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Abstract

The recent advances of deep learning in applied machine learning gained tremendous success,
addressing the problem of learning from massive amounts of data. However, the challenge
now is to learn data-efficiently with the ability to learn in complex domains without requiring
deep learning models to be trained with large quantities of data. We present the novel
framework of achieving data-efficiency in deep learning through active learning. We develop
active learning algorithms for collecting the most informative data for training deep neural
network models. Our work is the first to propose active learning algorithms for image data
using convolutional neural networks.

Recent work showed that the Bayesian approach to CNNs can offer robustness of these mod-
els to overfitting on small datasets. By using dropout in neural networks to avoid overfitting
as a Bayesian approximation, we can represent model uncertainty from CNNs for image
classification tasks. Our proposed Bayesian active learning algorithms use the predictive
distribution from the output of a CNN to query most useful datapoints for image classification
with least amount of training data. We present information theoretic acquisition functions
which incorporates model uncertainty information, namely Dropout Bayesian Active Learn-
ing by Disagreement (Dropout BALD), along with several new acquisition functions, and
demonstrate their performance on image classification tasks using MNIST as an example.
Since our approach is the first to propose active learning in a deep learning framework, we
compare our results with several semi-supervised learning methods which also focuses on
learning data-efficiently using least number of training samples.

Our results demonstrate that we can perform active learning in a deep learning framework
which has previously not been done for image data. This allows us to achieve data-efficiency
in training. We illustrate that compared to standard semi-supervised learning methods, we
achieve a considerable improvement in classification accuracy. Using our Bayesian active
learning framework using 1000 training samples only, we achieve classification error rate
of 0.57%, while the state of the art under purely supervised setting with significantly larger
training data is 0.3% on MNIST.
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Chapter 1

Introduction

This thesis introduces for the first time a Bayesian active learning framework for high di-
mensional inputs (such as images) for use in Deep Learning through the use of Bayesian
Convolutional Neural Networks. It proposes an active learning approach towards data-
efficient deep learning. We take a probabilistic Bayesian approach for information theoretic
active learning by representing model uncertainty in deep learning for image classification
tasks using Bayesian convolutional neural networks.

In chapter 1, we give a brief introduction to Bayesian active learning and how to capture
model uncertainty in deep learning for image classification tasks. We build on a tool that
casts dropout training in neural networks as approximate Bayesian inference. In chapter
2, we will demonstrate an information thereotic entropy based active learning framework
based on Bayesian CNNs in chapter 2. We propose several new acquisition functions which
incorporates uncertainty information for active learning in image classification tasks, and
demonstrate the novelty of our work. Chapter 3 provides the experimental results illustrating
the performance of our Bayesian active learning algorithms with dropout uncertainty from
Bayesian CNNs. We note that our approach is the first to propose active learning for
image data based on deep learning tools such as CNNs, which is achievable by considering
approximate Bayesian inference which provides robustness to over-fitting on small datasets.
Finally, chapter 4 discusses and summarises the results, and includes possible future work.
We provide state-of-the-art performance for image classification task, and introduce novel
Bayesian active learning frameworks that can be used in deep learning to achieve data-
efficiency.



2 Introduction

1.1 Data-Efficient Machine Learning

Recent approaches in machine learning are focused on learning from massive amounts of
data. Deep learning approaches have been shown to provide highly scalable solutions. In
applications such as image and speech recognition, machine translation, speech synthesis and
recommendation systems, deep neural networks have achieved state of the art performance
when trained with large amounts of training data [1, 2]. Convolutional neural networks in
deep learning have been shown to achieve state of the art performances in image processing
tasks [3]. However, CNNs are known to require large amounts of training data, and can
quickly overfit when trained with small datasets. Training with large datasets also often
require enormous computational resources and hence training these deep neural network
models can become difficult. While Bayesian neural networks are robust to overfitting and
can be trained with small datasets [4, 5], their CNN counterparts could not be attempted
successfully due to the problem of modelling the distribution over kernels in the CNN.
Recently, however, the use of efficient Bayesian CNNs have been shown which can offer
better robustness to overfitting on small datasets [6].

Data-efficiency has become an increasingly important requirement for modern machine
learning and artificial intelligence systems. The task of data-efficient machine learning is
to ask how can we design efficient machine learning systems that can learn using the least
amount of data while also achieving similar levels of performance and providing scalable
solutions. This is especially important in domains such as personalized healthcare, robotic
systems and reinforcement learning since data is scarce in such domains. It is important
to be able to learn data-efficiently in these small data domains. In this work, we therefore
demonstrate the ability to learn in a complex domain without requiring large quantities of
data. We focus on the task of training a deep learning model with the least amount of training
data through the use of a Bayesian active learning framework.

