

Motivation

We aim to combine the advantages of sum product networks and copulas, both effective **frame**works for modeling multivariate distri**butions**. We will distort sum-product networks so that they satisfy the copula constraints.

Sum-Product Networks

Sum-product networks (SPNs) [Poon and Domingos, 2011] are a prominent class of **tractable** probabilistic model, facilitating fast, exact inference. They can be seen as a generalization of Gaussian Mixture Models.

Learning structure is hard

Recursively divide root into random region graphs.

Sum-Product Copulas

Ramona Comanescu, Robert Peharz, José Miguel Hernández-Lobato

rgc35@cam.ac.uk

Copulas	C
Copula Function:	
$C(u_1,\ldots,u_N) = P(U_1 \le u_1,\ldots,U_N \le u_N)$	
Sklar's Theroem [Sklar, 1959]: For any multivariate distribution, there exists C :	=
$F(x_1,\ldots,x_D) = C(F_1(x_1),\ldots,F_D(x_D))$	
Gaussian Copula and the Financial Crisis: Asymptotic tail independence, unable to give sufficient weight to scenarios where many joint defaults	
Known Copula families are typically limited to a small number of dimensions and do not capture de- pendencies in multimodal distributions.	wł
Copula-based Factorization of Joint Den- sities:	ψ_d of $\mathbf{O}_{\mathbf{I}}$
$f(z_1, z_2, \dots, z_d) = \prod_d f_d(z_d) \times \underbrace{c(u_1, u_2, \dots, u_d)}_{\text{Copula pdf}},$	$\mathop{\mathbb{T}}\limits_{ heta}$ \forall_n
where $f_d(x_d)$ are marginal PDFs, $u_d = F_d(z_d)$.	wł ma
Density estima	tion

• Estimate $u_d = F_d(z_d)$ and $f_d(z_d)$

- Create random SPN structure over random variables (R.V.)
- Learn SPN over y_d , constraining $\Psi_d(y_d) = u_d$. RMSE: 0.07.
- Experiment over synthetic data with dependent R.V. and multimodal marginals

(a) Synthetic two dimensional data and their marginals.

Copula function from known joint densities

 $c\left(u_1,u_2\cdots u_d
ight)$

 $= \frac{f\left(F_1^{-1}\left(u_1\right), \cdots F_d^{-1}\left(u_d\right)\right)}{f_1\left(F_1^{-1}\left(u_1\right)\right) \times f_2\left(F_2^{-1}\left(u_1\right)\right) \cdots f_d\left(F_d^{-1}\left(u_d\right)\right)}$

Satisfying the copula constraints with SPNs

$$c_{SPN}(u_1, u_2, \dots, u_d; \theta) = \frac{\psi(y_1, y_2, \dots, y_d; \theta)}{\prod_{d=1}^{D} \psi_j(y_d)}$$

where ψ is the SPN joint, $y_d = \Psi_d^{-1}(u_d)$, ν_d and Ψ_d^{-1} denote the marginal and inverse CDF f the SPN along the d^{th} dimension.

Optimize:

 $\max_{\theta, \mathbf{y}} \sum_{n=1}^{N} \left(\log \psi \left(y_{n,1}, \dots, y_{n,d}; \theta \right) - \sum_{d=1}^{D} \log \left(\psi_d(y_{n,d}) \right) \right),$ $u_{n,d}$ s.t. $\Psi_d(y_{n,d}) = u_{n,d},$ where $\Psi_d(y_{n,d})$ are obtained from the SPN narginals.

with copulas

• Easy to: sample, learn parameters, marginalise missing R.V., infer missing R.V., compute likelihood.

Differentiation: Evaluate root in one **upward pass**, followed by one downward pass:

Marginalization:

Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In *ICCV*. Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges.

SPN Superpowers

$$\frac{\partial S(\mathbf{x})}{\partial w_{ij}} = \frac{\partial S(\mathbf{x})}{\partial S_i(\mathbf{x})} S_j(\mathbf{x})$$

Further work

 Evaluate on image tasks Improve SPN implementation: probabilistic dropout, full Gaussian distributions Different constraint optimization methods • Compare with copula bayesian neurol networks and tree-structured copulas

References