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Abstract

Sum-Product Networks are a promising deep probabilistic model with tractable inference.
Copulas are a powerful and flexible framework widely used in finance, from which the
machine learning community can benefit. Most known parametric copulas are hard to extend
apart from the bivariate case. We introduce a sum-product network that satisfies the copula
constraints as a way to construct flexible and high-dimensional copulas, which we call
Sum-Product Copulas. Sum-Product Copulas achieve competitive results on a range of
general-purpose real-valued density estimation tasks.
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Chapter 1

Introduction

1.1 Motivation

Multivariate real-valued distributions occur in a variety of fields, such as computational
biology and neuroscience, finance and climatology. This ubiquity of real-valued data makes
the task of density estimation a central goal of machine learning. More generally, being able
to build a model for the joint density p(x) of a probability distribution enables a wide range
of tasks such as inference, prediction, data generation and data completion. For instance,
density estimation can be used for learning suitable priors from unlabelled datasets, for use in
Bayesian inference (Zoran and Weiss [2]), or for learning effective proposals for importance
sampling (Papamakarios and Murray [3]).

A challenge in modelling probability distributions is constructing models that are flexible
enough to represent high-dimensional distributions (which can be skewed, heavy tailed
or multi-modal), while also having tractable density functions and learning algorithms.
Probabilistic generative models (generative models are models that specify a full probability
density over all variables [4]) have a range of applications (image inpainting, synthesis,
compression, unsupervised feature learning, etc.). However, evaluating the likelihood of
many of the models can be computationally intractable.

In this thesis, we propose a novel approach of combining two techniques, namely copulas
and sum-product networks (SPN [5]). In this way, we address the challenges exposed above:
copulas give us flexibility and sum-product networks allow constructing more powerful
copulas, while still maintaining tractable inference. We refer to our model as Sum-Product
Copula (SPC).

A copula function is a joint distribution defined on the unit hypercube, with uniform
marginals. It is a general framework that allows decomposing the problem of joint multi-
variate distribution estimation into estimating marginal distributions (which is sufficiently
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easy) and estimating the dependencies between random variables (RVs). This allows us to
separate the choice of marginals from that of the dependence structure expressed by the
copula. Despite their generality and flexibility, constructing high-dimensional copulas is
difficult and most of the times only the bivariate case is employed. We would like to take
advantage of their desirable properties by combining them with another model. For this
reason, we propose leveraging SPNs, in order to construct powerful copulas.

SPNs are a promising probabilistic model, offering the advantage of tractable and exact
inference, as well as the ability to quickly perform marginalisation and answer inference
queries. The potentially deep structure of SPNs allows them to capture complex interactions
between variables, which makes them a great candidate for representing a copula distribution.

We modify the density of an SPN such that it learns to represent a distribution that
satisfies the constraints of a copula (uniform marginals). The tractable inference and fast
marginalisation properties will allow us to easily obtain the terms needed to construct a
copula. In this manner, we obtain a new way of building high-dimensional copulas, giving us
a powerful framework for density estimation.

A regular SPN is implemented. To simplify learning, we implement Random SPNs
(Peharz et al. [1]), which allow training SPNs in a classical deep learning manner. During
learning, we enforce the constraint of uniform marginals, using various constrained and
unconstrained optimization methods. We then train SPCs with different structures and
compare them with their corresponding SPN, as well as other density estimation models
from literature. We evaluate our models on a variety of real-valued density estimation tasks,
including highly-dimensional images.

1.2 Outline

• In Chapter 2, we introduce essential background material on SPNs (Section 2.1) and
Copulas (Section 2.2), where we explain the main concepts, notation and necessary
building blocks for our approach. We include related work at the intersection of
traditional statistics and machine learning, explaining how a traditional financial
modelling tool can benefit the field. We mention several research avenues aimed at
building high dimensional copulas.

• Chapter 3 introduces and proves a novel result, proving that under a set of circum-
stances, an SPN with copula input distributions builds a valid highly dimensional
copula. This is a useful exercise for better understanding of the two concepts (SPNs
and copulas). We find that this model offers a promising research direction and that
small extensions on it could yield competitive results.
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• Chapter 4 explains the main method of this thesis, based on modifying an SPN with
any type of input distributions over continuous data and introduces a framework
for satisfying the necessary copula constraints. We include a review of constrained
optimization and root-finding methods and list our final algorithm for building an SPC.
This section also shows how to compute the derivatives of implicit functions that our
method introduces, since automatic differentiation can not be used.

• Chapter 5 presents presents the practical implementation details of our approach,
as well as choice of evaluation tasks and methodology. We follow by showing the
experimental results of our approach, contrasting our method with others. Moreover,
we present insights into the behaviour of the methods during training.

• Chapter 6 summarizes our findings and formulates conclusions.





Chapter 2

Background and related work

In this chapter we introduce essential background material on Sum-Product Networks (Sec-
tion 2.1) and Copulas (Section 2.2). We explain how to learn the structure and parameters of
an SPN, as well as how to perform inference. We introduce key theorems regarding copulas
and present related work at the intersection of machine learning models and copulas. The
formal notation related to SPNs and copulas will be introduced here and used accordingly
for the rest of the thesis.

2.1 Sum-Product Networks (SPNs)

Sum-Product Networks are a promising deep probabilistic architecture introduced by Poon
and Domingos [5]. Their advantages include: tractable inference while still being expres-
sive, and deep architecture while maintaining full and clear probabilistic semantics. In this
chapter we introduce the concept of SPNs and outline the main algorithms that will be used
to build towards our final copula approach.

2.1.1 Origin of SPNs

Poon and Domingos [5] introduce deep sum-product networks as a method to compute
partition functions of tractable graphical models. The concept can be traced back to Darwiche
[6], under the name of Arithmetic Circuits. According to this approach, a Bayesian Network
(a probabilistic graphical model that represents a set of variables and their conditional
dependencies via a directed acyclic graph) can be compiled into a multivariate polynomial.
The Bayesian Network is expressed as a polynomial of indicator variables, leading to the
concept of a network polynomial (a multilinear function of indicator variables). For a binary
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RV Xi and its negation X̄i, we define the indicator function [.], which takes value 1 when its
argument is true and 0 otherwise.

For an unnormalized probability distribution Φ(x) ≥ 0, the network polynomial is

∑x Φ(x)Π(x), where Π(x) is the product of indicators that have value 1 in state x. For exam-
ple, the network polynomial of a Bernoulli distribution with parameter p is p[Xi]+(1− p)[X̄i].
To compute the unnormalized probability of evidence e, where e is a partial instantiation
of X , we compute e as the network polynomial where all indicators compatible with 1 are
set to 1 and the rest are 0. This allows us to also compute the partition function, where all
indicators are set to 1. Thus, network polynomials can easily be used for computing P(e)
and performing inference tasks. However, the cost of computing P(e) is linear in the size of
the network polynomial, which is exponential in the number of variables.

At this is point, Poon and Domingos [5] propose using sum-product networks as a
way to represent and evaluate network polynomials in polynomial space and time. The
Boolean variable case can be extended to multivalued discrete variables (by replacing
Boolean indicators with indicators for the variable’s possible values), as well as continuous
variables (by viewing them as multinomial variables with an infinite number of values).

Consequently, Poon and Domingos [5] show that under certain conditions, an SPN
computes the probability of evidence in time linear in its size. For this to be true, the SPN
needs to be valid. We will explore what this entails in the following subsections.

2.1.2 Formal Definitions and Notation

We will formally define an SPN and its properties. From now on, we will be considering
generalized SPNs, defined over arbitrary distributions (rather than indicator variables), as
in Peharz et al. [7]. We base our presentation on the notation and definitions introduced in
Peharz et al. [7] and Peharz et al. [8].

RVs are denoted by uppercase letters, X ,Y . Sets of RVs are denoted by boldface uppercase
letters X,Y,Z. The set of values a RV X can take is val(X). For a set of RVs X= {X1, . . . ,XN}
we define the Cartesian product val(X) =×N

n=1 val(Xn) and we use x for elements of val(X).
When Y ⊆ X and X ∈ X, we use x[Y] and x[X ] for the projections of x onto Y and X ,
respectively.

The elements of val(X) can be interpreted as complete evidence, assigning a fixed value
for each RV in X.

Partial evidence is represented as a subset X ⊆ val(X), which is an element of the sigma-
algebra AX induced by RV X . We use AX = {X ⊆B|X ∈ val(X)}, where B represents the
Borel-set over R. For discrete RV, this choice gives the power-set AX = 2val(X).
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For set of continuous RVs, we use HX :=
{
×N

n=1Xn|Xn ∈ AXn

}
to represent partial

evidence about X. We denote the elements ofHX as X . For Y⊆X, X ∈X and X ∈HX, we
define X [Y] := {x[Y]|x ∈X} and X [Y ] = {x[Y ]|x ∈X}. The definition of partial evidence
will become important when expressing marginalisation for a given RV. Furthermore, we
use e to symbolise any combination of complete and partial evidence.

For a given node N in some directed graph G, let Ch(N) be the set of children of N and
Pa(N) the set of parents of N.

For generalized SPNs, we follow the definition formulated in Peharz et al. [9].

Definition 2.1.1. (Sum-Product Network). A sum-product network S defined over a set
of RVs X is a tuple (G,w), where G is a directed acyclic graph which is both rooted and
connected (directed tree) and w is a set of non-negative parameters. There are three types
of nodes in the graph: distributions, sums and products. All leaves are distributions, while
all internal nodes are either sums or products. A distribution node (input distribution)
DY : val(Y) 7→ [0,∞] is a distribution function defined over a subset of RVs Y ⊆ X. The
value of a sum node S is the weighted sum of the values of its children, S = ∑C∈Ch(S)wS,C,
where wS,C is a non-negative weight associated with edge S→C. The value of a product
node is the product of the values of its children, P = ∏C∈ch(P)C.

Definition 2.1.2. (Scope). For any node N in an SPN S, the scope sc(N) is the set of
variables in N. For a leaf node N where N is a distribution DY, the scope is defined as the
variables that appear in N, sc(N) := Y. For an internal (sum or product) node, the scope is
defined recursively as

sc(N) =
⋃

N′∈Ch(N)

sc
(
N′
)
.

