I varied the number of iterations of self-consistency relations (3 and 10)
using asynchronous updates of the form 2.3 to mimic the idea from the contrastive divergence
approach. As a benchmark, two models were trained following the stochastic training (CD1,
CD10).

Furthermore, all models described above were trained using persistent approach (PMF,
PTAP2, PTAP3, PCD). In the case of the EMF approximation, the magnetizations of a
batch from the previous update are the starting points in the next update [7]. Similarly to
PCD, this idea is based on the fact that between updates the model changes only slightly
and it should improve the convergence to the new fixed point magnetizations.

All models were trained 10 times using the same set-up of free parameters with 500 units.
The purpose of this experiment is to compare different RBM trainings thus following [7] I
didn’t use the adaptive learning rate which was set to 0.005, learning was performed using
mini-batch updates with 100 training points per batch. The couplings matrix was randomly
initialised using normal distribution with zero mean and variance set to 0.01. This allows to
compare the procedures in the their "raw" forms.

However, the EMF approximation was performed around the infinite temperature were the
spins are independent. Thus, in general couplings should have small values – this can be
enforced using regularization which at the same times allows for a better generalization. From
probabilistic perspective this can be seen as adding a weighted prior over the parameters
(maximum a posteriori training). The criterion that will be maximized has now the form:

E(θ,D) = lnL(θ|D)−λR(θ),

where R(·) is the regularizer and λ ∈ R+ is a hyper-parameter which controls the effective
power of the regularization. In all experiments Laplacian prior R(θ) = ∥θ∥1 (L1 regularization)
was used with λ set to 0.01.

Figure 3.2 presents the pseudo log-likelihood 3.6 (left) and EMF log-likelihood 3.5 for the
non-persistent training procedure. Firstly, by the visual inspection both approximation yield
very similar results for each analysed model. However, the EMF estimates are much less
noisy at a lower computational cost. Secondly, results for the MF-101 confirm the findings
from the literature – the naive mean field approach is not able to learn an effective model.
Moreover, the results for the CD, TAP2 and TAP3 are very similar. There are not significant
differences between models with 3 or 10 iterations of self-consistency relations which shows
that the deterministic approach doesn’t have to be computationally expensive.

1The results for MF-3 weren’t included as they were very similar to the MF-10.
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Fig. 3.2 Per-sample pseudo log-likelihood (left) and EMF log-likelihood (right) on the
validation set of the MNIST data set divided by number of all units in the model (1284)
across first training 50 epochs for RBM models trained stochastically and deterministically.
Error bars shows the standard deviations of 10 trained models using a particular version of
training.

As it was expected, the best results in terms of the EMF proxy of log-likelihood are achieved
by the EMF method. However, the results for the CD models suggest that the EMF log-
likelihood may be used as a reliable indicator of progress during training as those models
weren’t constructed to optimize over this objective [7].

Figure 3.3 presents the results for persistent versions of models analysed above. There are
not significant differences comparing to the standard version of both procedures. However,
as it was expected the samples from the models trained using persistent chains are of much
higher quality.

5 10 15 20 25 30 35 40 45 50
epoch

0.09

0.08

0.07

0.06

0.05

0.04

0.03

ps
eu

do
 lo

g-
lik

el
ih

oo
d

PCD-1
PCD-10
PTAP2-3
PTAP2-10
PTAP3-3

5 10 15 20 25 30 35 40 45 50
epoch

0.09

0.08

0.07

0.06

0.05

0.04

0.03

EM
F 

lo
g-

lik
el

ih
oo

d

PCD-1
PCD-10
PTAP2-3
PTAP2-10
PTAP3-10

Fig. 3.3 Per-sample pseudo log-likelihood (left) and EMF log-likelihood (right) for the same
models trained using persistent Gibbs chains. Results of the naive method weren’t included.

Finally, in persistent and non-persistent versions of models the addition of the third order
term from the EMF expansion 1.17 doesn’t provide improvement over the TAP model. This
might be partially explained by the fact that estimated weights are in general smaller than 1
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(in absolute value) which are then used at the order of 3 in self-consistency equations and
hence it doesn’t affect significantly estimations.