1.2 Introduction to Bayesian Active Learning

In active learning, the goal is to produce the best machine learning model with the least
amount of training data. The learner in active learning seeks the most informative data to
train the model upon. This is particularly useful since there is vast amount of unlabelled
data that is available to us, but it is often costly to obtain labels for all the data. Active
learning algorithms therefore seek the most useful data for training sets in machine learning
[7]. Active learning algorithms are particularly of importance in computer vision tasks where
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it is time and cost consuming to obtain a good set of labeled images. Building robust image
classifiers requires large number of labelled training data instances. In this work, we aim to
develop an efficient active learning method to build a competitive classifier with a limited
amount of labelled training instances. However, training a good classifier with minimal
labeling cost is a critical challenge posed in machine learning research. We focus on the pool
based active learning setting by evaluating the informativeness of instances with the most
uncertainty measures which assumes that an instance with a higher classification uncertainty
is most critical to the label. We propose several active learning query strategies which uses
the uncertainty estimates obtained in a deep learning setting.

We consider using the Bayesian framework for active learning which can be used for the
design of active learning algorithms considering an information theoretic approach [8].
Within a Bayesian active learning framework, acquisition functions can be used that can
measure the expected informativeness of pool points from which to actively select the next
data point to be added to training set. In this work, we take the information theoretic approach
to probabilistic active learning, where the acquisition functions can measure the utility of a
datapoint by quantifying its informativeness about the parameters. By using the relative model
confidence on different image points to obtain an uncertainty estimate from the predictions
made by the model, which is briefly introduced later in section 1.3, we introduce our Bayesian
active learning framework called Dropout Bayesian Active Learning by Disagreement. Later
in chapter 2 we discuss the properties of these acquisition functions and its reliance on using
a good uncertainty estimate obtained from using a Bayesian convolutional neural network.

1.3 Representing Model Uncertainty in Deep Learning

Recent work showed how model uncertainty can be captured in deep learning by taking a
Bayesian approach to dropout in neural networks (NNs) [9]. By considering the relation
between Gaussian Processes (GPs) and dropout for regularisation in NNs, it has been shown
that uncertainty can be obtained in deep learning classification and regression tasks. We build
our work on this framework to use the uncertainty information in image classification tasks for
active learning. This is particularly useful since the model can now classify images in CNNs
with certain confidence, and we can use active learning to treat the inputs that the model
is uncertain about. Inputs to the CNN that the model is highly uncertain about can now be
queried in pool-based active learning setting, and passed onto the active learner for obtaining
the correct label. [9] showed that a neural network with arbitrary depth and non-linearity, with
dropout applied after every weight layer is equivalent to an approximation to the probabilistic
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deep Gaussian process [10]. The Bayesian approach to dropout in NNs have also been
extended for use in CNNs. By placing a distribution over the kernels (Gaussian filters) of
a CNN model, [6] showed that we can approximate the CNN model’s intractable posterior
with Bernoulli variational distributions. [6] proposed practical dropout CNN architectures,
the Bayesian CNN model and showed that these models can reduce overfitting on small
datasets. By performing dropout after every convolutional layer at training, and by evaluating
the model output by approximating the posterior with average stochastic forward passes
through the model at test time, we can capture model predictive uncertainty. The predictive
uncertainty from Bayesian CNN models in image data shows the image pool set points that
the model is uncertain or less confident about. This uncertainty is then used for our proposed
acquisition functions for Bayesian active learning.

1.4 Active Learning in Deep Learning framework

In this work, we specifically focus on active learning in a deep learning framework for image
datasets. We emphasize that this is the first step towards using active learning based on
the use of CNNs. By considering Bayesian approach to CNNs, achieving robustness to
overfitting on small datasets and obtaining Bayesian model uncertainty, we show that active
learning can also be used in a deep learning setting for image classification tasks towards
the goal of achieving data-efficiency. While active learning has been well known in the
machine learning research community for a long time, these settings are not typically used
with deep learning systems. This is because deep neural networks require large amounts of
training data for training. Furthermore, convolutional neural networks which are typically
used for image classification are known to be highly prone to overfitting when trained with
small datasets. For this reason, CNNs had not been previously used in an active learning
setting for images. Bayesian methods, on the other hand, are known to be less prone to
overfitting since these methods can perform model selection and averaging. Unlike standard
statistical practice which ignores model uncertainty, Bayesian methods can avoid overfitting
by not being over-confident about inferences and taking account of uncertainty in model
selection. In constrast, even though Gaussian Processes are known to offer good uncertainty
estimates for regression [11], and more recently with classification, GPs are known not to
be quite robust in providing uncertainty estimates for high dimensional inputs, especially in
classification tasks. Bayesian ConvNets on the other hand have been shown to work quite
well for classification tasks, offering good uncertainty estimates. We develop our active
learning framework for image data based on using Bayesian CNNs.