The value of an SPN S is the value computed by its root and it is denoted as S(x). Without
loss of generality, the scope of the root is X.

An example SPN is shown in Figure 2.1. Performing inference in an unconstrained
SPN is usually intractable. However, we can guarantee efficient inference for complete and
decomposable SPNs.

Definition 2.1.3. (Completeness [7]). A sum-product network is complete if and only if all
children of the same sum node have the same scope. That is, for all sum nodes it holds that:

sc
(
C′
)
= sc

(
C′′
)
,∀C′,C′′ ∈ Ch(S).
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Figure 2.1 Example sum-product network with Gaussian input distributions

Definition 2.1.4. (Decomposability [5]). A sum-product network is decomposable if and
only if no variable appears in more than one child of a product node. That is:

∀C′,C′′ ∈ Ch(P),C′ ̸=C′′→ sc
(
C′
)
∩ sc

(
C′′
)
=∅.

Certain operations are only efficient when applied to selective (Peharz et al. [9]) SPNs.

Definition 2.1.5. (Selective SPN). A sum node S is selective if for all choices of sum-weights
w and all possible inputs x it holds that at most one child of S is non-zero.

2.1.3 SPN Operations

[8] showed that under certain conditions, SPNs can perform tractable exact inference. In
fact, many of the inference scenarios can be expressed as a single forward or backward
passes. The value of an SPN corresponds to the value of its root, evaluated after a forward
(bottom-up) pass. In the rest of this subsection, we will work with normalized SPNs, where
the weights of sum nodes sum up to 1. Therefore, evaluating the SPN will give normalised
distributions (Peharz et al. [8]). For the rest of this thesis, we only consider complete and
decomposable SPNs.

For generalized SPNs that are complete and decomposable, efficient algorithms (Peharz
et al. [8]) exist for evaluating:

• Probability of a sample
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• Marginalisation

• Probability of partial observations

• Maximum a Posteriori state (for selective SPNs)

A key idea for continuous variables is that during inference, the value of an integral node
over a marginalised out variable is 1. Moreover, we can pull integrals over all sums and
products down to input distributions. Thus, operations that require integrating out variables
can be performed easily, by evaluating integrals and the usual sums and products. We briefly
outline algorithms that can be performed by SPNs, as they will be useful in deriving our
proposed model.

Probability of a sample

The probability of a sample (complete observation) S(x) for x ∈ val(X) can easily be
computed by evaluating the SPN in a upwards pass, by first evaluating the values at the given
inputs and propagating to the root. Since we are working with valid SPNs, we are guaranteed
that this evaluation returns the true probability.

Marginalisation

In marginalisation, we compute:

S(X ) =
∫

x1∈X1

· · ·
∫

xN∈XN

S (x1, . . . ,xN)dx1 . . .dxN .

To marginalise out variables, we simply perform marginalisation on the input distribution
leaves and propagate up in the usual way (Figure 2.2). As stated in Peharz et al. [8], summing
out marginalised variables translates to computing integrals over input distributions in the
continuous case. Due to completeness, integrals can be exchanged with sums at sum nodes.
Similarly, decomposability allows us to interchange integrals with products at product nodes.
This means that on the upwards pass, we simply perform marginalisation over the input
distributions over their scopes and proceed to evaluate SPNs in the normal way.

Probability of Modified Evidence

We aim to evaluate the probability of some modified evidence, that is S(X ,X [X\X ]). for
X ∈ X.
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Figure 2.2 Marginalisation in an SPN

The most straightforward approach is to compute the marginals of variables by differ-
entiation (Darwiche [6]). If node i is a product node and Pai are its parents, and assuming
alternating sum and product layers, we have:

∂S(x)
∂Si(x)

= ∑
k∈Pai

[
∂S(x)
∂Sk(x)

wki

]
.

For a sum node, we have:

∂S(x)
∂Si(x)

= ∑
k∈Pai

[
∂S(x)
∂Sk(x) ∏

l∈Ch−i(k)
Sl(x)

]
,

where Ch−i(k) are the children of node k excluding node i.
We will be more interested in an extension to the differential approach as given in Peharz

et al. [8], since it allows evaluating modified evidence simultaneously for all X ∈ X. Let
DX be the set of distributions containing X in their scope, with an arbitrary fixed ordering
DX =

{
DX ,1, . . . ,DX ,|DX |

}
. Algorithm 1 summarizes the steps used for infering marginal

posteriors. We draw the reader’s attention to this algorithm. For our purposes, this method
will allow us to compute univariate marginals fast. We view marginalisation as a special
case of modified evidence: specifically, we set X = /0. Thus, the result of the algorithm will
be all single dimensional marginals, computed simultaneously. Informally, we simply need
to collect the derivatives with respect to all input distributions which have a given RV in
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Algorithm 1: Inferring marginal posteriors

1. Evaluate input distributions for evidence X .

2. Evaluate all sums and products in an upwards pass.

3. For all nodes N, compute ∂S
∂N , using backpropagation.

4. ∀X ,k, let fk(X) = DX ,k(X ,X [sc(DX ,k)\X ])

5. ∀X : S(X ,X [X\X ])← ∑
|DX |
k=1

∂S
∂DX ,k f k(X).

their scope (as described in step 5). This approach gives a nice interpretation, as we can now
perform backpropagation in an SPN, while maintaining probabilistic semantics.

Most Probable Explanation (MPE)

Another advantage of SPNs is that they can perform (approximate, but exact for certain SPNs
[7]). Most Probable Explanation argmaxX,Y P(X,Y|e) fast (Poon and Domingos [5]). [7]
show that the MPE inference algorithm is actually only correct for selective SPNs. In general,
MPE inference is NP-hard.

Sum nodes are replaced by max nodes. Input distributions are replaced by maximizing
distributions. The SPN is evaluated in a bottom up pass. On the top down pass, the child
of a max node with the highest value is picked. For product nodes, all children are picked.
Eventually, a leaf node is reached, returning the most likely value for the query variables.

Being able to compute MPE allows SPNs to perform tasks such as image completion,
where they particularly excel. Moreover, MPE inference can be used at learning time as an
alternative to marginal inference.

2.1.4 Learning SPNs

Parameter Learning

One approach to learning SPNs is to start with a dense valid arithmetic circuit and learn the
weights using Expectation Maximization (EM) or gradient descent, both approaches being
detailed in Poon and Domingos [5]. In practice, Poon and Domingos [5] find that replacing
marginal inference with MPE inference (called Hard EM) makes it possible to learn deeper
SPNs, by avoiding the problem of gradient diffusion. Note that Peharz et al. [8] derive the
correct EM updates, as the one proposed in Poon and Domingos [5] is not correct.
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A discriminative approach can also be employed, as shown in Gens and Domingos [10],
where the SPN is trained to predict a label variable. Both Marginal Inference and MPE
inference approaches exist, as in the case of the generative approach.

Structure Learning

In Poon and Domingos [5], structure is learned implicitly by starting with a dense network
and pruning it. However, more advanced methods have been researched. When building
SPNs, the concepts of regions and region graphs ([11], [5], [12], [1]) will be useful.

A region R is defined as any non-empty subset of the set of RVs X. A K−partitions P
of R is a collection of K non-empty and non-overlapping subsets P = {R1, . . . ,Rk} of R,
whose union is also R. In this thesis, we only consider two-partitions, thus all product nodes
have exactly two children. Partition nodes are restricted to being the children of region nodes
and vice versa.

Definition 2.1.6. (Region Graph). A region graph R over R is a rooted directed acyclic
graph consisting of region nodes and partition nodes such that:

(i) X is the root region inR and has no parents

(ii) All other regions have at least one parent

(iii) All children of regions are partitions and all children of partitions are regions

(iv) If P is a child of R, then ∪R′∈PR′ = R

(v) If R is a child of P , then R ∈ P .

The above definition shows how every region graph dictates a hierarchical partition of scope
X. Region and partition nodes have scopes just like nodes in an SPN. We denote regions
which have no child partitions as leaf partitions.

For any given region graph R, a corresponding SPN with S sum nodes (assuming one
node for the root region) and I input distributions can be constructed, as suggested in Peharz
et al. [1] and shown in Algorithm 2. Informally, sum nodes are introduced for regions and
product nodes are introduced for all possible child partitions.

Poon Architecture

Poon and Domingos [5] propose an architecture suited for images, usually referred to as the
Poon architecture. This architecture selects all rectangular regions, where the smallest regions
correspond to pixels. Each rectangular region is decomposed vertically and horizontally into
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Algorithm 2: Constructing an SPN from Region Graph
input :R,S, I

1 Create empty SPN.
2 for R ∈R do
3 if R is a leaf region then
4 Introduce I distribution nodes
5 else if R is the root region then
6 Introduce one sum node as root
7 else
8 Introduce S distribution nodes
9 end

10 end
11 for P = {R1,R2} ∈ R do
12 Let NR be the nodes for region R for N1 ∈ NR1,N2 ∈ NR2 do
13 Introduce product node P = N1×N2 Let P be a child for each N ∈ NR∪R2

14 end
15 end

two rectangular subregions, in all possible ways (an example is shown in in Figure 2.3). For
larger regions, coarse decomposition can also be used, for a less granular resolution.

Clustering on Variables

While intuitive, the Poon architecture includes many long and skinny rectangular regions,
which might mean pixels from the end of the regions are grouped together, despite only having
weak interactions. Another drawback is that non-rectangular regions are not explained.

Dennis and Ventura [11] introduce clustering on variables as a way to learn the architec-
ture of SPNs. Variable subsets that strongly interact with each other are learnt from data.
Several other approaches exist for learning the structure of SPNs. One of the most well
known is LearnSPN (Gens and Domingos [13]), based on dividing current variables into
approximately independent subsets for producing product nodes and clustering for producing
sum nodes (usually using the EM algorithm for clustering).

Random and Tensorized SPN (RAT-SPN)

Peharz et al. [1] introduce RAT-SPNs, a way to treat SPNs as classical deep learning models,
making it possible to employ tools such as automatic differentiation and Stochastic Gradient
Descent (SGD) for learning, while also automatically introducing structure. The advantage
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Figure 2.3 Example Poon architecture based on region splitting

of this view is that is makes it trivial to learn SPNs, while still maintaining their generative
model interpretation and maintaining well-calibrated uncertainties.