3.7.2. Generated samples from the models

The restricted Boltzmann machine can also be seen as a generative model that can create
samples that will resemble the observed data provided that it approximates well the unknown
distribution that generated the original, observed samples. Three models were trained with
500 hidden units using persistent chains – one with the contrastive divergence algorithm
and two models using naive and extended mean field approaches respectively. Figure 3.4
shows samples generated from those models where 1000 chain steps were performed between
samples. The samples produced by the naive mean field method provides digits of the poorest
quality that are often non-identifiable. As we can see the addition of the second-order term
greatly improves also the generative properties of the learned model. It might be argued that
samples produced by the PCD and EMF models are of similar quality.



3.7 Real data model – MNIST data set 31

Fig. 3.4 Comparison of samples generated by RBMs with 500 hidden units trained using
the naive mean field approach (top right), the extended mean field approximation up to the
second-term order (bottom right) and with the contrastive divergence (bottom left) as well as
the original digits from the MNIST data (top left). All models were trained using persistent
chains.
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4.1. Comparison of schedules of updates

In the chapter 2 different schedules of updates were analysed on toy models where the
parameters of the model were known a priori and no substantial discrepancies between
asynchronous and parallel schedules were observed in terms of the quality of approximation.
Taking into consideration the performance of the sequential updates on both toy models, this
schedule wasn’t considered in the evaluation on the real data set.

In the case of the MNIST data set, estimated magnetizations allow us to perform learning
of unknown parameters. Thus, in this case we combine uncertainty related with both
magnetizations and parameters – this may lead to substantial differences in performance.
Figure 4.1 shows the normalized estimates of log-likelihood of three models trained using the
extended mean field approximation up to the first-order term (MF), up to the second-order
term (TAP2) and up to the third-order term (TAP3), each trained with two schedules of
updates.

Surprisingly, only with the naive mean field approximation we can observe that the parallel
schedule provides slightly better results in terms of the approximated log-likelihood. In
general, there are no significant differences between two considered schedules even though the
parallel form of updates doesn’t reflect the way both layers of the RBM ’communicate’ with
each other. Moreover, it seems that small number of fixed point iterations doesn’t deteriorate
the performance. This suggests that asynchronous updates with only 3 iterative updates
of magnetizations yield consistently competitive results at the same time being the most
computationally inexpensive form of schedule.

4.1.1. Evaluation of EMF approximation

The similarity of the estimates of the log-likelihood using the pseudo log-likelihood method
and with the extended mean field approach suggests that the high-temperature expansion
might be a computationally inexpensive estimation of the partition function of the RBM and
the log-likelihood in general. However, the pseudo log-likelihood is a very noisy approximation
thus as a benchmark for comparison of the effectiveness of the EMF-based estimates I will
use the annealed importance sampling (AIS) [20] – very popular method for computing the
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Fig. 4.1 Per-sample pseudo log-likelihood (left) and EMF log-likelihood (right) on the
validation set of the MNIST data divided by number of all units in the model (1284) across
first 50 training epochs for RBMs models trained with different schedules and number of
updates. Error bars show standard deviation of 10 trained models using a particular version
of training.

partition function. Naturally, this comparison assumes that the AIS estimate is close to the
true value which in general might no be the case.
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4.2. Annealed importance sampling

The AIS method is based on a very simple identity – assume we have two distributions
pA = 1

ZA
p∗
A(x) and pB = 1

ZB
p∗
B(x), where p∗()̇ denotes an unnormalized distribution and

ZA,ZB are partition functions of distribution pA and pB respectively. If the proposal
distribution pA supports tractable sampling and tractable evaluation of both the unnormalized
distribution p∗

A(x) and the partition function ZA, we can use the following relation:

ZB =
∫
p∗
B(x)dx

=
∫ pA(x)
pA(x)p

∗
B(x)dx

= ZA

∫ p∗
B(x)
p∗
A(x)pA(x)dx.

By sampling from the tractable distribution we can derive Monte Carlo estimator of the ratio
between partition functions:

ZB
ZA

≈ 1
N

N∑
i=1

p∗
B(x(i))
p∗
A(x(i))

= r̂SIS , (4.1)

where x(i) comes from pA. Assuming that distribution pA is close to pB, the estimator from
4.1 called simple importance sampling proves to work well [16]. However, in high-dimensional
spaces where pB is usually multimodal as it is considered in this thesis the variance of the
estimator from 4.1 might be very high.

