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Introduction

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
is an iterative method for solving unconstrainted non-
linear multivariate optimization problems.
It involves,
1 find the search direction with the steepest gradient
at a certain location.

2 perform line search to find the sub-optimal step size
which can satisfy the strong Wolfe condition.

3 repeat until convergence.

Algorithm 1 BFGS [1]

Given the objective function f (x), ε = 1× 10−4

Initialize starting point x0 and Hessian H0 = I
k ← 0
while ‖∇fk‖ > ε do
Compute search direction dk, dk = −H−1

k ∇f (xk)
Compute step-size αk via, αk = arg minα f (xk +αdk)
Update xk+1,Hk+1

if satisfy the strong Wolfe Condition then
k ← k + 1

else
break

Figure: High dimensional optimization problem

Figure: one-dimensional line search problem

Problems

There are several problems in the line search part
of BFGS algorithm,
• The step-size decided cannot lead to optimal
solution, but only a sub-optimal solution.

• It fails when there are noises in derivative and
objective function values.

• The BFGS termination criteria (Wolfe
condition: sufficient decrease condition and
curvature condition) can only lead to
sub-optimal solution.

Possible solutions

• Probabilistic Line Searches for Stochastic
Optimization [2]

Methods
A probabilistic model is used to improve the perfor-
mance of the line search algorithm. Conventionally,
the Gaussian Process model is only built to describe
the objective value,

f (x) ∼ GP(0, k(x,x′))

The gradient f ′(x) of the objection function f (x) can
give an extra information on prediction, the Gaussian
process can then be written as,[
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,where ∂ik∂

j = ∂i+jk(x,x′)
∂xi∂xj . Elements of the covariance

function with the cubic spline model are given by,
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To express the prior information, the use of explicit
basis functions is a way to specify a non-zero mean
over functions. Consider [3],

g(x) = f (x) + h(x)Tβ

,where f (x) is a zero mean GP , h(x) = (1, x) is a set of
fixed basis functions and β ∼ N (b,B) are additional
parameters. Therefore, we obtain another GP ,

g(x) ∼ GP(h(x)Tb, k(x,x′) + h(x)TBh(x′))

Predictions are given by,

µ (x?|y,X, θ) = K∗K
−1 (y −H>β) + H>∗ β

cov (x?|y,X, θ) = K (x?, x?)−K∗K−1K>∗ +R>A−1R

,where β̄=A−1HK−1y and R=H∗−HK−1K∗.

Figure: Difference between with and without mean function

To fit the model, 2 hyperparameters (noise to signal
variance ratio τ 2 and signal variance θ2) have to learn
from the data. The selection of hyperparameters should
lead to the minimization of negative log marginal like-
lihood given by,

− log p(y|X) = 1
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The strategy is to firstly optimize τ 2 with Newton op-
timization method and compute θ2 by the closed form
solution.
Set η = maxi=1,...,T{µ(xi)}, the utility is given by [4],

uEI(x) = η − µ(x)
2
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)
The next evaluation point is chosen as the candidate
maximizing this utility. The process repeats until the
optimal step-size is found.

Figure: Expected Improvement. top: predictive mean and error
bar. bottom: expected improvement utility.

Experiments
The prototype of the algorithm has been tested on the
following 5-dimensional optimization problem,

f (x) = 3x2
1 + x2

2 + 55x2
3 + 2x2

4 + x2
5

Given some initialization parameters, it would be tested
on how well it can compute the predictive mean, co-
variance and the next evaluation point, and find the
optimal step size.

Preliminary Result

(a)

(b)
Figure: Predictions made after 1 (a) and 10 (b) iterations.

The true minimum is at 0.132 with function value of
45.678. The deterministic model has predicted 0.384
with 45.689, while the probabilistic model has predicted
0.128 with 45.678 after 10 iterations.
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