
Compression without Quantization
Gergely Flamich, Marton Havasi, José Miguel Hernández-Lobato

{gf332,mh740,jmh233}@cam.ac.uk
17 June 2019

Objectives

In this work we propose a novel lossy image compression tech-
nique based on MIRACLE [3], that is:
• principled: our method is based on the MDL principle,

as we learn encoding and decoding distributions over a
latent representation of images, which then allows us to
use MIRACLE to compress a random latent sample.

• efficient: with our method we can compress images
close to their information-theoretical limit (in the
bits-back sense).

• differentiable: in contrast to previous work, our method
does not require quantization (which is non-differentiable)
for compression, hence our system can be trained
end-to-end.

Introduction
Based on earlier work on lossy image compression using VAEs by
Ballé [1], we show that their architecture - when interpreted in the
MIRACLE framework - corresponds to a Hieararchical VAE. We
use the hierarchical structure reported in [1], but unlike them, we
omit the quantization step and use diagonal Gaussians as the latent
priors p(z) and posteriors q(z | x). We train on the CLIC 2018
dataset [4] with the β-ELBO for Gaussian likelihood as the loss:

L = Eq[log p(D | z)] + βKL (q(z | D) || p(z)) . (1)

This is equivalent to optimizing for the PSNR as a perceptual met-
ric.
For a single training example x, our encoding distribution q(z | x)
Factorizes as q(z1 | x)q(z2 | z1) where

q(z1 | x) = N (z1 | µ
(e)
1 (x), σ

(e)
1 (x))

q(z2 | z1) = N (z2 | µ
(e)
2 (z1), σ

(e)
2 (z1)).

The generative model / decoding distribution p(z, x) factorizes as
p(z1)p(z2 | z1)p(x | z1) where

p(z2) = N (z2 | 0, I)
p(z1 | z2) = N (z1 | µ

(d)
2 (z2), σ

(d)
2 (z2))

p(x | z1) = N (x | µ
(d)
1 (z1), I).

The µ
(·)
i (·), σ

(·)
i (·) are given by the layers of the network as in Figure

1. We use General Divisive Normalization [1] as the activation

a
(k+1)
i (m, n) = u

(k)
i (m, n)√

β
(k)
i +

∑
j γ

(k)
j w

(k)
j (m, n)2

(2)

before the first stochastic layer. We use these as they have been
shown to outperform other activations at the task of image com-
pression / reconstruction [1].

Figure 1: Original image (JPEG), 1599 × 777: New Court, St John’s College Figure 2: Reconstructed image using MIRACLE. MS-SSIM=0.9751,
PSNR=34.91, KL=209750 bits

Figure 3: Original image (PNG), 1264 × 790: thong-vo.png from the CLIC
2018 validation set.

Figure 4: Uncompressed using MIRACLE. MS-SSIM=0.9480, PSNR=25.53,
KL=301033 bits

Coding

• Assume parties share random string S. (i.e. shared RNG
with shared seed)

• Given the above, the following upperbound holds:

T [D : z] ≤ I[D : z] + 2 log(I[D : z] + 1) + O(1) (3)

where T [D : z] is the communication cost [2].
The rejection sampling algorithm presented in [2] or [3] can hence
be used to code images effectively.
To code image x:

1 Pass it through the VAE so that we have q(z | x) and p(z).
2 Using p(z) as a proposal distribution, rejection sample from

q(z | x). The samples {xk}∞
k=1 drawn from p(z) should be

driven by the shared random string S.
3 If xk is accepted as a sample from q(z | x), communicate k.

To decode:
1 We simply take the kth sample z from p(z), where the

sampling is driven by the same shared random string S.
2 Pass z through the decoder of the VAE to obtain the

reconstructed image x̂.

Results

PSNR MS-SSIM
CLIC Valid. Set 0.9667 ± 0.0001 32.49 ± 0.0054

Table 1: Performance of our model on the 41 validation images.

Our architecture achieves close to state-of-the-art performance on
the CLIC dataset (see Table 1).
Given 3 we can calculate the upper bound on the compressed size
of an image by calculating

KL (q(z | x) || p(z)) + 2 log(KL (q(z | x) || p(z)) + 1) + c (4)

where c is a small constant. The bounds for Figures 1 and 3 are in
Table 2.

Image Original Size Compressed Bits / Pixel
Figure 1 114 KB 26.2 KB 0.1688
Figure 3 1.8 MB 37.6 KB 0.3014

Table 2: Compression upper bounds on the presented images. The gain on
Figure 1 is not that great, since the original image is already lossy compressed
as a JPEG, although the bpp is good. The gain is much more significant on
Figure 3 which is losslessly coded as a PNG, with a reasonable bpp.

Architecture

Figure 5: Our fully convolutional architecture. The H × W × C/D
convolutional blocks represent H × W sized kernels with C channels, with D
times down/upsampling, indicated by the arrow.

To accommodate variable size images, we use a fully convolutional
architecture, meaning we will have a variable size latent space. This
is natural, as we would want a larger latent representation for larger
images.

Challenges and Future Directions
While promising, coding the latents presents several challenges:
• Coding a single multivariate sample of the latent space is

infeasible with rejection sampling, it would simply take too
long (the number of latents is on the order of 106).

• It might be possible to code each individual latent using
rejection sampling and then use arithmetic coding to compress
a sequence of them.

• A∗-sampling could be adopted to this scenario to greatly speed
up the rejection sampling step.

References

[1] Johannes Ballé et al. “Variational image compression with a
scale hyperprior”. In: arXiv preprint arXiv:1802.01436 (2018).

[2] Prahladh Harsha et al. “The communication complexity of cor-
relation”. In: Twenty-Second Annual IEEE Conference on Com-
putational Complexity (CCC’07). IEEE. 2007, pp. 10–23.

[3] Marton Havasi, Robert Peharz, and José Miguel Hernández-
Lobato. “Minimal Random Code Learning: Getting Bits Back
from Compressed Model Parameters”. In: arXiv preprint
arXiv:1810.00440 (2018).

[4] Workshop and Challenge on Learned Image Compression.
https://www.compression.cc. Accessed: 2019-03-25.

https://www.compression.cc

	References