The idea presented above might be improved by following the classic approach from the
probabilistic optimization i.e. simulated annealing. The idea is to introduce intermediate
distributions that will allow to bridge the gap between two considered distributions pA and
pB [12], [20].

Consider a sequence of distributions p0,p1, ...,pM where p0 = pA and pM = pB. If the
intermediate distributions pm and pm+1 are close enough, a simple estimator from 4.1 can be
used to estimate each ratio Zm+1

Zm
. Using the identity:

ZM
Z0

= Z1
Z0

Z2
Z1
...

ZM
ZM−1

those intermediate ratios are then combined to obtain the estimate of ZB
ZA

. There is no need
to compute the normalizing constants of any intermediate distributions. However, in most
cases we are able to draw exact samples only from the first tractable distribution pA. In order
to obtain samples from intermediate distributions we have to be able to generate x

′ given x
using Markov chain transition operator Tm(x′|x) that leaves pm(x) invariant, i.e.:∫

Tm(x
′
|x)pm(x)dx = pm(x

′
).
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These transition operators represent the probability density of transitioning from state x
to x

′ [25]. Having obtained the sequence of samples from intermediate distributions we
can obtain the improved estimator of the ratio between partition functions following the
procedure:

Algorithm 1 Annealed importance sampling.
Set pA and pB with appropriate parameters
for i ∈ {1, ...,N} do

sample x1 from p0 = pA
sample x2 via T1(x2|x1)
...
sample xM via TM (xM |xM−1)
r

(i)
AIS = p∗

1(x1)
p∗

0(x1)
p∗

2(x2)
p∗

1(x2) ...
p∗

M (xM )
p∗

M−1(xM )
end for
r̂AIS = 1

N

∑N
i=1 r̂

(i)
AIS

It was proven that the variance of r̂AIS will be proportional to 1/MN assuming we used
sufficiently large numbers of intermediate distributions M [20]. Moreover, the estimate of
ZM/Z0 will be unbiased if each ratio is estimated using N = 1 and sample xm is obtained
using Markov chain starting at previous sample. This follows from the observation that
the AIS procedure is a simple importance sampling defined on an extended state space
X = (x1,x2, ...,xM ).

The procedure described above can be adapted to the RBM case – assume that we have
estimated parameters of the model that we want to evaluate, θB. Following [26] as a tractable
starting distribution pA we can use "clamped" restricted Boltzmann machine where there is
no hidden layer. The sequence of intermediate distribution is then defined as:

pm(v) = 1
Zm

p∗
m(v) = 1

Zm

∑
h

exp(−Em(v,h)),

where m= 0, ...,M , h = hB, and the energy function has the form:

Em(v,h) = (1−βm)E(v;θA)+βmE(v,h;θB),

where βm ∈ [0,1] with βm = 0 yielding pA and βm = 1 giving pB. By annealing slowly the
"temperature" from infinity to zero, we gradually move from the state space of proposal
distribution to the space defined by the untractable distribution.

4.2.1. Comparison of AIS and EMF

Two models were estimated based on the extended mean field approximation – up to the
second-order term (TAP2), and up to the third-order term (TAP3), to compare the quality of
the approximation of the variational free energy. Each model was re-estimated 10 times using
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persistent chains with 10 iterations of self-consistency relations with asynchronous updates.
A sequence of βs is required to set the "tempo" of annealing – following [25] 1000 βk were
spaced uniformly from 0 to 0.5, 4,000 βk were spaced uniformly from 0.5 to 0.9, and 5,000 βk
were spaced uniformly from 0.9 to 1.0, with a total of 10,000 intermediate distributions.

Firstly, both methods were compared on a small toy model – an RBM with 15 hidden units
where we can compute the true partition function explicitly. Taking into consideration the
inherent variability of the AIS method, 10 runs of AIS were performed to obtain an average
estimate. Figure 4.2 presents the true value of the partition function along with its estimates
from the TAP2 and TAP3 models and using the AIS method.
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Fig. 4.2 Free energy estimates using two forms of the extended mean field approximations
and AIS estimates for 10 toy RBM models.