Random Region Graphs are obtained on recursively and randomly dividing the root
region into two sub-regions of the same size, down to a given depth D and repeating the
mechanism R times. The procedure for constructing random region graphs, as proposed in
Peharz et al. [1], is given in Algorithm 3.

This method of building SPNs maintains the decomposability and completeness proper-
ties and also allows building deep SPNs than can be organized in a layer-wise architecture
(alternating sums and products).

Training RAT-SPNs

The resulting layers can be tensorized and trained in a manner similar to training a classical
Multilayer Perceptron (MLP). The training objective can be set to achieve a trade-off between
generative and discriminative, balancing cross-entropy (discriminiative) and negative log-
likelihood likelihood (generative).

The input distributions are usually set to be Gaussian or Categorical distributions, with I
distributions per leaf node. Additionally, each region has S sum nodes. The nodes in a region
can be viewed in matrix form, where rows correspond to samples and columns correspond to
the number of distributions.
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Algorithm 3: Obtaining Random Region Graphs
1 procedure RandomRegionGraph(X,D,R)
2 Initialize empty region graphR
3 Insert X inR
4 for r = 1 . . .R do
5 SPLIT(R,X,D)
6 end
1 procedure SPLIT(R,R,D)
2 Randomly draw a balanced partition P = {R1,R2} of R.
3 Insert R1 and R2 inR
4 Insert P inR if D > 1 then
5 if |R1|> 1 then
6 SPLIT(R,R1,D−1)
7 end
8 if |R2|> 1 then
9 SPLIT(R,R2,D−1)

10 end
11 end

2.1.5 Applications

SPNs can easily perform inference, representing a joint distribution over a set of RVs. SPNs
have achieved competitive results on numerous tasks.

A good test for deep architectures is that of image completion, where it is essential to
detect deep structure. For this task, the Poon architecture for images can be used. More
recently, Deep Convolutional SPNs (Butz et al. [14]) achieved impressive results on this task.
There is a class of Convolutional Neural Networks that define valid SPNs. The reconstruction
is done by performing MPE to find the most probable values for the missing features.

Additionally, variants of SPNs can successfully be used in domains such as speech
processing (as in Peharz et al. [15]), language (Cheng et al. [16] use discriminatively trained
SPNs to predict the next word), activity recognition (Amer and Todorovic [17]). Moreover,
mixed SPNs can be used in hybrid domains, with Molina et al. [18] proposing ways to
simplify identifying the parametric form of leaf variables. Many other applications also exist
and research is on-going, proving the versatility of SPNs.
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2.1.6 SPNs and Other Models

Comparison to Graphical Models (GMs)

Graphical models are limited in some aspects. Many distributions cannot be represented in a
compact manner as a graphical model, a famous example being the uniform distribution over
binary vectors with even number of 1s (See the examples in [19]).

Any distribution can be encoded using a shallow exponentially large SPN. Moreover,
some distributions can be encoded using a compact deep SPN. Delalleau and Bengio [20]
show that the number of units in the shallow network has to grow exponentially, compared
to a linear growth in the deep network. To obtain a deep SPN, multiple layers of sum and
product nodes alternate.

What is more, exact inference in a GM is exponential in the worst case, with approximate
techniques being often used. This is where the advantage of SPNs is clear, as they provide
fast, exact and tractable inference, that is linear in the size of the model for a larger class of
problems Hernández-Lobato [19].

SPNs as Mixture Models

The main drawback of Graphical Models is that inference cost can be exponential. More
generally, an SPN can be seen as a Deep Mixture Model (Peharz et al. [7]). In fact, a
mixture model is just a "shallow" SPN, consisting of leaf distributions and a single sum node.
By hierarchically composing an SPN from sum and product layers, we can obtain the deep
version of a mixture model, while still maintaining the universal approximator properties
(Peharz et al. [1]).

2.2 Copulas

Copula modeling is widely used in finance, for predicting the price of financial instruments
(University of Oxford [21]). Recently, copulas are becoming more prominent in machine
learning, due to their flexibility in modelling continuous data and the fact that they can
be successfully used for learning joint distributions. Their key advantage is that they can
model the dependence structure between variables while separating this from modelling the
marginal distributions of variables.
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2.2.1 Formal Definitions and Notation

For the rest of the thesis, we will use C(·) for a copula function and c(·) for a copula density,
and CΘ(·) and cΘ(·) respectively for their parameterized versions. We use Θ to define sets
of parameters. As before, we use uppercase Xi to refer to RVs and lowercase xi for an
instantiation of Xi. Boldface letters are used for sets of RVs.

We use D to denote d dimensions. For a set of d real valued RVs X1,X2, . . . ,Xd , the joint
cumulative distribution function (CDF) F : Rd→ [0,1]. is defined as:

F(x1,x2, . . . ,xd;θ) = Pr(X1 ≤ x1, . . .Xd ≤ xd).

We will always use uppercase letters for CDFs. If the probability density function (PDF) of
F exists, we denote f : Rd → [0,∞].

For a given joint distribution F , a marginal distribution can be obtained by marginalising
out other dimensions. For a dimension d, we define its marginal as Fd(xd). The corresponding
marginal PDF will be denoted as fd(xd). By applying the CDF function to a variable, we
obtain uniform variables. We always use the letter u to refer to instantiations of uniformly
distributed random variables.

We use ud to refer to a uniform marginal obtained by applying Fd(xd) to a RV xd . We
use F−1

d (ud) for the inverse of the dth dimension’s marginal CDF (the inverse CDF can also
be referred to as the quantile function). When we are presented with a dataset, we use n for
its number of samples. The functions defined so far will be updated accordingly to take as
parameters RVs xn,d (e.g. Fd(xd)). We use xd to reduce clutter, but this will be clear from
context. As a shorthand, we introduce a new variable yd = F−1

d (ud) to refer to the result of
applying the quantile function to ud . We will call the y variables pseudo-data.

To differentiate between a general CDF F and some model specific CDFs, we will intro-
duce Ψ and ψ as the joint CDF and PDF respectively that correspond to a particular model
(e.g. the density as given by an SPN is ψSPN), where the model used will be specified. All the
quantities define above apply: Ψ(x1, . . . ,xd) for a CDF, ψ(x1, . . . ,xd) for the corresponding
PDF (if it exists), Ψd(xd) and ψd(xd) for single dimensional marginals, Ψ

−1
d (xd) for the

quantile function of the dth dimension’s marginal CDF..
A copula function is a multivariate cumulative distribution function for which the marginal

probability distribution of each variable is uniform. Formally:

Definition 2.2.1. (Copula function). Let U1, . . . ,Ud be real random variables marginally
uniformly distributed on [0,1]. A copula function C : [0,1]d → [0,1] is a joint distribution

C(u1, . . . ,ud) = Pr(U1 ≤ u1,Ud ≤ ud).
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As shown above, C is defined on the unit hypercube.
Sklar’s Theorem (Sklar [22]) is key to copula-based density estimation:

Theorem 2.2.1. (Sklar’s Theorem). A joint distribution F(x1,x2, . . .xd) of random variables
X1,X2, . . . ,Xd can be expressed as a function of the marginal distributions Fi(xi):

F(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd)). (2.1)

Moreover, if each Fi is continuous, then C is unique.

We can also rewrite 2.1 in terms of the univariate marginals:

C(u1,u2, . . . ,ud) = F(F−1
1 (u1), . . . ,F−1

d (ud)), (2.2)

The most important result from Sklar’s theorem tells us that we can write any joint density
f as a product of univariate marginal densities fd and a copula density, c, assuming that the
copula function C has dth order partial derivatives. We derive the joint density f (x) = ∂ dF(x)

∂x1...∂xd

using the chain rule as:

f (x) =
∂ dC (F1 (x1) , . . . ,Fd (xd))

∂F1 (x1) . . .∂Fd (xd)
∏

d
fd (xd) = c(F1 (x1) , . . . ,Fd (xd))∏

d
fd (xd) (2.3)

= c(u1, . . . ,ud)∏
d

fd(xd) (2.4)

The copula density function c(u1,u2, . . . ,ud) will be of central use in our SPC model. Equa-
tion 2.3 mathematically illustrates the main result of copulas: they allow us to separate the
choice of univariate marginals and that of the dependence structure expressed by the copula
function.

2.2.2 Building Multivariate Copula Densities

Copularization

Equation 2.3 can be rearranged as:

c(u1, . . . ,ud) =
f (x1, . . . ,xd)

∏d fd(xd)
. (2.5)

The distinction to be made here is that while Equation 2.3 uses a copula to estimate joint
densities when the marginal and copula densities are known, we can use Equation 2.5 for
deriving a copula density from a known multivariate joint density. We name this method
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"copularization" and we will use it to derive a copula density corresponding to an SPC model
and some estimated marginals.

Parametric Copula Models

There are several parametric 2-Dimensional copulas (Nelsen [23]), such as the Gaussian
Copula, Archimedean Copulas (Clayton, Frank, Gumbel, Joe, etc.) and the t- Copula. One of
the most commonly used copula is the Gaussian Copula, which can be constructed directly
by inverting the formula in Sklar’s Theorem:

CGauss
Σ (F(x1), . . . ,F(xN)) = ΦΣ

(
Φ
−1 (F (x1)) , . . . ,Φ

−1 (F (xN))
)
, (2.6)

where Φ is the CDF of standard normal distribution and ΦΣ is the CDF of a zero mean
normal distribution with correlation matrix Σ (where Σi j ∈ [−1,1]∀i ̸= j and Σii = 1).

2.2.3 Copulas in Machine Learning

Until recently, the copula framework has not been very prominent in the field of machine
learning. However, the complementing strength between machine learning and general
probabilistic graphical models suggest that the two fields can mutually benefit from using
copulas for multivariate modeling.

The expressiveness of parametric copulas is more limited in higher dimensions. The
survey paper in Elidan [24] presents some recent copula based constructions in the field of
machine learning that are useful for modeling high-dimensional data. The main motivation is
based on combining copulas with graphical models, which are less powerful when it comes
to modeling real-valued distributions. The introduction of the copula framework is meant do
address this, since using graphical models means we diminish the difficulty of constructing
high-dimensional copulas. Thus, we can see how the two frameworks will complement each
other. All approaches start with first estimating the univariate marginals, which is an easy
enough task, followed by the multivariate copula construction. We briefly outline two of the
approaches below.

