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Motivation

We aim to combine the advantages of sum prod-
uct networks and copulas, both effective frame-
works for modeling multivariate distri-
butions. We will distort sum-product networks
so that they satisfy the copula constraints.

Sum-Product Networks

Sum-product networks (SPNs) [Poon and Domin-
gos, 2011] are a prominent class of tractable
probabilistic model, facilitating fast, exact
inference. They can be seen as a generalization
of Gaussian Mixture Models.

Learning structure is hard
Recursively divide root into random region
graphs.

Copulas

Copula Function:
C (u1, . . . , uN) = P (U1 ≤ u1, . . . , UN ≤ uN)

Sklar’s Theroem [Sklar, 1959]: For any multi-
variate distribution, there exists C :

F (x1, . . . , xD) = C (F1 (x1) , . . . , FD (xD))

Gaussian Copula and the Financial Crisis:
Asymptotic tail independence, unable to give suffi-
cient weight to scenarios where many joint defaults
occur.
Known Copula families are typically limited to a
small number of dimensions and do not capture de-
pendencies in multimodal distributions.

Copula-based Factorization of Joint Den-
sities:

f (z1, z2, . . . ..zd) =
∏
d

fd (zd)× c (u1, u2, . . . . . . ud)︸ ︷︷ ︸
Copula pdf

,

where fd(xd) are marginal PDFs, ud = Fd(zd).

Copula function from known joint
densities
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Satisfying the copula constraints
with SPNs

cSPN (u1, u2, . . . ud; θ) = ψ (y1, y2, . . . yd; θ)∏D
d=1ψj (yd)

where ψ is the SPN joint, yd = Ψ−1
d (ud) ,

ψd and Ψ−1
d denote the marginal and inverse CDF

of the SPN along the dth dimension.

Optimize:

max
θ,y

N∑
n=1

logψ (yn,1, . . . , yn,d; θ)−
D∑
d=1

log (ψd(yn,d))
 ,

∀n,d s.t. Ψd(yn,d) = un,d,

where Ψd(yn,d) are obtained from the SPN
marginals.

Density estimation with copulas

•Estimate ud = Fd(zd) and fd(zd)
•Create random SPN structure over random variables (R.V.)
•Learn SPN over yd, constraining Ψd(yd) = ud. RMSE: 0.07.

•Experiment over synthetic data with dependent R.V. and multimodal marginals

(a) Synthetic two dimensional data and their marginals. (b) Sum-Product Copula fit

SPN Superpowers

•Easy to: sample, learn parameters, marginalise
missing R.V, infer missing R.V., compute
likelihood.

Differentiation:
Evaluate root in one upward pass, followed by one
downward pass:

∂S(x)
∂wij

= ∂S(x)
∂Si(x)

Sj(x)

Marginalization:∫ ∫
p(x1, x2)

Further work

•Evaluate on image tasks
• Improve SPN implementation: probabilistic
dropout, full Gaussian distributions

•Different constraint optimization methods
•Compare with copula bayesian neurol networks
and tree-structured copulas

References

Poon, H. and Domingos, P. (2011). Sum-product
networks: A new deep architecture. In ICCV.
Sklar, M. (1959). Fonctions de repartition an dimen-
sions et leurs marges.