Chapter 2

Bayesian Active Learning in Deep
Learning

In this chapter, we introduce the Bayesian framework of representing model uncertainty in
deep learning to design our information theoretic active learning algorithms. In section 2.1
we briefly introduce the Bayesian information theoretic approach to active learning, and
then describe the use of model predictive uncertainty in deep learning for our acquisition
functions in section 2.2. In section 2.3 we describe and introduce our proposed acquisition
functions that can be used for image data using Bayesian CNN models. We discuss that these
acquisition functions are mainly based on being able to represent model uncertainty from
a deep learning model. In section 2.4.1 we discuss several related methods which focuses
on modelling uncertainty in deep learning. We demonstrate how our proposed methods are
suitable, easy to compute and extendable for CNNs compared to other methods in an active
learning setting, especially considering high dimensional inputs such as images.

2.1 Information Theoretic Active Learning

Active learning algorithms focus on selecting their own training data for training machine
learning models. Active learning can be performed in three scenarios such as continuous
sampling, pool based and stream based active learning. We consider the task of pool-based
active learning in which the learner has access to a pool of unlabelled data from which to
select points for annotation. In order to select the most informative points that the learner
must choose for the training data, active learning algorithms must assign a score or utility
to each location in the input space that can be queried. This utility function is evaluated for
every point in the pool set. Such utility functions can be built using an information theoretic
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approach. Pool based active learning have many applications including text classification
[12], image classification [13], speech recognition [14] and recommendation systems [15].
Within the Bayesian active learning framework, utility or acquisition functions can measure
the expected informativeness of candidate measurements.

2.1.1 Information Theory

We first give a brief overview to information theory before presenting our information-
theoretic active learning approach. Information theory was founded by Claude Shannon [16]
where he derived a theoretic upper bound to the capacity of a channel, which is the maximum
rate that a set of symbols can be transmitted with zero reconstruction error. The information
content of a datapoint x and the entropy which is the average information content in the
ensemble is given by:

J(x) =� logP(x) (2.1)

H[P(x)] =�Â
x

P(x) logP(x) (2.2)

where J(x) measures the information content of a data point x, and H[P(x)] is the entropy.
Entropy is a measure of the uncertainty in a distribution.

Two other information theoretic quantities that occur frequently in machine learning are the
mutual information and Kullback-Leibler (KL) divergence. The mutual information between
two random variables X and Y is given by:

I[X ,Y ] = H[p(X)]�Ep(Y )H[p(X |Y )] (2.3)

where Ep(Y )H[p(X |Y )] is the conditional entropy denoted by H(X |Y ). It is also symmetric
and measures how much information X carries about Y and vice versa. Shannon showed
that the maximum capacity of a channel is given by the mutual information between the sent
and received signals. The KL divergence which is a measure of dissimilarity between two
probability distributions p(X) and q(X), has the intuition as the number of additional bits
needed to transmit symbols with distribution p(X), if our model of the distribution is q(X).
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2.1.2 Information Gain Utility Functions

In pool based active learning, each labelled training example belongs to a certain class that is
denoted by y 2 {1, ...k}. However, we do not know the true class labels for the examples in
the active pool. We consider entropy which is a measure of uncertainty of a random variable.
Entropy values can indicate the class membership of the predicted labels Y where the higher
values of entropy can imply more uncertainty in the distribution. In other words, this means
that if an example unlabelled point in the pool set has a distribution with a higher entropy,
then the classifier is more uncertain about its class membership.

Equation 2.2 is a measure to quantify uncertainty in a probability distribution. In Bayesian
active learning, the goal is to query points from a pool set such as to minimize the posterior
entropy after collecting data. The points are queried based on the expected information gain
which is given by:

U(x) = H[p(q |D)]�Ep(y|x,D)H[p(q |D,x,y)] (2.4)

Equation 2.4 is equivalent to the mutual information between the parameters and the unob-
served output, conditioned upon the input and the observed data.
Equation 2.4 was first proposed for the design of Bayesian experiments in [17]. However,
equation is difficult to compute due to the intractability of the Bayes rule and therefore
mathematical approximations are usually required when using equation 2.4 for complex
models. Another perspective to consider for information theoretic active learning is based
on maximizing the KL divergence between the current posterior and the next posterior
KL[p(q |D,x,y)||p(q |D)].