Tree-averaged Copulas

The first work combining ideas from graphical models and copulas belongs to Kirshner
[25], based on an ensemble of trees framework, averaging over all possible tree distributions.
Tree-averaged copulas build on the idea of tree-structured copulas. Let T be an undirected
tree structured graph (no cycles) and E the set of edges in T that connect two vertices. The
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authors show that

fX(x) =

[
∏

i
fi (xi)

]
∏

(i, j)∈E

fi j
(
xi,x j

)
fi (xi) f j

(
x j
) .

Thus, the decomposition of joint copulas follows as:

cT (·) =
f (x)

∏i fi (xi)
= ∏

(i, j)∈E

fi j
(
xi,x j

)
fi (xi) f j

(
x j
) = ∏

(i, j)∈E
ci j
(
Fi (xi) ,Fj

(
x j
))

,

where cT is used to denote the copula density corresponding to structure T and ci j is used for
the copula corresponding to the edge (i, j). In Kirshner [25] work, suggests constructing a
mixture of all copulas trees model, instead of relying on only bivariate estimation, as in the
case of tree-structured copulas.

Copula Bayesian Network

Elidan [26] relies on a copula based reparameterization of conditional densities and a directed
acyclic graph that encodes independencies as building blocks. For a conditional density
function f (x|y),y= {y1,y2, . . . ,yk}, there exists a copula density (c(F(x),F1(y1), . . . ,Fk(yk)),
such that:

f (x|y) = Rc (F(x),F1 (y1) , . . . ,FK (yK)) fX(x),

where Rc is the copula ratio

Rc (F(x),F1 (y1) , . . . ,FK (yK))≡
c(F(x),F1 (y1) , . . . ,FK (yK))

∂ KC(1,F1(y1),...,FK(yK))
∂F1(y1)...FK(yK)

.

As it can be seen in the previous approaches, the copula factorization of a joint is a key
starting-point to building new copulas, an idea which we will also exploit.

Copulas and Mixture Models

Perhaps the closest to our proposed approach are works on combining Mixture Models and
copulas, since we will be working with the deep version of GMMs. We present two different
approaches.
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Mixture of Copulas

A mixture of copulas (Arakelian and Karlis [27], Nelsen [28]) is a straightforward approach
of combining Gaussian copula distributions using a weighted sum. This approach has the
advantage that it can capture heavy tails (as opposed to normal GMMs). We also empirically
show how these can cluster a highly multimodal distributions with a much smaller number of
parameters than GMMs.

c(u1, ..,ud|π,Θ) =
K

∑
k=1

πkck(u1, ..,ud;Θk), (2.7)

where ck(u1, ..,ud;Θk) is a regular Gaussian or Archimedean copula. The key take-away
from this method is that a mixture of copulas also defines a copula. Thus, this approach can
easily be used in practice by implementing a weighted sum of copulas.

Gaussian Mixture Copula Models

Despite the similar name, this method, proposed by Tewari et al. [29], takes a different
approach. It is based on Equation 2.5, which we previously emphasised as a simple way of
obtaining a copula distribution, where an expression for the joint distribution and for the
marginals is known. A GMM is used for expressing joint distributions. Rewriting Equation
2.5 in terms of a GMM, we have:

cgmc (u1,u2, . . .ud;Θ) =
ψ (y1,y2, . . .yd;Θ)

∏
d
j=1 ψ j

(
y j
) ,

where we have adhered to our previously defined notation i.e. y = (y1,y2, . . .yd) are the
inverse distribution values with y j = Ψ−1(u j), ψ j and Ψ

−1
j denote the marginal density and

the inverse cumulative distribution of the GMM along the jth dimension. A modified EM
version is proposed, where the inverse distribution values y j are computed at each step using
numerical methods, making sure the copula constraints are satisfied.

This model is able to model distributions with multiple non-Gaussian modes, due to
a higher flexibility than Gaussian Mixture Models, since copulas decouple the estimation
of marginal distributions from the dependency structure. Synthetic experiments and image
segmentation applications prove the effectiveness of this approach.
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2.2.4 Transforming Data into Copula Space

Since a copula distribution is defined over uniformly distributed variables, we need to
transform our inputs into copula space. Thus, given dimension d and a random variable xd ,
we apply ud = Fd(xd) to obtain ud , where the marginal CDFs Fd can be learnt empirically.
Additionally, the univariate marginal densities fd(xd) are also required by Equation 4.1.
These can be obtained by standard univariate density estimation approaches.

Empirical CDF

Let x1,x2, . . . ,xn be a univariate independent and identically distributed sample drawn from
some distribution with an unknown density f and CDF F .

An empirical CDF is a non-parametric estimator of the underlying CDF of a random
variable. It requires first ordering the data. The empirical CDF of z (element in the new
ordering of x) is computed as:

F̂n(z) =
number of elements in the sample ≤ z

n
=

1
n

n

∑
i=1

1xi≤z,

where n is the total number of samples and 1 is the indicator function.

Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric approach to estimate the probability
density function of a random variable. The kernel density estimator of f is defined as:

f̂h(x) =
1
nh

n

∑
i=1

K
(

x− xi

h

)
,

where K is the kernel (a non-negative function) and h > 0 is a smoothing parameter called
the bandwidth. Typical kernel functions are often used, such as uniform, triangular, biweight,
triweight, normal, and others. We use the normal kernel, as in Tewari et al. [29]. The
bandwidth selection method used was Scott’s normal reference rule (Scott [30]), although
other rules are also possible, including choosing the bandwidth based on cross-validation.

2.2.5 Generating Correlated Data

We will exemplify some of the steps in our pipeline aided by a 2-D dataset that was syntheti-
cally generated. A good way to sample dependent random variables is to use copulas, as in
Nelsen [23]:



2.2 Copulas 23

Algorithm 4: Simulating a Gaussian copula

1. Let ΣΣΣ be a correlation matrix.

2. Compute the Cholesky decomposition A of ΣΣΣ, so that ΣΣΣ = AA⊤.

3. Generate a vector Z of independent standard normal variables.

4. Set X = A⊤Z.

5. Return U = (Ψ(X1) , . . . ,Ψ(Xd)), where Ψ is the standard univariate normal CDF .

We can use the above algorithm to generate any random vector Y = (Y1, . . . ,Yd) with
arbitrary marginals and Gaussian copula, provided we can apply an inverse transform Yi =

F−1
i (Ui).





Chapter 3

SPN with copula leaves (SP-CL)

Before explaining our modfied SPN Copula approach, we start by introducing a simpler
alternative: an SPN of copulas, that is, an SPN where input distributions represent copula
distributions. We call this model an SP-CL. We introduce a new theoretical result, proving
how the hierarchical composition given by composing copula leaves in an SPN fashion
results in a copula. This idea is an extension to the Mixture of Copula’s Model presented
in Arakelian and Karlis [27] (see Section 2.2.3). The advantage of our approach is that in
comparison to a GMM, an SPN can also use product nodes, for a more flexible representation.

3.1 Formal Description

Definition 3.1.1. (SP-CL). A sum-product of copulas C = (G,w) over continuous RVs
X = {X1, . . . ,XN} is a complete and decomposable sum-product network S = (G,w) whose
leaf (distribution) nodes D Y, Y⊆ X are copulas C(UY).

Theorem 3.1.1. A complete and decomposable sum-product network C = (G,w) with
copulas for distribution nodes, is itself a copula.

Proof. In order to prove this, we will require Lemmas 3.1.1 and 3.1.2.

Lemma 3.1.1. For a complete SPN with copula leaves, any of its sum nodes S with copula
children Ch(S), S is itself a copula.

Proof. Since the SPN is complete, all children of the same sum node have the same scope.
Thus, the above lemma can be restated as: Copulas are closed under convex combinations
under the same scope. To prove this, consider the jth marginal of S, SY j , where Y = sc(S)
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and Yj ∈ Y:

S =
n

∑
i=1

wiC
(
Usc(S)

)
s.t wi ≥ 0,

n

∑
i=1

wi = 1

SY j =
n

∑
i=1

wi

∫
UY\Yj

C
(
Usc(S)

)
dUY\Y j

SY j =
n

∑
i=1

wiUniform[0,1](u j)

SY j = Uniform[0,1](u j). (3.1)

We have shown that the marginals of S follow a Uniform[0,1] distribution and thus S is itself
a copula.

Lemma 3.1.2. For a decomposable SPN with copula leaves and any of its product nodes P
with copula children Ch(P), P is itself a copula.

Proof. Since the SPN is decomposable, we know that no variable appears in more that one
child of a product node. Thus, the above lemma can be restated as: the product of two
copulas P =Ci(UY)Ck(UW) with non overlapping scopes (i.e Y∩W = /0) is itself a copula.
W.l.o.g. we obtain the jth marginal of P, PY j , where Y = sc(P) and Yj ∈ Y:

P =Ci(UY)Ck(UW)

PY j =
∫

UY\Yj∪W

Ci(UY)Ck(UW)dUY\Y j∪W

PY j =
∫

UY\Yj

Ci(UY)dUY\Y j

∫
UW

Ck(UW)dUW

PY j =
∫

UY\Yj

Ci(UY)dUY\Y j

PY j = Uniform[0,1](u j). (3.2)

As in the sum nodes case, we have shown that the marginals of P follow a Uniform[0,1]
distribution and thus P is itself a copula.

By Lemmas 3.1.1 and 3.1.2 we have shown that any node N ∈ C will itself be a copula if
all distribution nodes are copulas, which follows by induction over the topological order of
the SPN nodes.
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3.2 Implementation

An SPN with copula leaves can be implemented as a regular SPN. All we need to determine
is the type of copulas to be used as leaves. Any of the known parametric copulas listed in
Section 2.2.2 can be used. In our experiments, we have used Gaussian copula leaves with a
uniform correlation matrix, due to its simplicity in implementation. A uniform correlation
matrix is a correlation matrix where all the off diagonals have the same value Σi j = ρ . Having
a uniform correlation matrix comes with limited representational power and using a full
correlation matrix can improve on this, especially for high dimensional domains.