The results indicate that the AIS works rather well as an approximator of the true free energy.
However, the EMF approximation tends to be biased and the addition of the third-order
term improves the estimates only slightly. In both cases the EMF approximation consistently
overestimates the true value of F on average by about 5%.

Having justified the usage of the AIS estimate as a benchmark, we can compare both methods
on the RBM with 500 hidden units. As a sanity check, the AIS was re-estimated in this case
100 times as the results from [25] show that the variance is then lower than 1%. Figure 4.3
presents the estimates of 1.6 for the TAP2 and TAP3 models along with AIS estimates.

Firstly, as it was expected the learned models using two high-energy expansion yield very
similar estimates of the free energy. Secondly, in both cases they give consistently biased
upper bound approximation for the F , assuming that the AIS method gives an accurate
estimation of 1.6. As in the case of the toy model, the difference is about 5% in value on
average. This suggests that even though the extended mean field approximation enable us to
learn good generative models, the approximation of the free energy is very biased. However,
the computational cost of estimation is about 10−5 smaller comparing to the AIS and this
method might be used if we need a ballpark figure of the value of the partition function.
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Fig. 4.3 Free energy estimates using two forms of extended mean field approximations and
AIS estimates for 10 RBM models with 500 hidden units.

4.3. Deep structures

4.3.1. Unsupervised pre-training of deep neural networks

Recent major advances in tasks like speech recognition, vision recognition or machine
translation were obtained thanks to effective training of deep neural structures. Deep
learning methods allow to learn high-level features based on the composition of lower level
characteristics. However, the objective function in general is highly non-convex and multi-
modal over high-dimensional parameter space. This naturally leads to many challenges in
training such deep structures.

The breakthrough that lead to effective training strategies for deep architectures came in
2006 with the CD algorithm for training deep belief networks (DBN) [11]. The deep structure
might be formed by stacking single RBMs pre-trained using contrastive divergence approach.
It was empirically shown that unsupervised pre-training guides the learning towards basins of
attraction of minima that support better generalization from the training data set [5]. Thus,
such pre-trained networks much better generalize and are more robust comparing to networks
trained only in supervised fashion.

In the previous chapter it was shown that unsupervised learning using the extended mean-field
approach can be used to learn a good quality generative model of the observed phenomenon.
Those results motivate learning deep structures using greedy layer-wise pre-training where
instead of using CD for training RBMs we might consider fully deterministic approach.
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4.3.2. Deep belief nets

DBNs are generative graphical models with many hidden layers of hidden causal variables
which joint distribution has the following form:

p(x,h1,h2, ...,hl) = p(x|h1)P (h1|h2)...P (hl−2|hl−1)P (hl−1|hl).

It was shown that adding extra layers always improve a lower bound on the log-likelihood
on the training data if the number of feature detectors per layer is sufficiently large and the
weights are initialized correctly [10]. The guarantee that we improve the bound is no longer
valid if the size of subsequent hidden layers is not large enough however it was empirically
proven that such approach still can learn an effective generative model. Figure 4.4 depicts an
illustrative deep belief network.
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Fig. 4.4 An illustrative deep belief net with 3 hidden layers where the last two layers form a
single RBM.

Similarly to the case of the single RBM, DBN may be seen as a general approximator of any
probability distribution on {0,1}n and we can prove [17] :

Theorem 3 (Guido-Ay, 2010) Let n = 2b

2 + b, b ∈ N, b ⩾ 1. A DBN containing 2n

2(n−b)
hidden layers of size n is a universal approximator of distributions on {0,1}n.

DBNs can be formed using a greedy layer-wise unsupervised training of stacked RBMs –
Algorithm 2 presents how the process folows. This simple and intuitive algorithm proved

Algorithm 2 Learning procedure for deep belief nets.
Train the first layer as an RBM, learning P (x = h0,h1)
for l ∈ {2, ...,L} do

Pass the mean activities xl = P (hl|hl−1) which become a representation of the input
at the layer l.

Train the l-th layer treating it as an RBM with xl as an input.
end for

to be an effective way of pre-training deep structures that laid the foundations for the
resurgence of deep neural networks. Originally, the building blocks are trained following
contrastive divergence procedure. However, the positive results obtained using the extended
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mean-field approximation suggests that we may follow Algorithm 2 with fully deterministic
approach.