In our work, we propose an active learning acquisition functions based on the equivalent
formulation of equation 2.4 that was initially proposed in [18] called Bayesian Active
Learning by Disagreement (BALD). As discussed later in section 2.9, [18] showed that
the different formulation of equation 2.4 can provide substantial practical advantages for
computation. Later in section 2.9, we propose our Dropout BALD acquisition function which
combines model uncertainty with the expected information gain for our proposed acquisition
function.

2.2 Bayesian Convolutional Neural Networks

In this section, we briefly introduce the model uncertainty framework for deep learning that
was introduced in [6, 9]. Recent work in [6, 9] have shown that deep learning techniques
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can be used to reason about uncertainty over the features by using a Bayesian approach
to dropout training in neural networks. [9] have shown that a Bayesian approximation to
dropout training can be used to capture the confidence of the model in its prediction. Dropout
applied after every weight layer is mathematically equivalent to the well known Bayesian
model, the Gaussian Process. The Bayesian approach to dropout training makes these deep
learning models more robust to over-fitting as Bayesian frameworks have already been
shown to be robust to overfitting. In addition, such frameworks can provide an interpretation
to reason about uncertainty in deep learning and allows the introduction of the Bayesian
machinery in existing deep learning frameworks. Standard deep learning models used for
classifiaction tasks cannot capture the model uncertainty, and the softmax output of such
models are often misinterpreted as the model confidence. The softmax output of a deep
model does not necessarily quantify the model confidence about the test points.

[9] uses Bayesian probability theory to offer a tool to reason about uncertainty, and have
showed that the use of dropout in NNs can be interpreted as a Bayesian approximation of
a well known probabilistic model, the Gaussian Processes. While Dropout is commonly
used in deep learning as a way to avoid overfitting, [9] interpretation suggests that dropout
approximately integrates over the model’s weights, and the mathematical similarly between
Gaussian Processes and dropout can be used to develop a tool that can represent uncertainty
in deep learning.

Based on [9], the use of dropout in NNs was further used for proposing Bayesian CNN
architectures in [6]. Previously, Bayesian CNNs could not be implemented due to the diffi-
culty of inferring the model posterior when having a large number of parameters. Even with
small number of parameters, inferring the model posterior in a Bayesian NN was a difficult
task since variational inference based on the use of Gaussians for variational distribution to
approximate the posterior was computationally expensive. For example, using a Gaussian
approximating distribution to model the posterior to be close to the true posterior increases the
number of model parameters significantly. Therefore, such approaches could not previously
be used for CNNs since the increase in number of parameters in CNN architectures can be
more expensive. However, recently, [6] showed that by using a Bernoulli approximating
variational distribution, we can approximate the posterior with no additional parameters
which led to the efficient implementation of Bayesian CNNs.

[6] proposed dropout CNN architectures showing that dropout networks training can be cast
as approximate Bernoulli variational inference, and that the implementation of Bayesian
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CNN is simply performing dropout after every convolution layer at training. Furthermore, by
performing dropout at test time, [6] showed that Bayesian CNN models can be implemented
very efficiently, and can be used to evaluate the model output by approximating the predictive
posterior. The implementation of Bayesian CNNis therefore simply using dropout after every
convolution layer before pooling. At test time, by performing several average stochastic
forward passes through the model, ie, referred to as Monte-Carlo (MC) dropout, the approxi-
mating predictive posterior can be easily obtained. This also means that by performing MC
dropout at test time, ie, using averaging stochastic forward passes through the model at test
time, we can approximate the predictive distribution. This in other words gives us a measure
of uncertainty over the classification predictive probabilities obtained from the Bayesian
CNN MC dropout architectures. For further details, see [9], [6].

By using these uncertainty estimates from the predictive distribution of a Bayesian CNN
model, we develop our information theoretic approach to active learning. The Bayesian
CNN model predictive distribution obtained from the approxiamte posterior can further be
used to measure entropy, which can quantify uncertainty for the active learning algorithm.
We propose several new active learning acquisition functions based on utilizing these MC
dropout uncertainty estimates and a Bayesian CNN classifier such as to derive a data-efficient
active learning framework for image classification tasks in deep learning.