We define z(u) = (Φ−1(u1), ...,Φ
−1(ud))

⊤ , Φ as the CDF of a standard normal, Id the d
dimensional identiy matrix and 1d as a d dimensional vector of ones. The uniform Gaussian
copula leaves are implemented using the following PDF:

c(u1, ...,ud;ρ)=(1−ρ)
1−d

2 (1+(d−1)ρ)−
1
2 exp

(
−1

2
z(u)⊤

((
ρ1d1⊤d +(1−ρ)Id

)−1
−Id

)
z(u)
)
,

which can be simplified using the Sherman-Morrison formula (this makes evaluating the
leaves O(d)).

c(u1, ...,ud;ρ) =C(ρ)exp
(
−1

2
z(u)⊤

(
ρ

1−ρ
I− ρ

(1−ρ)(1+(d−1)ρ)
1d1⊤d

)
z(u)
)
(3.3)

We implement SPN leaves using Equation 3.3, however we parameterize the input to the
SPN as z rather than u. In order to do so, we first transform the already uniform transformed
(ui = F(xi)) data to z by applying Φ−1 to each dimension of each data-point, obtaining z(u)
as defined above.

The uniform Gaussian copula has the constraint ρ ∈ [−1,1]. In order to enforce this
when optimising ρ we perform the change of variable ρ = tanh(x) and optimise with respect
to the unconstrained variable x.





Chapter 4

Sum-Product Copula (SPC)

In this chapter, we introduce the main result of this thesis: modifying a regular SPN density
such that it satisfies the copula constraints of having uniform marginals. We present
the key concepts of our proposed approach for learning a copula density using an SPN. We
call this model a Sum-Product Copula (SPC). We follow the copula notation introduced in
Section 2.2. First, a regular SPN is implemented in PyTorch and automatic differentiation
is used for its optimization. We will detail how the distribution of the SPN is modified to
satisfy the constraints of a copula.

4.1 Obtaining a Sum-Product Copula Density

As we have seen in Section 2.2, copula functions allow the factorization of joint densities as
a product of marginal densities and a copula density, derived from Sklar’s Theorem. Given
random variables {X1,X2, . . .Xd} and applying ud = Fd(xd), we can factorize any joint CDF
in terms of a copula distribution c and the univariate marginal PDFs fd(xd):

f (x1,x2, . . . ,xd) = f1 (x1)× f2 (x2) · · ·× fd (xd)× c(Fd(x1),Fd(x2), . . . ,Fd(xd))

= f1 (x1)× f2 (x2) · · ·× fd (xd)× c(u1,u2, . . . ,ud) . (4.1)

4.1.1 Estimating Uniform Marginals

The first step is estimating Fd(xd), which can be done empirically, using empirical CDF, as
explained in Section 2.2.4. We obtain the new copula transformed variables ud = Fd(xd).
The PDF marginals fd(xd) are also estimated independently of the copula, using KDE.
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4.1.2 Copularization: Building New Copulas

The next step is estimating the unknown copula density c. This can be done using known
parametric families, such as the Gaussian copula introduced in Section 2.2.2. However,
known copula families are usually less powerful in high dimensional spaces, especially for
multimodal data.

Equation 2.1 can also be viewed as a way of deriving a copula density function, given a
known multivariate joint density. We have previously described this as a "copularization"
step, allowing us to come with c:

c(u1,u2, . . . ,ud) =
f (x1, . . . ,xd)

∏d fd(xd)
.

=
f
(
F−1

1 (u1) , . . . ,F−1
d (ud)

)
f1
(
F−1

1 (u1)
)
× f2

(
F−1

2 (u1)
)
, . . . , fd

(
F−1

d (ud)
) . (4.2)

4.1.3 SPN Copula Density

We can write 4.2 as long as we can come up with a sufficiently good approximation for f .
We will use an SPN to represent the dependence structure, and we estimate f by ψ , which
will be given by the SPN evaluated at the root. We also require the marginal densities ψd and
the marginal quantiles Ψ

−1
d . Here we can readily exploit the property of SPN that PDF and

CDF joints and marginals are efficiently computed in at most one forward and one backward
pass of the SPN, with the corresponding algorithms explained as operations that SPNs can
perform in Section 2.1.3. The SPN Copula density is:

cSPN (u1,u2, . . . ,ud;θ) =
ψ
(
Ψ
−1
1 (ud;θ),Ψ−1

2 (ud;θ), . . . ,Ψ−1
d (ud;θ);θ

)
∏

D
d=1 ψd

(
Ψ
−1
d (ud);θ

)
=

ψ (y1,y2, . . . ,yd;θ)

∏
D
d=1 ψd (yd;θ)

(4.3)

where the SPN Copula is written in terms of the SPN joint PDF ψ and CDF Ψ and their
corresponding univariate marginal and θ represents the parameters of the SPN.

Here we have introduced pseudo-data yd = Ψ
−1
d (ud;θ), which becomes the input data

to the SPN. We can now write an optimization objective in terms of the SPN paramaters.
However, note that we will also need to satisfy ψ

−1
d (ud;θ).
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4.1.4 SPN Objective

Assuming we are working with a set of N CDF transformed observations {un}N
i=1 which are

d-dimensional, we maximize the following objective, using logspace for numerical stability:

max
θ

N

∑
n=1

logcSPN
(
un,1, . . . ,un,d;θ

)
=max

θ

N

∑
n=1

(
logψ

(
Ψ
−1
d (un,1;θ), . . . ,Ψ−1

d (un,d;θ);θ
)
−

D

∑
d=1

log
(
ψd(Ψ

−1
d (un,d;θ);θ)

))

=max
θ ,y

N

∑
n=1

(
logψ

(
yn,1, . . . ,yn,d;θ

)
−

D

∑
d=1

log
(
ψd(yn,d);θ

))
, s.t. yn,d = Ψ

−1
d (un,d;θ)∀n,d.

(4.4)

Our goal becomes satisfying Equation 4.4, while enforcing Ψ
−1
d (un,d;θ). This function

given above can be optimized by standard gradient methods (using the Adam optimizer),
but we also need to ensure the constraints are satisfied. The main focus of this section will
describe the approaches that were employed for this and best practices for a theoretical
motivated solution.

4.2 Satisfying the Copula Constraints

Equation 4.4 is a non-linear program. We can either turn it into a constrained optimization
problem, or explicitly estimate Ψ

−1
d (un,d;θ) at every step of the optimization process. The

two techniques we propose are:

1. Constrained optimization approach
Applying Ψd on both sides of the constraint in Equation 4.4, we obtain:

max
θ ,y

N

∑
n=1

(
logψ

(
yn,1, . . . ,yn,d;θ

)
−

D

∑
d=1

log
(
ψd(yn,d;θ)

))
,

s.t. Ψd(yn,d;θ) = un,d∀n,d. (4.5)

This parameterisation of the objective allows fitting the copula by maximum likelihood
via a constrained optimisation approach problem that does not require explicit compu-
tation of the inverse CDFs Ψ

−1
d . This is convenient, since we do not have the form of

the quantile function.
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2. Unconstrained optimization, approach
We directly optimize Equation 4.4 by explicitly inverting all Ψ

−1
d (un,d),∀n,d at each

optimization step in order to evaluate the copula function and its gradient:

• Numerically compute yn,d = Ψ
−1
d (un,d;θ)∀n,d

• Optimize Equation 4.4 for given yn,d:

max
θ

N

∑
n=1

(
logψ

(
yn,1, . . . ,yn,d;θ

)
−

D

∑
d=1

log
(
ψd(yn,d);θ

))
(4.6)

• Repeat until convergence

We outline the distinction between the two techniques. The first method has the advantage
that we do not need to perform the inversion step of the CDF after every update. However,
non-linear constrained optimization requires carefully choosing penalty coefficients, which
make it difficult to use.

Note that the second class of methods are not to be confused with the projected gradient
method. For a given constrained optimisation problem over a function f (x) and a set of
constraints I = {c1(x), . . . ,c|I|(x)}:

min
x

f (x), s.t. ci(x) = 0,∀i ∈ I.

The projected gradient method uses the following updates at step t:

x̃t = xt−1−λ∇ f (x)
∣∣
x=xt−1

xt = argmin
x
||x− x̃t−1||2, s.t. ci(x) = 0,∀i ∈ I (4.7)

where Equation 4.7 is known as the projection step. This step consists in projecting back
to the feasible set after carrying out an unconstrained step of gradient descent. In method 2
(Unconstrained optimisation) we have a step that could be confused with projection, however
this is to compute the inverse CDF numerically in order to evaluate the copula function,
which is not the same as the projection step in the projected gradients method. Applying the
projected gradients method to our problem does not simplify the problem as the projection
operator is itself an optimisation problem with non linear constraints (Ψ(yn,d)−un,d = 0).

We proceed to describe common approaches to Constrained optimization and Uncon-
strained optimization methods.
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1. Constrained optimization methods

Constrained optimization methods are used to solve problems over a function f (x) and a set
of constraints I = {c1(x), . . . ..c|I|(x)}:

min
x

f (x), s.t. ci(x) = 0,∀i ∈ I. (4.8)

We present three methods for constrained optimization: the Penalty Method, Augmented
Lagrangian Method and Newton-Lagrange Method.

Penalty Method

The main idea of penalty methods (Smith and Coit [31]) is to convert the constrained
problem of Equation 4.8 into a sequence of unconstrained problems using a penalty function
to achieve approximate feasibility.

We introduce the penalty coefficient µk and optimize the following now unconstrained
problem:

minρk(x) = f (x)+µk ∑
i∈I

ci(x)2.

At each iteration k, we increase the penalty coefficient µk by a constant factor and solve the
resulting unconstrained problem.
By applying the penalty method heuristic to our problem, the unconstrained objective
becomes:

max
θ ,y

N

∑
n=1

(
logψ

(
yn,1, . . . ,yn,d;θ

)
−

D

∑
d=1

log
(
ψd(yn,d;θ)

))
+µ

N

∑
n=1

D

∑
d=1

(
Ψd(yn,d;θ)−un,d

)2
.

(4.9)

However, this method is known to suffer from ill conditioning. That is, to fully satisfy the
original constrained problem (Equation 4.5) the multiplier µ becomes undefined (µ → ∞).
This was confirmed in practice. Having only one penalty parameter for all dimensions and
datapoints was also problematic.