4.3.3. Reconstruction analysis

After pre-training multiple layers of feature detectors, the model can be ”unfolded” to form
an autoencoder structure where the decoder network uses transposed weights of the encoder
network. At this stage, such network might be considered as feed-forward deep neural
architecture and can be used as a starting point for supervised fine-tuning with respect to
any training criterion that depends on the learned representation [2].

To motivate the analysis of deep structures formed of stacked RBMs, I trained different
three models that compress the information in the data to 25 dimensional manifold – using
principal component analysis with first 25 components with the highest variance, a single
RBM with 25 hidden units and a deep belief net that consists of three hidden layers of sizes
500, 250 and 25. Last two models were trained using an extended mean field approach up to
the second-order term with persistent magnetizations.

Fig. 4.5 Reconstructions of original MNIST digits (top row) generated by PCA-25 (second
row), single RBM with 25 hiddent units (third row) and deep belief net (bottom row).

As we can see, the linear transformation to the small dimensional space creates very noisy
encoding system. The reconstructions show that the numbers lie very closely on the space from
which we decode. The reconstructions provided by the single RBM substantially improves the
quality of the reconstructions and it can be infer that the learned manifold better differentiate
between the digits. However, although the background is properly delimited from the numbers,
digits are still very blurry. It might be argued that the deep structure creates the most
sharply-outlined numbers. From this we might infer that deep belief net is able to create
more coarser and coarser features that in the process of the encoding are able to generate
clear-cut digits as the learned manifold in the smallest layer is properly partitioned.
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Similarly to the case of the shallow structures, we might compare the effectiveness of the
EMF approach to the CD learning in the case of the greedily layer-wise training of DBN.
Figure 4.6 presents the reconstructions of randomly chosen samples from the validation data
set produced by deep autoencoders trained with four different methods for pre-training DBNs.
The autoencoder consists of three hidden layers of sizes 500, 250 and 25 accordingly. The
extended mean field approximation was considered up to the first-order (MF), up to the
second-order (TAP2) and up to the third-order (TAP3) term. One model was also trained
using the CD procedure. At each layer 50 updates through the entire data set were performed
using 10 iterations of asynchronous updates. In each case magnetization or Gibbs chains
were persistent.

Fig. 4.6 Reconstructions of original MNIST digits (top row) generated by four different deep
belief nets trained using naive mean field approach (second row), EMF up to the second-order
term (third row), EMF up to the third-order term (fourth row) and with PCD (bottom row).

By the visual inspection, it might be argued that the reconstruction created by TAP2, TAP3
and PCD are of similar quality and they are more identifiable than those produced by the
MF. It can be observed how the autoencoders learned by the EMF or the PCD recovers
a a smoothed version of the original digit – an "average" representative of a given number.
Surprisingly, the addition of the third-order term leads somewhat to deterioration of the
quality in reconstructions which can be observed especially in the case of the first (2) and
sixth (5) number. The average squared errors on training and validation data sets (Figure
4.7) confirms the visual assessment of reconstructions. The mean field approximation obtains
the highest score while TAP2 and TAP3’s scores are slightly higher than with training DBN
using PCD approach.

Those results confirms the observations from the previous chapter and shows that additional
higher-order approximations substantially improves the quality of learned magnetizations
which in turns helps learning a better generative model.
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Fig. 4.7 MSE of reconstructions for four different models on training and validation sets.



Conclusions

Variational approximation to the intractable free energy using high-temperature perturbation
expansion brings significant improvements over the naive mean field approach applied to
bipartite structures, specifically to the restricted Boltzmann machine. Even though the
expansion is performed around the point where all spins are independent, the radius of
convergence is large enough to obtain robust results for smaller temperatures. By adding
higher-order terms from a systematic expansion, we are able to model dependence between
variables possibly at arbitrarily order.

Experiments on toy models confirmed first promising results on the real data set shown by
Gabrié et al. [7]. Additional terms responsible for couplings and triplets of units greatly
improve training efficiency and performance over the naive mean field approach in the case
of the RBM structure. Those improvements can be observed even in the case of a very small
model. Remarkably, for the grid model the extended approach performs worse than the
naive one which might be explained by the fact that the averaging implicitly assumed in the
latter case is consistent with the structure of the grid. Moreover, I analysed three different
schedules of updates of magnetizations – the results suggest that the EMF method is rather
robust to the different schemes as long as the updates are performed layer-wise. Interestingly,
in that case parallel updates yields similar results as an asynchronous scheme.