2.3 Active Learning Acquisition Functions

In this section, we introduce our proposed active learning acquisition function which uses
Monte-Carlo (MC) dropout to obtain a predictive distribution from a Bayesian CNN archi-
tecture. Our proposed acquisition functions uses the approximating predictive distribution as
a measure of uncertainty to compute our acquisition functions U(x). First, we describe our
active learning setting as below.

We consider only the pool-based active learning setting for active learning of high dimen-
sional inputs such as images. Suppose we have a set of N images with each image belonging
to one of the L possible classes. We divide the training set into train, validation and pool set,
and we assume that the class labels for images in the pool set are unknown. For active learn-
ing, we start with 20 training data points, 40,000 pool set points, validating the model with
10,000 samples and further testing with 10,000 test samples. The active learner has access
to a set or pool of unlabelled data from which to select points for annotation. According to
an acquisition function, the active learner chooses one or more of the N images, and these
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images are presented to the oracle that can provide the correct class labels. The active learner
chooses additional images at each round in the algorithm from the unlabelled set that would
be particularly informative if their labels were known.

More formally, let Ut be the pool of unlabelled images at the start of round t and let Lt be the
corresponding pool of labelled images. The acquisition function queries the most informative
images at each round of the algorithm. This process leads to new labelled and unlabelled sets
for the next round.

Lt+1 = Lt [{xt ,yt} (2.5)

Ut+1 =Ut\xt (2.6)

where xt 2Ut is the example chosen in round t and yt is its label assigned by the oracle. In
pool-based active learning, the acquisition functions evaluates the pool points and ranks the
entire collection of pool points from which the queries with the highest function values are
selected. Below, we describe each of our acquisition functions.

Note that all our active learning algorithms are based on Bayesian CNNs for image classifi-
cation tasks. The predicted probabilities are obtained from the softmax output of a CNN and
model uncertainty is obtained by using test time MC dropout. Based on these, we construct
our acquisition functions for query selection as described in the sections below. Later, in
chapter 3, we will provide the experimental results using each of our acquisition functions,
and demonstrate their effectiveness.

2.3.1 Dropout Bayesian Active Learning by Disagreement

We consider an information theoretic Bayesian active learning setting using entropy to
quantify the uncertainty from the predictive probability distribution, which is the natural
objective to minimize the posterior entropy after collecting data. Following the approach
taken by [18], we consider taking a myopic greedy approach, selecting the next pool point
as if it were the last. The acquisition function developed by [18], shows that the expected
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information gain was equivalent to the mutual information between the parameters and the
observed output as follows:

U(x) = H[p(q |D)]�Ep(y|x,D)H[p(q |D,x,y)]

= I[q ,y|D,x]

= H[p(y|x,D)]�Ep(q |D)H[p(y|x,q)]

(2.7)

Equation 2.7 shows the acquisition function known as the Bayesian Active Learning by
Disagreement (BALD), which provides the intuition that the first term seeks the input x
for which the model has high uncertainty about the output y and the second term seeks a
datapoint with low expected conditional uncertainty Ep(q |D)H[p(y|x,q)]. In other words,
intuitively, this means that a high entropy value will give points that the model is uncertain
about, and also points that are more ambiguous (since we have different y predicted values
for the same x point).

Equation 2.7 can be approximated using Monte Carlo samples from the posterior. U(x) can
be estimated using samples using BALD as follows:

U(x)⇡ H[
1
k

k

Â
i=1

p(y|x,qi)]�
1
k

k

Â
i=1

H[p(y|x,qi)] (2.8)

where k is the number of Monte-Carlo samples used for approximation. Since we are comput-
ing entropies based on the predictive distribution p(y|x,D), and we need to approximate the
predictive distribution, we use k Monte-Carlo samples where equation 2.7 is approximated by
equation 2.8. Following equation 2.8, we derive dropout BALD, which uses the Monte-Carlo
samples of the predicted distribution obtained from using test-time dropout of the Bayesain
CNN implementation. For obtaining the predicted class probabilities p(y|x), we use the
Bayesian CNN implementation with dropout used after every parameter layer. We average T
stochastic forward passes through the model following the Bayesian interpretation of CNNs
and obtain MC dropout samples of predicted class probabilities. The approach of using
dropout at test time is by Monte Carlo averaging of stochastic forward passes through the
model. The MC dropout testing applied to CNNs gives us noisy estimates with potentially
different test results over different runs. Using this, we can therefore construct our Dropout
BALD acquisition function as follows, where k is the number of Monte-Carlo approximations
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used for the predictive probabilitiy distribution from a Bayesian CNN output. We can further
write this more simply as:

U(x)⇡ H[
1
k

k

Â
i=1

p(yi|xi)]�
1
k

k

Â
i=1

H[p(yi|xi)] (2.9)

Note that equation 2.9 is simply a simpler form of equation 2.8. Equation 2.9 shows the
Dropout Bald acquisition function based on the expected information gain for choosing the
best query points from the pool set. U(x) queries points which maximizes the expected
information again x⇤ = argmaxU(x). The Dropout BALD acquisition (equivalently can be
called as MC Dropout BALD) function, or can therefore be interpreted as follows: the learner
queries point based on the expected information gain which is given by the uncertainty of the
average output minus the average uncertainty in the output.

