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« Aim to extend Partitioned Variational Inference (PVI) to
support private federated machine learning using the
concept of differential privacy (DP)

Partitioned Variational Inference (PVI)
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Figure: Steps of the PVI algorithm when being used for federated
learning [1]
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Differential Privacy (DP)

« Definition (¢, §)-Differential Privacy [2]: A randomized
algorithm A is (€, d)-differentially private if for all pairs of
adjacent data sets (D, D’) and for any subset of outputs S:

Pr(AD) e S) < e Pr(AD) e S)+6

« Smaller € and 0 corresponds to stronger privacy guarantee

» DP is often achieved by clipping outputs and injecting

Gaussian noise (Gaussian mechanism)

» The moments accountant keeps track of the total privacy
guarantee composed by individual privacy guarantees and

provides tight upper bounds on € and 9 [3]

Differentially Private PVI

® Add DP to messages sent from workers to central server

« For each worker m =1, ..., M [4]:

Compute new parameters for this worker:
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Clip and corrupt update:

- AN
AN, = & = |
max (L, [BAn]2/C)

A = AU AN,

oC

Update the approximate likelihood:
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where z ~ N (0, 1)
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« For the central server, compute new global parameters [4]:

M
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Differentially Private PVI (continued)

® Add DP to every data point of a worker

» Achieved by optimizing local free energy using differentially
private stochastic gradient descent [3]

» The worker is protected against all other parties since any
external communication is differentially private

Future Experiments

« Test differentially private PVI on various models

= 1-dimensional regression model
= Multi-dimensional regression models
= Non-linear models, like Bayesian neural networks

» Compare the above two ways of adding DP to PVI to see
now privacy level and statistical performance trade off

= Investigate three different scheduling plans of messages:
parallel, sequential, and asynchronous
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