The quality of estimates and learned generative models is retained in the case of the real
data set. The extended mean field approximation provides performance comparable and
sometimes superior to contrastive divergence procedure – the most widely used procedure for
pre-training RBMs and DBNs. The experiments confirmed the previous observations that
even with only 3 iterations of magnetizations we are able to train generative models that
produce samples of good quality. This shows that the EMF method might be used when fast
deterministic training is desired.

The experiments performed on the real data set yields results that are in accordance to the
ones obtained on toy models. No differences were observed between parallel and asynchronous
updates which suggests that this method might be applied to more complicated graphs’
structures. Unsatisfactorily the comparison with annealed importance sampling shows that
the EMF approximation of the partition function is strongly biased even with a small number
of hidden units. However, the computational cost is significantly lower and this method
might be used if we need a ballpark figure of the value of the partition function during
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training. Moreover, the AIS procedure needs to be adapted to specific structure of the model
while the EMF approximation can be used with any energy based model defined over binary
variables.

The natural generalization to training deep structures was suggested where deep belief
nets are pre-trained using greedy layer-wise deterministic procedure based on the EMF
approximation. The hierarchical structure enables to process information through multiple
stages of transformation which results in better reconstructions than shallow structures.
Results also suggest that this procedure allows to initialize weights effectively for supervised
training later on. As it was the case for the single RBM, the deterministic algorithm
achieves comparable performance to stochastic procedure based on the contrastive divergence
algorithm.

The code needed to replicate all results is available at https://github.com/budzianowski/DBN
which was developed based on the repository created by the Sphinx group – https://github.
com/sphinxteam/Boltzmann.jl.

The natural question that arises here is a possibility of generalization of the EMF approach to
real-valued variables. Moreover, this generalization is even more motivated by the fact that
the experiments ran on the normalized real-valued data without changing overall deterministic
procedure show very promising results (not presented in this thesis). A derivation of TAP
mean field equations for a wide class of distributions with pairwise interactions based on the
cavity approach shows that corrections in high-temperature expansion might be also obtained
from a special case of expectation propagation algorithm [23]. However, the computational
bottleneck (the computational complexity of such approach is O(N3)) restrains so far from
applying it to the models with large numbers of variables.

https://github.com/budzianowski/DBN
https://github.com/sphinxteam/Boltzmann.jl
https://github.com/sphinxteam/Boltzmann.jl
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EMF derivation

Following [8] lets define energy as:

E = −
∑
ij

wijsisj −
∑
i

θisi (A.1)

and introduce the following operator:

U ≡ E−E(E)−
∑
i

∂λi(β)
∂β

(si−mi) (A.2)

which poses useful property – E(U) = 0. For any other operator O we then have:

∂E(O)
∂β

= E
(
∂O

∂β

)
−E(OU). (A.3)

Now, the first derivative from the Taylor expansion is:

∂(βF )
∂β

=
∑

s exp
(
β
∑

(ij)wijsisj +β
∑
i θisi+

∑
iλi(β)(si−mi)

)
∑

s exp
(
β
∑

(ij)wijsisj +∑
i θisi+

∑
iλi(β)(si−mi)

)
·

∑
(ij)

wijsisj +
∑
i

θisi+
∑
i

∂λi(β)
∂β

(si−mi)


=
∑
(ij)

wijE(sisj)+
∑
i

aiE(si)+ ∂λi(β)
∂β

∑
i

E(si−mi).

In the case of β = 0 we have:

∂(βF )
∂β

∣∣∣∣∣
β=0

=
∑
(ij)

wijmimj +
∑
i

θimi.