Augmented Lagrangian

A way to circumvent the ill conditioning of the Penalty method is to use the Augmented La-
grangian method (Powell [32]). Given the same setup as the penalty method, the Augmented
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Lagrangian introduces {λi}i=1,I for each constraint ci, obtaining the following unconstrained
objective:

minΛk(x) = f (x)+
µk

2 ∑
i∈I

ci(x)2−∑
i∈I

λici(x).

In addition to updating µk after each iteration (which is also present in the Penalty method),
we update each λi according to:

λi← λi−µkci(xk), where xk is the solution found at the kth step.

For our SPC objective, we require a separate λnd for each n datapoints and d dimensions.
The variable λ is an estimate of the Lagrange multiplier. This method has the advan-

tage that it does not require µ → ∞ in order to satisfy the original constraint, avoiding
ill-conditioning.

Newton-Lagrange Method

One of the most common approaches to solving non linear programs is the Sequential
Quadratic Programming (SQP) method (Nocedal and Wright [33]). When presented with
only equality constraints, as in our case, SQP reduces to applying Newton’s method for
optimisation directly to the Lagrangian.

The Lagrangian is given by:

L(x) = f (x)−∑
i

λici(x),

and the Newton updates become:[
∆xxx
∆λλλ

]
=−η

[
∇2

xL ∇xλL
∇⊤xλ
L ∇2

λ
L

]−1[
∇xL
∇λL

]
. (4.10)

This method searches for the Lagrangian’s saddle points (Adolphs [34]) at which the con-
straints are satisfied and a local extrema of f is attained. However, the number of constraints
scale with the size of the data (or batch size) and the number of variables x scale with both
the size of the dataset and the number of parameters in the SPN. For most applications in
machine learning, computing and inverting the Hessian in memory will be unattainable. In
order to address this, we chose to approximate the Hessian-inverse and gradient product
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iteratively using the L-BFGS method (Byrd et al. [35]). In practice this method fails to
converge, we believe that this may happen for two potential reasons:

• The L-BFGS implementation provided by PyTorch is designed to minimise a loss and
thus may have standard strategies to avoid saddle points.

• As mentioned in Adolphs [36], using Newton’s method naively for constrained optimi-
sation problems has the caveat that the method is attracted to any critical point and not
just saddle points.

2. Unconstrained optimization methods

We explore direct approaches for obtaining the inverse of the univariate marginal CDFs, that
is, finding yd , such that y = Ψ

−1
d (ud). We invert this function numerically. First, we look at

root finding approaches. We also explore linear interpolation as a simple way of obtaining
the quantile function.

Root Finding

We can estimate the quantile function Ψ
−1
d (ud) by numerically finding the roots of:

g(x) = Ψd(x)−ud = 0, (4.11)

with respect to x. We can do this numerically by applying the Newton-Rhapson method to
Equation 4.11, leveraging the fact that the derivative of the CDF Ψd(x) with respect to x is
just the PDF ψd(x). This yields the following iterative updates:

xt = xt−1−
g(xt−1)

g′(xt−1)
,

xt = xt−1−
Ψd(xt−1)−ud

ψd(xt−1)
, (4.12)

which we run until convergence every time we wish to evaluate the copula PDF. Newton’s
method has the caveat of being very sensitive to initialisation and highly numerically unstable
when initialised in areas where the derivatives of the function are close to 0. As a heuristic to
mitigate this we cast the root finding problem as an optimisation problem:

min
x
||Ψd(x)−ud||2, (4.13)
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which we solve with gradient based methods, using an Adam optimizer. In practice, we
can first use the Newton-Rhapson method at train time where we have a good heuristic to
initialise x0, and minimise Equation 4.13 at test time where a lack of good initialisation is
affecting Newton-Rhapson. We find that Newton-Rhapson converges much faster at train
time which motivates the combination of both methods. Other root finding methods also
exist, such as Halley’s method and the Bisection Method, but we found that a combination of
Newton-Rhapson for inversion at training time and a gradient based method at test time is
the fastest and most accurate solution. To contrast approaches, we monitor the maximum
difference g(x) = Ψd(x)−ud .

Linear Interpolation

A straightforward approach to inverting the CDF is to simply use linear interpolation, which
has also been used in Tewari et al. [29]. Linear interpolation is a curve fitting method that
uses linear polynomials and it can be used for approximating the value of a function f . In
our case, the function f that we aim to learn is each of the Ψd . In order for this method to
work, we need to provide pairs of the form (x,ψ(x)), since we know ψ−1(ψ(x)) = x. Then,
the learnt function ψ−1 can be applied to the copula-space transformed data, u. We need to
provide datapoints x such that ψ(x) will provide a good coverage of the [0,1] interval, or
use extrapolation. This approach has proven to be very effective for most datasets. It is also
common to use spline interpolation when the interpolation error is not low enough.

4.3 Derivatives of Implicit Functions

By finding a numerical estimation of the quantile function, we are introducing an implicit
function for which the derivatives are not straightforward to obtain. We will now derive these
derivatives, which Tewari et al. [29] have not accounted for.

A downside of the unconstrained optimization approaches (Root Finding and Lin-
ear Interpolation) is that given they estimate lncSPN (u1,u2, . . .ud;θ) directly and estimate
Ψ
−1
d (un,d;θ) numerically, automatic differentiation is no longer able to estimate the full

partial derivative, since Ψ
−1
d (un,d;θ) is a function of θ and autograd (PyTorch) cannot back-

propagate through a numerical estimate of the quantile function. To illustrate this more
succinctly we define lncSPN as c̃, obtaining the following:

c̃
(
Ψ
−1
1 (un,1;θ),Ψ−1

2 (un,2;θ), . . .Ψ−1
d (un,d;θ),θ

)
= c̃
(
y1(un,1,θ),y2(un,2,θ), . . .yd(un,d,θ),θ

)
. (4.14)
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Its full partial derivative (by the multivariate chain rule) is given by:

∂

∂θi
c̃
(
y1(un,1,θ),y2(un,2,θ), . . .yd(un,d,θ),θ

)
=

∂ c̃
∂θi

+
d

∑
j=1

∂ c̃
∂y j

∂y j

∂θi
(4.15)

Derivatives ∂ c̃
∂θi

, ∂ c̃
∂y j

1 can be computed by PyTorch, however ∂y j
∂θi

is the derivative of the
quantile function with respect to θ j and we do not have an analytic expression for the quantile
function. Using the method of implicit differentiation we provide a way of estimating the
derivatives of the quantile function in terms of the quantile function itself.
First we re-express the quantile function as a root equation:

Ψ j(y j;θ)−un, j = 0 (4.16)

The y j that satisfies this root equation corresponds to the quantile function. We can now take
the total derivative of equation 4.16:

∂

∂θi

(
Ψi(y j;θ)−un, j

)
= 0

∂Ψi(y j;θ)

∂y j

∂y j

∂θi
+

∂Ψi(y j;θ)

∂θi
= 0,

rearranging for ∂y j
∂θi

:

∂y j

∂θi
=−

(
∂Ψi(y j;θ)

∂y j

)−1
∂Ψi(y j;θ)

∂θi

∂y j(un, j;θ)

∂θi
=− 1

f j(y j;θ)

∂Ψi(y j;θ)

∂θi
(4.17)

Substituting the numerical estimate for the quantile function yi obtained by root finding or
interpolation into Equation 4.17 gives us a numerical estimate for the gradient of the quantile
function. Whilst we provided the derivation of the full partial derivative, we found that
empirically using the term ∂ c̃

∂θi
as the estimate of the gradient proved to be sufficient in fitting

the copula for the experiments we performed.

1 ∂ c̃
∂θi

is a proper partial derivative that treats y j(un, j,θ) as constants with respect to θi.
∂

∂θi
c̃
(
y1(un,1,θ),y2(un,2,θ), . . .yd(un,d ,θ),θ

)
does not treat y j(un, j,θ) as constants with respect to θi
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4.4 Overview of Implementing an SPC

The main data structure of our approach is a normal SPN, but the objective and inputs will
be different, so that the SPN can satisfy the copula constraints. Since our aim is to maximize
the copula distribution function, we optimize the following quantity (Equation 4.5) or it’s
unconstrained equivalent (Equation 4.6):

max
θ ,y

N

∑
n=1

(
logψ

(
yn,1, . . . ,yn,d;θ

)
−

D

∑
d=1

log
(
ψd(yn,d;θ)

))
,

s.t. Ψd(yn,d;θ) = un,d,∀n,d. (4.18)

The first term, ψ
(
yn,1, . . . ,yn,d;θ

)
can be obtained by a bottom-up evaluation of the SPN,

representing its value evaluated at the root node. The univariate marginal PDFs ψd(yn,d;θ)

can be computed using the differential approach, as shown in the Background section 2.1.3
on SPN marginalisation. The univariate marginal CDFs ψd(yn,d;θ) are obtained in the same
fashion, except that the input distributions are now CDFs instead of densities. Marginalisation
only requires one bottom-up and one top-down pass. Moreover, the marginals of all variables
can be computed at once.

Algorithm 5: Training an SPC
input :u, an NxD matrix of copula transformed data; SPN S
Initialize :θ0 SPN parameters randomly
Set : lmin = ∞

1 repeat
2 y = ψ−1(u;θt) ;
3 if S.get_log_marginal_cdf(y;θt) - u > tolerance then
4 return best solution
5 end
6 cost = -( S(y, θt) - ∑n ∑d S.get_log_marginal_pdf(y, θt)) ;
7 if cost < lmin then
8 save_parameters(θt)
9 lmin = cost

10 end
11 θt+1 = θt - η∇ cost(θt)

12 until stopping condition;

In Algorithm 5, we summarize the main steps for building an SPC. Note that the SPN
operations are implemented in log space, thus the algorithm is updated accordingly.
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The SPC implementation is done in PyTorch, making use of automatic differentiation.
Where feasible, derivatives are computed explicitly, as in the case of the differential approach
to marginalisation, which can be achieved by accumulating corresponding weights. The SPN
components are implemented as tensors, following RAT-SPN (Peharz et al. [1]). The input
distributions are diagonal Gaussians and the parameters are shared for the same variable
appearing in different input nodes, similar to the implementation in SPFlow [37]. All
operations are carried out in log space for computational stability and the logsumexp trick
is used. The weights of sum nodes are re-parameterized via log-softmax, so that they are
normalized and non-negative. Root finding methods are implemented in NumPy. Correctness
is ensured by unit testing SPN operations against their expected output.

