Probabilistic Bellman Consistency in Reinforcement Learning

Motivation

= Bellman’s equations are the basis of most Reinforcement
Learning algorithms:
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= These equations are written in terms of the expectation of the
discounted sum of rewards (return).
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= Could a richer representation of the return Z7(z, a) (not
limited to its expected value) benefit the learning process and
the exploration vs. exploitation trade-oft?

A Distributional Approach to Reinforcement
Learning

= The behaviours of popular RL algorithms such as SARSA or
Q-Learning [1] can be understood by introducing the so-called
Bellman operator 7™ and optimality operator T
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= 7™ and T are contraction mappings, i.e. their repeated
application to some initial Q) converges exponentially to Q™ (see
Eq. 1) or Q* (the optimal value function), respectively.

= The basic idea of Distributional RL (DRL) [2] is to take into
account the entire return distribution instead of just its expected
value. To this purpose, the distributional Bellman operator T7
and the distributional optimality operator Tp are defined as

follows:
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= Adopting a distributional perspective on RL introduces a number of
complications compared to the standard case. The following
diagram lists three of them.

We are not in general guaranteed that by repeat-
edly applying the distributional Bellman operators a

The convergence properties of the distributional operators of
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Distributions defined on a fixed support {z,...,zy} [2].

Discrete distribution {p;(z, a)};<;<y:
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Zo(x,a) =2z w.p. pi(x,a) = W

where 6 : X x A — RY is a parametric model (neural network).

T Zy and our parametrisation Zy have disjoint supports. Therefore,
the sample Bellman update T Zy is projected onto the support of
Zy. The projected update is indicated by ®T Zy(x, a).

The cross entropy term of the KL divergence

Dy, (9T Zg(z, a)|| Zs(x, a))

can be minimized by stochastic gradient descent.
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Figure 1: C51 algorithm: the network outputs the probability values associated with
each (fixed) support point.

Quantile Regression DQN (QR-DQN)

= The goal is to estimate the quantiles of the target distribution (the
quantile distribution) [3]. Variable support locations but fixed
cumulative probabilities 71, ..., 7y, so that 7; =  fore=1,..., N.

= The quantile distribution associated with a state-action pair (z, a)
is defined as:

1 N
Zy(x,a) = ,; 06;(,0) (2)

where 6 : X x A — R¥ is a parametric model (a neural network)
whose outputs are the support points {60;(x,a)} of the distribution.

= The quantile regression loss computed at the quantile midpoints
Ti-11T;

T, = 9

N
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provides unbiased sample gradients and its minimisation yields the
set of support points {61, ..., 0y} minimizing the 1-Wasserstein

distance W1 (T Z3, Zy).
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Figure 2: QR-DQN algorithm: the network outputs support points associated with

(fixed) quantile values.

Preliminary Results

= OpenAl gym MountainCar-v0: reward is -1 for each time step, until
the goal position (top of the hill) is reached. Three actions
available: left, right, no action.
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Figure 3: Support points distribution for the MountainCar-vO environment (5

quantiles)

= OpenAl gym CartPole-v0: the pendulum starts upright, and the
goal is to prevent it from falling over. A reward of +1 is provided
for each time step. Two actions available: left, right.
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Figure 4: Support points distribution for the CartPole-v0 environment (5 quan-
tiles)

Recent Trends

= Two types of uncertainty in RL algorithms: aleatoric and
epistemic uncertainty.

= DRL has very recently [4], [5], [6] been used for exploiting these two
types of uncertainty to design better exploration strategies.

Generalization scores
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Figure 5: Score achieved as a function of the starting position in the CartPole-v0
environment with a DRL-based (orange) and e-greedy (blue) exploration methods.
Taken from [4].
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Future Research Directions

= Investigate if DRL approaches can be successfully applied to a
model-based RL framework. Ideas to explore are for instance:
= Model based exploration: learning the model dynamics to guide the agent
towards unvisited states.
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Figure 6: 50 episodes of e-greedy exploration in the MountainCar-v0 environment.
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Figure 7: 50 episodes of model-based exploration in the MountainCar-v0 en-
vironment.

= Learning the model’s dynamics to generate simulated experience and allow
planning (Dyna [7])

= Investigate more complex environments (e.g. Atari games [8)).
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