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Motivation

• Bellman’s equations are the basis of most Reinforcement
Learning algorithms:

Qπ(x, a) = ER(x, a) + γ E
P,π
Qπ (x′, a′) (1)

• These equations are written in terms of the expectation of the
discounted sum of rewards (return).

Qπ(x, a) := EZπ(x, a) = E
 ∞∑
t=0
γtR (xt, at)



• Could a richer representation of the return Zπ(x, a) (not
limited to its expected value) benefit the learning process and
the exploration vs. exploitation trade-off?

A Distributional Approach to Reinforcement
Learning

• The behaviours of popular RL algorithms such as SARSA or
Q-Learning [1] can be understood by introducing the so-called
Bellman operator T π and optimality operator T :

T πQ(x, a) := ER(x, a) + γ E
P,π
Q (x′, a′)

T Q(x, a) := ER(x, a) + γEP max
a′∈A

Q (x′, a′)

• T π and T are contraction mappings, i.e. their repeated
application to some initial Q0 converges exponentially to Qπ (see
Eq. 1) or Q∗ (the optimal value function), respectively.

• The basic idea of Distributional RL (DRL) [2] is to take into
account the entire return distribution instead of just its expected
value. To this purpose, the distributional Bellman operator T πD
and the distributional optimality operator TD are defined as
follows:

T πZ(x, a) :D= R(x, a) + γZ (X ′, A′)

T Z(x, a) :D= R(x, a) + γZ

X ′, arg max
a′∈A

EZ (X ′, a′)


• Adopting a distributional perspective on RL introduces a number of
complications compared to the standard case. The following
diagram lists three of them.

Conver-
gence

We are not in general guaranteed that by repeat-
edly applying the distributional Bellman operators a
fixed point can be reached as in the standard case.

Control
Setting

The convergence properties of the distributional operators of
the policy evaluation and control settings may be different.

Algo-
rithms

What is a proper way of describing a distribution
over returns from an algorithmic point of view?

C51

• Distributions defined on a fixed support {z1, . . . , zN} [2].
• Discrete distribution {pi(x, a)}1≤i≤N :

Zθ(x, a) = zi w.p. pi(x, a) := eθi(x,a)
∑
j eθj(x,a)

where θ : X ×A → RN is a parametric model (neural network).
• T Zθ and our parametrisation Zθ have disjoint supports. Therefore,

the sample Bellman update T̂ Zθ is projected onto the support of
Zθ. The projected update is indicated by ΦT̂ Zθ(x, a).

• The cross entropy term of the KL divergence

DKL
(
ΦT̂ Zθ̃(x, a)‖Zθ(x, a)

)

can be minimized by stochastic gradient descent.

Figure 1: C51 algorithm: the network outputs the probability values associated with
each (fixed) support point.

Quantile Regression DQN (QR-DQN)

• The goal is to estimate the quantiles of the target distribution (the
quantile distribution) [3]. Variable support locations but fixed
cumulative probabilities τ1, . . . , τN , so that τi = i

N for i = 1, . . . , N .
• The quantile distribution associated with a state-action pair (x, a)

is defined as:
Zθ(x, a) := 1

N

N∑
i=1

δθi(x,a) (2)

where θ : X ×A → RN is a parametric model (a neural network)
whose outputs are the support points {θi(x, a)} of the distribution.

• The quantile regression loss computed at the quantile midpoints
τ̂i = τi−1+τi

2

LτQR(θ) :=
N∑
i=1

Ej [ρτ̂i
(T θj − θi(x, a))] , where

ρτ̂(u) = u
(
τ̂ − δ{u<0}

)
,∀u ∈ R

(3)

provides unbiased sample gradients and its minimisation yields the
set of support points {θ1, . . . , θN} minimizing the 1-Wasserstein
distance W1 (T Zθ̃, Zθ).

Figure 2: QR-DQN algorithm: the network outputs support points associated with
(fixed) quantile values.

Preliminary Results

• OpenAI gym MountainCar-v0: reward is -1 for each time step, until
the goal position (top of the hill) is reached. Three actions
available: left, right, no action.

Figure 3: Support points distribution for the MountainCar-v0 environment (5
quantiles)

• OpenAI gym CartPole-v0: the pendulum starts upright, and the
goal is to prevent it from falling over. A reward of +1 is provided
for each time step. Two actions available: left, right.

Figure 4: Support points distribution for the CartPole-v0 environment (5 quan-
tiles)

Recent Trends

• Two types of uncertainty in RL algorithms: aleatoric and
epistemic uncertainty.

• DRL has very recently [4], [5], [6] been used for exploiting these two
types of uncertainty to design better exploration strategies.

Figure 5: Score achieved as a function of the starting position in the CartPole-v0
environment with a DRL-based (orange) and ε-greedy (blue) exploration methods.
Taken from [4].

Future Research Directions

• Investigate if DRL approaches can be successfully applied to a
model-based RL framework. Ideas to explore are for instance:
• Model based exploration: learning the model dynamics to guide the agent

towards unvisited states.

Figure 6: 50 episodes of ε-greedy exploration in the MountainCar-v0 environment.

Figure 7: 50 episodes of model-based exploration in the MountainCar-v0 en-
vironment.

• Learning the model’s dynamics to generate simulated experience and allow
planning (Dyna [7])

• Investigate more complex environments (e.g. Atari games [8]).
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