4.4.1 Choosing the Best Optimization Approach

In Section 4.2, we have exposed several methods used to solve our optimization problem.
We monitor the largest error constraint_error = Ψ(yn,d)− un,d . We set the tolerance of
the constraint_error at 0.05. We also monitor the mean difference and standard deviation.
From the constrained and unconstrained optimization methods, we have found empirically
by experimenting with all techniques that the unconstrained approach performs best in
practice and it is the most stable. That is, they obtain the lowest constraint_error and
the highest value of the logcSPN objective. When the quantile function is too difficult to
obtain a constraint_error within the tolerance interval, we refine the solution by optimizing
minyd ||Ψd(yd)−ud||2 using gradient descent.

4.4.2 SPC Evaluation

Once we have trained an SPC with parameters θ , we can use the expression for the copula
density cSPN (u1,u2, . . .ud;θ) = ψ(y1,y2,...yd ;θ)

∏
D
d=1 ψd(yd ;θ)

and the KDE estimated marginals to express
the final joint distribution, according to Equation 4.1. We also need to find the inverse CDFs
for the dataset we are evaluating, but this only needs to be done once at test time. The
approach detailed in Section 4.4.1 is used during both training and test time.

Having obtained cSPN(u1, . . . ,un), we can use it together with the KDE estimated
marginals f (xd) to factorize the required multivariate joint f :

f (x1, . . . ,xd) = cSPN(u1,u2, . . .ud;θ)∏
d

fd(xd). (4.19)

Other downstream applications can also be derived in a similar manner, for example con-
ditional distributions. Since we separate the learning of the marginals fd and the copula
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cSPN this method is effectively doing Maximum Likelihood Estimation for fixed fd learned a
priori.



Chapter 5

Experiments

In this chapter, we lay out our methodology and experimental results, comparing the perfor-
mance of SPNs, SPCs and SP-CLs with GMMs performing density estimation on different
real-valued datasets.

5.1 Methodology

5.1.1 Experimental Details

We compare average test log-likelihoods on several datasets. As a baseline, we fit one
full covariance Gaussian (not a mixture), as this is often done for density estimation tasks
([38], [39]). We fit a regular SPN, SPC (copula constrained SPN), SP-CL (SPN with copula
leaves) and diagonal GMM (viewed as a shallow SPN), all having the same number of input
distributions. We optimize their parameters using gradient descent, with the Adam optimizer.
The learning rate was kept 0.1 for SPNs and 0.001 for SPC and SP-CL and the rest of the
Adam parameters are the default ones. The batch size was kept at 500. We employ early
stopping based on the validation set performance, with a patience interval of 30 epochs.

For all datasets, we use a random 70-15-15 percent train-validation-test splits, except
where otherwise mentioned (for datasets with a readily available split).

When comparing SPN and SPC/SP-CL, we first pick an SPN structure based on its
validation performance. We report results on the corresponding SPC/SP-CL (same structure,
same number of nodes). We also report the performance of a GMM with diagonal covariances
and the same number of components as the number of input distributions of the SPN.

The structure of the SPNs is determined by random region graphs. We experimented
with their parameters split depth ∈ [0,1,2], number of recursive splits ∈ [1,2,10], where a



42 Experiments

split depth of 0 corresponds to a GMM. Other parameters are number of input distributions
I ∈ [5,10], number of sum nodes per region S ∈ [5,10].

As mentioned in Uria et al. [39], mixtures of Gaussians are strong baselines for density
estimation. Currently, state-of-the-art approaches to density estimations are in the line of
neural autoregressive density-estimators. The advantage of our modified SPN approach is
that it retains the benefits of exact tractable inference that SPNs have, while making use of
the flexibility of the copula framework.

5.1.2 Evaluating Generative Models

We will detail our choice of using average log-likelihood as a performance metric for density
estimation.

In their work on evaluation of generative models, Theis et al. [40] note that while average
log-likelihood is widely used for measuring the modelling performance of generative models,
care needs to be taken to ensure that the numbers reported are meaningful. Especially when
working with images, we are treating discrete pixel values (usually in the range [0,256]) as
continuous random variables, but discrete data has differential entropy of negative infinity.
This could result in arbitrarily high log-likelihoods. To avoid this problem, real-valued data
is added to the discrete pixel values to dequantize the data, similar to Van den Oord and
Schrauwen [41] and Uria et al. [39].

Moreover, Theis et al. [40] prove that adding the right amount of uniform noise makes
the log-likelihood of the continuous model on the dequantized data be closely related to that
of a discrete model on the discrete data.

Often, obtaining the log-likelihood is computationally intractable for some models, for
example when the normalization constant is hard to compute. For this reason, it is common
to evaluate models on downstream applications. However, SPNs come with the advantage
of fast, tractable inference, which our SPC model preserves. Moreover, average likelihood
is used in many important works on density estimation (NADE [42], MAF [38], etc.), as
well as in works on copulas (Copula Bayesian Networks [29], Tree-Averaged Copulas [25]).
Therefore, average log-likelihood will be our evaluation method of choice. As a sanity check,
we will also plot estimated densities for 2D datasets, making sure the results are sensible.

5.1.3 Choice of Datasets

We perform density estimation on a range of real-valued datasets. We have chosen continuous
valued data, so that we can compute the copula function.
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We get an intuition of relative performances by first performing density estimation on
two 2D synthetic datasets: correlated data generated by Gaussian copulas and the Moons
dataset. We then perform several standard density tasks on UCI (Asuncion and Newman [43])
datasets. To prove the high-dimensional capacities of our approach, we experiment on high
dimensional image datasets: MNIST (LeCun and Cortes [44]) and CIFAR10 (Krizhevsky
et al. [45]).

We included some datasets that have relatively low dimensionality, because they contain
non-linear dependencies that might still make it difficult to fit GMMs.

The datasets we have considered are:

• Synthetic 2-dimensional datasets

1. Gaussian Copula Synthetic Dataset (GCS):
We start with a 2D synthetic dataset, with data sampled with equal probability
from two different Gaussian copulas. The process of generating correlated data
using a copula was explained in Section 2.2.5. For each data point we uniformly
sample a correlation ρi from a set of two values {ρ1,ρ2}= {0.9,−0.9} then we
use Algorithm 4 to sample from uniform Gaussian copula c(u1,u2;ρi). This is
equivalent to sampling from a mixture of copulas with correlations {0.9,−0.9}.
We then transform the vector (u1,u2) by applying a quantile function of a GMM
with 2 components centred at different points (x1,x2) = (Ψ−1

µ1,µ2
(u1),Ψ

−1
µ1,µ2

(u2)).
In this way, the resulting data is correlated and has multiple modes, thus making
it more challenging to perform density estimation. We have drawn a total of
10000 samples.

2. Moons dataset:
The Moons Dataset [46], which will be more difficult for a GMM to fit. This
dataset consists of two interleaving half circles which have been synthetically
generated and random noise added. We have used a total of 10000 samples.

• Real-Valued UCI Datasets As a general preprocessing step for UCI datasets, we
eliminated discrete-valued attributes. Additionally, we eliminated attributes in each
pair with Pearson correlation coefficient greater than 0.98, following Tang et al. [47].
We normalize each dimension by subtracting its training sample mean and dividing by
its standard deviation. All these steps were also performed in Papamakarios et al. [38].

1. Red Wine Dataset and White Wine Dataset:
The Wine dataset [48] contains two datasets regarding the quality of red wine and
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white wine. Both datasets contain 11 features. The White Wine datasets contains
4898 total samples, and the Red Wine Dataset contains 1599.

2. Crime Dataset:
The Crime Dataset [49] contains socio-economic data from the US, useful for
predicting per capita crimes. Discrete features were discarded. There are 89
features and 1994 samples.

3. Power Dataset:
The Power Dataset [50] consists of measurements of electric power consumption.
We discarded discrete features and ignored the time series information and adding
random noise. There are 6 features and 2,049,280 samples.

4. Gas Dataset:
The Gas Dataset consists of the readings of chemical sensors exposed to gas
mixtures. Similarly, time series information is ignored. We discarded highly
correlated attributes. There are 8 features and 1,052,065 samples.

• High-dimensional image datasets (784 and 1024 dimensions): As we already men-
tioned, it is important to dequantize the data by adding uniform random noise (Theis
et al. [40]). We then rescale the pixel values into [0,1]. We follow the same pre-
processing steps as Papamakarios et al. [38] and Dinh et al. [51]: In addition to the
random noise, the data is also transformed to logit space: x→ logit(λ +(1− 2λ )),

where λ = 10−6 for MNIST and λ = 0.05 for CIFAR10. The reason for this is that
the original data has bounded magnitude, which we want to avoid.

1. MNIST: Images of handwritten digits (0-9), containing 784 features (28× 28
black and white images). The MNIST dataset contains a total of 70000 sample
images, with 60000 training and 10000 test. We set aside 5000 samples of the
training set as validation.

2. CIFAR10: Images of 10 classes of natural images, containing 32× 32 RGB
images (1024 · 3 total features). The original dataset contains a total of 60000
total images, with 10000 being reserved for testing. We set aside 5000 samples
from the training sat as validatiion. Following Papamakarios et al. [38], we
augment the training set with all possible horizontal flips of the training images,
resulting in 9000 training images, 5000 validation and 10000 test. We convert the
3-channel RGB input images to grayscale, obtaining 1024 features, since square
images are more convenient for using the Poon architecture.
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5.2 Experimental results

5.2.1 2-D Synthetic Data

Gaussian Copula Synthetic Data (GCS)

Since there are only two dimensions, the SPN structure reduces to a GMM.
Transformed space: Figure 5.1a shows the KDE fit of the univariate marginal distri-

butions of each dataset. Figure 5.1b shows the data in copula space, after estimating the
Empirical CDF: this is the data our SPC will use.