Our proposed active learning algorithm using the Dropout BALD acquisition function is
described in algorithm box 1 below.

2.3.2 Dropout Variation Ratio

We propose another variant of acquisition function based on using the model uncertainty
obtained from our Bayesian CNN implementation. For each point in the pool set, for each of
the MC test time dropout samples, we now compute the predicted labels, which are different
in each test time dropout. Based on these different predicted labels for each point in pool
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set, we can then compute a histogram of the class labels predicted by the model for each
pool point. This can be explained as follows. For the same x input, the MC test-time dropout
would give different y predicted values. For each label, we can then compute a histogram for
each pool point of how many times the model predicted different labels for the same point.
This, in other words, would then represent the model confidence about the pool point. By
computing this histogram, we can then compute which label the model is most confident
about on average for each of the pool set points.

In other words, we compute the variation ratio for each point in the pool set. Similar to
the standard deviation, the variation ratio is a measure of statistical dispersion in normal
distributions. By compute the histogram of predicted labels for each point, we can compute
the mode label predicted by the model. The variation ratio is the proportion of cases which
are not the mode. It is given by:

v = 1� fm

K
(2.10)

where fm is the frequency of the number of classes of the mode label and K is the total
number of MC dropout samples. Our acquisition function called Dropout Variation Ratio is
therefore given by:

U(x) = 1� fm

K
(2.11)

and the active learner selects the points which has the highest variation ratio, ie, x⇤ =
argmax

x
U(x). Similar to the standard deviation, the larger the variation ratio, the more

differentiated or dispersed are the class predicted labels, and the smaller the variation ratio,
the more concentrated and similar are the predicted labels. Since in active learning, our
learner seeks the point about which the model is most uncertain about, therefore higher
values of variation ratio imply more uncertainty about the predicted labels. In other words, if
variation ratio is high, it implies that the model is not too confident about a particular label,
but rather assigns similar proportions to all the class labels, implying that it is uncertain about
all the labels and not too confident about a particular class membership.
Our proposed active learning algorithm based on computing variation ratio from MC dropout
samples of predicted classes, called "Dropout Variation Ratio" is shown in algorithm box 2
below.
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2.3.3 Dropout Maximum Entropy

We propose another aquisition function based on the maximum entropy measure, in which
query points are selected about which the model has highest uncertainty. This is similar to
the usual maximum entropy based acquisition function commonly used in active learning.
This is in accordance to the uncertainty sampling acquisition function commonly used, where
the learner attempts to label those instances for which the model is least certain about how
to label. Our entropies are calculated based on the average of the predictive probability
distribution obtained from MC dropout output samples. The entropy measure for k class
classification is given by:

E(x) =�
k

Â
i=1

pi log(pi) (2.12)

From equation 2.12, pi is the predicted probability of each label for a single pool point.
Given that k is the number of classes, equation 2.12 shows how to compute the entropy for
each pool point. The Dropout Maximum Entropy acquisition function selects the point which
has maximum information content. However, to select points based on the model uncertainty,
we would need a good uncertainty estimate which we obtain using our Bayesian ConvNet
implementation. Our "Dropout Maximum Entropy" acquisition function incorporates the
model uncertainty (ie, the uncertainty in the predictions made by the model) to calculate
the entropies, which in itself is a measure of uncertainty. Later in experimental results,
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we will show that in a Bayesian CNN framework, this approach outperforms than simply
calculating the entropy from the predictive probabilities of a single pass through the model.
Our proposed acquisition function is given as follows:

U(x) = H[
1
k

k

Â
i=1

Pi] (2.13)

U(x) is a vector containing entropy values for the pool set points. The query points are
selected which maximizes the entropy x⇤ = argmaxxU(x). The entropy is computed based
on the average model uncertainty about the class membership of each points in the pool set.

Our proposed active learning algorithm based on computing entropies using average predicted
probabilities, called "Dropout Max Entropy" is therefore given by algorithm box 3 below.

