Objectives

In this work we propose a novel lossy image compression tech-

nique based on MIRACLE [3], that is:

e principled: our method is based on the MDL principle,
as we learn encoding and decoding distributions over a
latent representation of images, which then allows us to
use MIRACLE to compress a random latent sample.

e efficient: with our method we can compress images
close to their information-theoretical limit (in the
bits-back sense).

e differentiable: in contrast to previous work, our method
does not require quantization (which is non-differentiable)
for compression, hence our system can be trained
end-to-end.

Introduction

Based on earlier work on lossy image compression using VAEs by
Ballé [1], we show that their architecture - when interpreted in the
MIRACLE framework - corresponds to a Hieararchical VAE. We
use the hierarchical structure reported in [1], but unlike them, we
omit the quantization step and use diagonal Gaussians as the latent
priors p(z) and posteriors ¢(z | x). We train on the CLIC 2018
dataset [4] with the S-ELBO for Gaussian likelihood as the loss:

L =B, flogp(D | 2)] + BKL(q(z | D) || p(z)). (1)

This is equivalent to optimizing for the PSNR as a perceptual met-
ric.

For a single training example x, our encoding distribution ¢(z | x)
Factorizes as q(z1 | x)q(z2 | z1) where

a(zi | %) = Nz | 5 (x), 01" (x)
(22| m) = N2 | 15 (21), 05 (1))
The generative model / decoding distribution p(z, x) factorizes as
p(z1)p(z2 | 21)p(x | 21) where
p(z2) = N(z9 | 0,1)
plan | 22) = Nz | 115" (22), 05" (22)
plx | 20) = Nx | " (1), 1),

The ,u(')(-), 0(')(-) are given by the layers of the network as in Figure

1. We use General Divisive Normalization [1] as the activation
()
(Hl)(m n) = w_(mn) (2)
’ | (k) (k), (k)
\/ﬁz + Zj Vo Wy (m,n)?
before the first stochastic layer. We use these as they have been

shown to outperform other activations at the task of image com-
pression / reconstruction [1].
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Figure 1: Original image (JPEG), 1599 x 777: New Court, St John's College
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Figure 3: Original image (PNG), 1264 x 790: thong-vo.png from the CLIC
2018 validation set.

Coding

® Assume parties share random string S. (i.e. shared RNG
with shared seed)

e Given the above, the following upperbound holds:
TD:z <ID: z+2log(D :z+1)+0(1) (3)
where T'|D : z| is the communication cost [2].

The rejection sampling algorithm presented in [2] or [3] can hence
be used to code images effectively.

To code image x:

o Pass it through the VAE so that we have ¢(z | x) and p(z).

@ Using p(z) as a proposal distribution, rejection sample from
q(z | x). The samples {z;}7°, drawn from p(z) should be
driven by the shared random string S.

© If ;. is accepted as a sample from ¢(z | x), communicate k.
To decode:

©® We simply take the kth sample z from p(z), where the
sampling is driven by the same shared random string S.

® Pass z through the decoder of the VAE to obtain the
reconstructed image X.

Figure 2: Reconstructed image using MIRACLE. MS-SSIM=0.9751,
PSNR=34.91, KL=209750 bits

Figure 4: Uncompressed using MIRACLE. MS-S55IM=0.9480, PSNR=25.53,
KL=301033 bits

Results

PSNR MS-SSIM
CLIC Valid. Set|0.9667 4= 0.0001 | 32.49 + 0.0054

Table 1: Performance of our model on the 41 validation images.

Our architecture achieves close to state-of-the-art performance on
the CLIC dataset (see Table 1).

Given 3 we can calculate the upper bound on the compressed size
of an image by calculating

KL (q(z [ x) || p(2) ) +2log(KL (¢(z | x) || p(z) ) +1) +¢ (4)

where c is a small constant. The bounds for Figures 1 and 3 are in
Table 2.

Image | Original Size | Compressed | Bits / Pixel
Figure 1 114 KB 26.2 KB 0.1688
Figure 3 1.8 MB 37.6 KB 0.3014

Table 2: Compression upper bounds on the presented images. The gain on
Figure 1 is not that great, since the original image is already lossy compressed
as a JPEG, although the bpp is good. The gain is much more significant on
Figure 3 which is losslessly coded as a PNG, with a reasonable bpp.
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Figure 5: Our fully convolutional architecture. The H x W x C'/D
convolutional blocks represent H x WV sized kernels with C' channels, with D
times down /upsampling, indicated by the arrow.

To accommodate variable size images, we use a fully convolutional
architecture, meaning we will have a variable size latent space. This
is natural, as we would want a larger latent representation for larger
Images.

Challenges and Future Directions

While promising, coding the latents presents several challenges:

e Coding a single multivariate sample of the latent space is
infeasible with rejection sampling, it would simply take too
long (the number of latents is on the order of 10°).

® |t might be possible to code each individual latent using
rejection sampling and then use arithmetic coding to compress
a sequence of them.

e A*-sampling could be adopted to this scenario to greatly speed
up the rejection sampling step.
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