Department of Engineering

We aim to combine the advantages of sum prod-
uct networks and copulas, both effective frame-

works for modeling multivariate distri-
butions. We will distort sum-product networks
so that they satisty the copula constraints.

Sum-Product Networks

Sum-product networks (SPNs) |[Poon and Domin-
gos, 2011] are a prominent class of tractable
probabilistic model, facilitating fast, exact
inference. They can be seen as a generalization
of Gaussian Mixture Models.
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Learning structure is hard
Recursively divide root into random region
graphs.

Sum-Product Copulas
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Copulas

Copula function from known joint

Copula Function: densities
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Sklar’s Theroem [Sklar, 1959]: For any multi- » .
variate distribution, there exists C _ 1 f (T (), '1' S u) 1
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Gaussian Copula and the Financial Crisis:
Asymptotic tail independence, unable to give suffi-
cient weight to scenarios where many joint defaults

Satisfying the copula constraints
with SPNs

OCCUL.
Known Copula families are typically limited to a
small number of dimensions and do not capture de-
pendencies in multimodal distributions.
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Copula-based Factorization of Joint Den- of the SPN along the d** dimension.

sities:
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where fi(x4) are marginal PDFs, ug = Fy(zq).

- Estimate ug = Fy(zq) and fi(24)

= Create random SPN structure over random variables (R.V.)

« Learn SPN over g4, constraining ¥4(yq) = uq. RMSE: 0.07.

« Experiment over synthetic data with dependent R.V. and multimodal marginals
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(b) Sum-Product Copula fit

(a) Synthetic two dimensional data and their marginals.

where 9 is the SPN joint, yg = W, (ug),
g and V! denote the marginal and inverse CDF

where Wy(y,q) are obtained from the SPN
marginals.

SPN Superpowers

« Basy to: sample, learn parameters, marginalise
missing R.V, infer missing R.V., compute

likelihood.

Differentiation:
Evaluate root in one upward pass, followed by one
downward pass:
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Marginalization:

//p(a:*l, r2)

« Evaluate on image tasks

« Improve SPN implementation: probabilistic
dropout, full Gaussian distributions

« Different constraint optimization methods

« Compare with copula bayesian neurol networks
and tree-structured copulas
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