2.3.4 Dropout Bayes Segnet

Our next acquisition function is based on computing the sum of standard deviations for each
class label for each pool point. We call this the Dropout Bayes Segnet approach, where the
uncertainty from standard deviations of probabilities is computed following recent work from
[19]. This can be formalised as follows. For each point in the pool set, we again perform
dropout at test time, and obtain an uncertainty measure over the predicted labels for each
point in the pool set. In other words, considering each pool set point, our model predicts class
probabilities for each of the L classes. For MC dropout samples, we can then compute the
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standard deviation of probabilities for each of the L classes for each pool point. Our Bayes
Segnet measure then computes the sum of standard deviation of probabilities across the L
classes for each pool set point. This therefore gives us an uncertainty estimate for each pool
set point, which the active learner then uses to query points with highest sum of standard
deviation of probabilities. This can be given as follows:

U(x) =
L

Â
i=1

si (2.14)

where L is the number of classes under the L image classification setting. Our learner then
seeks pool points with the highest U(x) = ÂL

i=1 si.

However, note that, unlike the variation ratio, the standard deviation of probabilities is
not a good measure of uncertainty. This will be further justified in experimental results
section, where we show the importance of a good uncertainty measure for active learning.
We understand that standard deviation of probabilities is not a good measure to use for our
acquisition functions. However, through this, we demonstrate the significance of obtaining a
good model uncertainty estimate from MC dropout samples.

2.3.5 Other Baseline acquisition functions

Our proposed acquisition functions are mainly based on using Bayesian CNN model archi-
tectures. We note here that even though active learning had been a major research area for
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quite a long time, previous methods in active learning did not use CNN models, especially in
a deep learning framework. As stated previously, this is mainly because most deep learning
models were previously known to require large amounts of training data, making active
learning not a suitable approach.

We compare our proposed active learning methods in a deep learning framework with several
other commonly used acquisition functions. While previously these methods were commonly
implemented using Support Vector Machine (SVM) or other machine learning classifiers, in
this work we implement these "baseline acquisition functions" using CNN models. In the
sections below, we introduce these baseline acquisition functions with which we compare
our proposed algorithms.

Maximum Entropy

We compare all our proposed acquisition functions with the max entropy based acquisition
function in which the learner chooses query points which has the maximum entropy. Here,
we simply use a CNN model instead of our Bayesian CNN implementation, and based on
the computed probabilities from the softmax output of a CNN, we can compute the entropy
values for each pool point. Unlike our previously introduced "Dropout Max Entropy" acqui-
sition function, here we simply use the predicted output probability from the softmax output
of a CNN, and use the predicted probability for each class for each pool point to compute the
entropy for that point.

Maximum Margin : Best vs Second Best (BvSB)

Even though entropy based active learning can be considered as a better measure for query
point selection, there are several drawbacks to using an entropy based approach. The en-
tropy measures are highly influenced by the probability values of the unimportant classes.
Considering a situation where the classifier estimates the probability values of two examples
in a L class problem. For one example, the classifier might assign higher and almost equal
probabilities to two classes, whereas for the other example, the classifier may assign a much
higher probability to only one class compared to all the others. From the classification
perspective, it can be argued that the classifier is more confused about the first example than
the second since the first example has two close probability values to two classes, so it is
more confused about the first example than the second. However, after computing entropies,
the small probability values of unimportant classes will contribute to a higher entropy score
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even though the classifier is much confident about the classification of the example.

Based on this, we compare our acquisition functions with non entropy based approaches, and
use the softmax output of a CNN to compute the class predicted probabilities. As in [20],
instead of relying on the entropy score, we consider the difference between the probability
values of the two classes having the highest estimated probability value as a measure of
uncertainty. The acquisition function can therefore be written as:

U(x) = P(y1|x)�P(y2|x) (2.15)

where y1 and y2 are the two most probable values. This is referred to as the Best-versus-
Second-Best (BvSB) approach, and the learner queries the point which has the minimum
difference, ie, x⇤ = argminx P(y1|x)�P(y2|x). Such a measure is a more direct way of
estimating confusion about class membership from a classification standpoint.

Random Acquisition

This acquisition function is typically considered as a baseline comparison for all proposed
active learning algorithms. Most previous research on active learning shows that the proposed
algorithm can outperform the random acquisition function. While previous research consid-
ered classifiers other than CNNs, in this framework, we implement the random acquisition
function based on CNNs. At every acquisition iteration, points are randomly added for
training the CNN model. We evaluate this acquisition function, and compare whether our
proposed acquisition functions can perform better achieving a higher level of accuracy with
few labelled samples.