Using A.3 we obtain:

∂mi

∂β
= 0 = ∂E(si)

∂β
= E

(
∂si
∂β

)
−E(siU) = −E(siU) = −E(U(si−mi)). (A.4)
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The first derivative of the operator U has the form:

∂U

∂β
= ∂E

∂β
− ∂E(E)

∂β
−
∑
i

∂2λi(β)
∂β2 (si−mi)

= E(U2)−
∑
i

∂2λi(β)
∂β2 (si−mi)

(A.5)

and the second derivative is:

∂2U

∂β2 = 2E
(
∂U

∂β
U

)
−E(U3)−

∑
i

∂3λi(β)
∂β3 (si−mi)

= −E(U3)−
∑
i

∂3λi(β)
∂β3 (si−mi)

(A.6)

The expansion of free energy using formulas derived above can now be reformulated in terms
of the operator U :

∂(βF )
∂β

= E(E)−
∑
i

∂λi(β)
∂β

E(si−mi) = E(E) (A.7)

and the higher orders:

∂2(βF )
∂β2 = E

(
∂E

∂β

)
−E(EU) = −E(U2),

∂3(βF )
∂β3 = −2E

(
U
∂U

∂β

)
+E(U3) = E(U3).

(A.8)

Taylor expansion was considered around point β = 0. Using derivations from A.7 we obtain
again a ’naive’ term:

∂(βF )
∂β

∣∣∣∣∣
β=0

= Eβ=0(E) = −
∑
(ij)

wijmimj −
∑
i

θimi = −1
2
∑
i

∑
j

wijmimj −
∑
i

θimi. (A.9)

Consider now:

∂(βF )
∂mi∂β

∣∣∣∣∣
β=0

= −
∑
j ̸=i

wijmj − θi. (A.10)

On the other hand:

∂(βF )
∂mi∂β

∣∣∣∣∣
β=0

= ∂(βF )
∂β∂mi

∣∣∣∣∣
β=0

= ∂

∂β
E(λi(β)) = ∂λi(β)

∂β

∣∣∣∣∣
β=0

(A.11)



48 EMF derivation

Substituting A.11 into A.2 gives us:

Uβ=0 =−
∑
(ij)

wijsisj −
∑
i

θisi+
1
2
∑
i

∑
j

wijmimj +
∑
i

θimi+
∑
i

∑
j ̸=i

wijmj + θi

(si−mi)

=−
∑
(ij)

wijsisj − 1
2
∑
(ij)

wijmimj +
∑
i

∑
j ̸=i

wijsimj

=−
∑
(ij)

wij(si−mi)(sj −mj) = −
∑
l

wlyl

(A.12)

where wl = wij and yl = (si−mi)(sj −mj) stands for the ’link’ operator which poses useful
properties:

E(yl)β=0 = E(sisj)−mjE(si)−miE(sj)+mimj = 0
E(yl(si−mi))β=0 = mj −mj −m2

imj +m2
imj

−m2
imj +m2

imj +m2
imj −m2

imj

= 0.

(A.13)

Finally, if k ̸= l then:
E(ykyl) = E(yk)E(yl) = 0

while for k = l we have:

E((si−m1)2(sj −mj)2) = mimj −2mim
2
j +mim

2
j −2m2

imj +4m2
1m

2
j

−2m2
im

2
j +m2

imj −2m2
im

2
j +m2

im
2
j

= (mi−m2
i )(mj −m2

j).
(A.14)

Using properties from yl in equations A.8 we can derive:

∂2(βF )
∂β2

∣∣∣∣∣
β=0

=−E(U2)β=0

=−
∑
lil2

wliwl2Eβ=0(yl1yl2)

=−
∑
(i,j)

w2
ij(mi−m2

i )(mj −m2
j)

which yields the TAP-Onsager term. To obtain the next term in the Taylor expansion we
need to compute E(yl1yl2yl3) term and by definition the structure of the RBM model doesn’t
admit triangles in its corresponding factor graphs. Thus, we need to consider only the case
when l1 = l2 = l3:

E((si−m1)3(sj −mj)3) = mimj −3mim
2
j +2mim

2
j +2mim

3
j −3m2

imj +2m3
imj

+9m2
im

2
j −6m3

im
2
j −6m2

im
3
j +4m3

im
3
j

= 4(mi−m2
i )(

1
2 −mi)(mj −m2

j)(
1
2 −mj)

(A.15)
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and the third-order term in the case of the RBM structure is:

∂3(βF )
∂β3

∣∣∣∣∣
β=0

= 2β3

3
∑
(ij)

w3
ij(mi−m2

i )(
1
2 −mi)(mj −m2

j)(
1
2 −mj).