SPN/SPC/SP-CL fit: Figure 5.2a shows the contour plot fit of a normal SPN, while
5.2b shows the fit as estimated by SPC. We also show the fit of an SP-CL in 5.2c. Note
that the contour has less levels for SP-CL here because when evaluating points on a grid,
there are numerical issues when computing the inverse CDF of zero probability points. All
methods manage to fit the data fairly well. However, the interesting aspect to note is that an
SPN with 10 copula leaf distributions per input node only has 20 parameters (10 weights and
10 elements for correlations), since we used diagonal correlation matrices. Our other two
models on the other hand, have 50 parameters (10 weights, 20 elements of the covariance
matrices, 20 means), showing a copula can be a powerful modelling tool, while working with
fewer parameters. Moreover, this synthetic experiment shows the potential of our proposed
method, as its advantages might become more obvious in higher dimensions.

It is interesting to visualize the data after transforming it into copula space (through
KDE estimation of marginal CDFs), as in Figure 5.3. Since a copula only needs to model
the correlations in the data, we have separated the PDF marginal components. In this new
transformed space, modelling might be easier than in the original space. We compare our
SPC and SP-CL approaches, noting that both tend to allocate most mass towards the corners.

Copula models require less parameters: We further investigate the fact the copula version
of SPNs can model data while using fewer parameters than a normal SPN. Figure 5.4 fits
an SPN and an SPC on the synthetic datasets, using only 2 Gaussian input distributions per
leaf. While the SPN does not manage to fit the data at all, the SPC and SP-CL fit is almost as
good as before, when 10 distributions where used. This toy example confirms the power of
copulas, even when fewer parameters are used.

Constrained and Unconstrained Optimization

We will show experimentally why we have chosen to train SPCs as an unconstrained opti-
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(a) Scatter plot of the GCS Dataset. The histograms
on the side represent the univariate marginal distri-
butions fd(xd).

(b) GCS data in copula space, after estimating the
Empirical CDFs.
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(a) SPN (b) SPC

(c) SP-CL

Figure 5.2 GCS Dataset fit of different models, using 10 input distributions per leaf
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(a) SP-CL (b) SPC

Figure 5.3 GCS Dataset fit in copula space.

mization problem. We analyse the learning process of each proposed method. Figure 5.5
compares the average log likelihood per epoch for each of the SPN variants: SPN, SPC and
SP-CL, showing that they all achieve similar performances.
We have included an analysis of two ways of training an SPC as a constrained optimization
approach using the Augmented Lagrangian method, or the unconstrained optimization
approach using linear interpolation. As mentioned in Section 4.4.1, the unconstrained
approach performs best in practice. We take a closer look at the differences between the
two approaches by tracking both the average log likelihood during training, as well as
statistics regarding the current difference between the target uniform marginals and the actual
marginals (maximum difference, mean and standard deviation of the differences).

The unconstrained approach maintains a maximum difference of less than 0.005, which
was expected since the constraint is enforced at every step. We note that the differences
tend to increase during the optimization process, which could happen because the constraint
becomes more difficult to enforce. The log likelihood is always increasing.

The constrained approach shows an oscillatory behaviour, which could happen because
its penalty coefficients are not properly set. The log likelihood also becomes unstable, as the
optimizer struggles to trade-off enforcing the constraints.

Following these observations, for the rest of our experiments, the copula constraints are
enforced using the linear interpolation approach.
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(a) SPN (b) SPC

(c) SP-CL

Figure 5.4 Comparison between the SPN and SPC fit on GCS, when only using 2 input
distributions per leaf.
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Figure 5.5 Average Log likelihood per epoch for each flavour of SPN considered: standard
SPN, SPC SP-CL, evaluated on GCS.

(a) Unconstrained Optimization Approach. (b) Constrained Optimization Approach.

Figure 5.6 Training time statistics and satisfying the copula constraint for SPC trained using
Unconstrained Optimization (Linear interpolation) and Constrained Optimization Methods
(Augmented Lagrangian)
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(a) SPN fit (b) SPC fit.

Figure 5.7 Comparison between the SPN and SPC fit on the Moons synthetic dataset.

N train D Full Gaussian GMM SPN SPC SP-CL
Red wine 1119 11 -12.85 -11.24 -10.98 -10.65 -11.75
White wine 3428 11 -12.95 -12.73 -12.02 -12.17 -13.33
Crime 1395 89 -48.59 -79.68 -68.92 -77.1 -67.57
Power 1,659,917 6 -7.74 -1.23 -0.14 -0.09 -1.04
Gas 852,174 8 -4.43 -1.13 -0.167 0.05 -3.53

Table 5.1 Average test log likelihood on UCI datasets. N train represents the number of
training samples, D is the number of dimensions.

Moons Dataset

Figure 5.7 compares the SPN and SPC fits, showing that the SPC fits the data better visually,
while also achieving a higher test mean log likelihood. However, this dataset is too complex
to be modelled with an SP-CL model with uniform Gaussian copula leaves.

5.2.2 UCI Datasets

We evaluate our method in a systematic manner on several real-valued UCI datasets with
different number of dimensions and sample sizes.

Table 5.1 summarizes the results for the five UCI datasets. We note that in the case of
the Crime dataset, one full covariance Gaussian is by far superior to a mixture of diagonal
Gaussians. Both our SPC and SP-CL approaches show promising results, being competitive
with SPNs, especially considering the lack of hyperparameter tuning done for the copula
variants, due to their slower training times.
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N train D Full Gaussian GMM SPN SPC SP-CL
MNIST 50000 784 -1366 -1516 -1358 -1129 -1244
CIFAR10 90000 1024 90.04 -1159 -640 -833 -909

Table 5.2 Average log-likelihood (in nats) on image datasets. Images have been transformed
in logit space. N train represents the number of training samples, D is the number of
dimensions.

5.2.3 Image Datasets

We assess our method on highly dimensional image datasets.
In terms of structure, the Poon architecture is used, with coarse decompositions (see

Section 2.1.4) leading to leaves of size ∆×∆. We have used ∆ = 8 for MNIST and ∆ = 7 for
CIFAR, as in Tan and Peharz [52]. We use I = 20 Gaussian input distributions with diagonal
covariances and S = 20 sum nodes per region. We use ten percent of the training data as
validation data.

Table 5.2 shows the average log-likelihoods obtained on the two image datasets, MNIST
and CIFAR10. SPC and SP-L are superior to a standard SPN on MNIST, but perform worse
on CIFAR10. Note that the best result on this dataset is actually one full covariance Gaussian,
with a GMM performing far worse. This is also consistent with literature: as reported in [38],
a MADE (Masked Autoencoder for Distribution Estimation, Germain et al. [53]) performed
significantly worse than the Gaussian baseline.

5.3 Discussion

Our results show that it is possible to train SPNs that satisfy the copula constraints copula,
even when varying the size of the datasets and the number of dimensions.

One thing to note is that training SPC could benefit from further tuning their learning
rate instead of keeping it fixed as it was done in our experiments. Our SPC is also limited by
the underlying SPN: all SPNs leaves are diagonal Gaussians, where full covariances could be
helpful.

While the framework we have presented is principled, there are some approximate steps
and more research in each of the steps involved could lead to further performances. For
example, we are using KDE estimators with default Gaussian kernels, but the kernels could
be cross-validated. The optimization process can be slow because it involves inverting CDFs
at each step. Nonetheless, we have shown that an SPC is usually at least as good as an SPN
and it some cases slightly better.
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Moreover, it is important to put our method into perspective. First of all, copula ap-
plications are limited to small dimensions (< 10), yet we show that we can build copulas
for hundreds of dimensions. Our approach also incorporates the benefits of an SPN as a
probabilistic model. Especially for the image datasets, we report the first copulas successfully
trained on datasets with several hundreds of dimensions.





Chapter 6

Conclusions

6.1 Conclusion

Our efforts contribute to the recent idea that the framework of copulas can be beneficial
in the wider context of machine learning. Specifically, their power consists in separating
modeling univariate marginal distributions from modeling correlations between variables.
We combine copulas with SPNs, which are deep probabilistic models that offer exact and
tractable inference. This marriage allows us to take advantage of the benefits of both ideas.

We have introduced two methods of building highly-dimensional copulas. Our first result
is that a decomposable and complete sum-product network is in itself a copula (SP-CL).
However, this approach is limited by the type of copulas used as input distributions. We
then process to distort any SPN such that its univariate marginals come from a uniform
distribution, by enforcing this during training (SPC). We investigate approaches for satisfying
these constraints, with methods ranging from constrained optimization to approaches that
directly compute the quantile function.

We obtain promising results on real-valued density estimation and go on to show we have
obtained a version of copulas that are suitable for high-dimensional datasets. In contrast,
known parametric copulas are usually more limited. Another interesting observation is that
an SPC can often obtain similar performances to an SPN, while using less parameters, as it
was shown by the synthetic experiments.
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6.2 Summary of Contributions

The key contributions of this thesis are:

• PyTorch implementation of an SPN

• New result and proof that an SPN with copula leaves defines a copula

• Implementation of an SPN with Gaussian copula leaves with uniform correlation
(SP-CL)

• End-to-end PyTorch framework for training an SPN Copula (SPC)

• An in depth analysis and comparison of constrained and unconstrained optimization
approaches

• Computation of the derivatives of implicit functions

• Systematic experiments on different real-valued datasets

6.3 Further Work

There are several incremental improvements that could be done to our approaches to improve
experimental results.

The SPN implementation could be changed to have full covariance Gaussian distribu-
tions as input leaves, instead of diagonal ones. When modeling images, variants of Deep
Convolutional SPNs (as in Butz et al. [14]) could be employed.

Investigating practical advice on the Augmented Lagrangian method could accelerate
the training process, without requiring inverting a function at every step, as it is currently
required by the linear interpolation technique we are using.

For our SP-CL model, other types of copulas could be used as input (such as a Gaussian
copula with full covariance), as we have only experimented with Gaussian copulas with
a uniform correlation parameter, which is very limiting. Given the promising results this
relatively straightforward method has shown, this change could have a significant impact on
performance.

By introducing more powerful models (with full covariance distributions and possibly
Convolutional structure) and further refining the optimization process, we could advance our
method even further. However, we have already managed to provide a stand-alone framework
for constructing high-dimensional copulas with the aid of SPNs.
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