In the next section, we discuss few related work which can also be used to represent un-
certainty in a deep learning framework. However, unlike the methods discussed below, the
dropout uncertainty tool from [9] is the only easily extendable framework for extending to
CNNs. For our work in this thesis, we therefore use the dropout uncertainty as approximate
Bayesian inference for obtaining uncertainty estimates required for active learning. We
include a discussion of other related approaches in the next section.

2.4 Related Work

Previously we mentioned the importance of obtaining good estimation of uncertainty for our
dropout acquisition functions. We discussed how our proposed acquisition functions uses
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test-time dropout for obtaining estimates of uncertainty over images using a Bayesian CNN
framework. In section 2.4.1 we discuss related research for obtaining uncertainty estimates
and avoiding overfitting in deep learning using a Bayesian Neural Network framework.
However, compared to our approach, these methods have not yet been shown to work well
on CNNs when considering high dimensional inputs such as images. Most of the related
approaches considered below, even though shows that these models can give good predictive
output distribution, however their extensions to CNN models are challenging and have not
been done yet. We re-emphasize the ease with which test-time MC dropout can be applied
to a Bayesian CNN model to obtain good uncertainty estimates for active learning. This is
important since in our considered framework, computation time is of importance, as we are
dealing with repeated training of a deep model. The MC dropout approach of [9] can give
model uncertainty without increasing model complexity or the number of parameters, which
plays a significant role in the active learning setting for deep learning.

In chapter 3, we will demonstrate the reliability of our dropout uncertainty estimates com-
pared to some of the related work mentioned below. In particular, we will compare several
frameworks that can represent uncertainty efficiently using an active learning regression task
where pool points with highest variance are queried. The results in chapter 3 will show that
while uncertainty estimates can be obtained for several methods used here, they can only be
used in the regression active learning task, with constrains on input dimensions. Unlike other
methods, the dropout uncertainty fraemwork proposed by [6, 9] is the only easy to implement
approach that can be extended for CNN models for dealing with image classification tasks.

2.4.1 Approximate Bayesian NNs and DGPs for Uncertainty Estimates

Bayesian Neural Networks and Variational Inference

It has been known that a neural network with infinitely wide hidden units with distributions
placed over their weights corresponds to the Gaussian Process model [5]. Furthermore,
models such as Bayesian Neural Networks have been studied extensively with finite NNs
having distributions placed over their weights [5], [4]. These models can offer robustness to
over-fitting and uncertainty estimates for neural networks, but there are severe computational
costs and challenging inference to it. Variational inference has been proposed for neural
networks, but without much success [21] largely due to the difficulty of deriving analytical
solutions to the required integrals over the variational posteriors. Such solutions have been
shown to be complicated for even the simplest of the network architectures such as single
layer feedforward networks with linear outputs [21], [22]. A recent approach applied varia-
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tional inference to neural networks [23] which introduces a stochastic variational method that
can be applied to most neural networks. There has been recent advances in these methods
introducing sampling-based variational inference and stochastic variation inference [24],
[25], [26]. In [26], the ideas of deep neural networks and approximate Bayesian inference
were combined for deriving directed generative models for scalable inference and learn-
ing. Furthermore, there has been approaches to obtain new approximations for Bayesian
Neural Networks which have been shown to perform as well as dropout [27]. In [27], a
backpropagation compatible algorithm was introduced called Bayes by Backprop for learning
probability distributions on the weights of the neural network. It introduces a new algorithm
for learning neural networks with uncertainty on the weights and shows that the algorithm is
comparable to that of dropout. By introducing a principled algorithm for regularisation built
upon Bayesian inference on the weights of the network, [27] demonstrates that this uncer-
tainty can improve predictive performance on regression problems by expressing uncertainty
in regions of fewer or no data. However, these models have high computational cost for
obtaining uncertainty estimates. In orer to represent uncertainty in these models, the number
of parameters in these models is doubled for the same network architecture, while also
requiring more time to converge. Therefore, these models introduces additional computation
which are further expensive, in order to obtain uncertainty estimates. Furthermore, [27]
demonstrates uncertainty estimates over regression problems using neural networks while in
our work, we consider uncertainty estimates over image data using Bayesian CNNs. All the
approaches above have been shown to work on a Bayesian Neural Network implementation,
and little work has been done to extend these algorithms for CNN models.

Expectation Propagation and Probabilistic Backpropagation

An alternative approach to variational inference is to consider the use of expectation prop-
agation [28] which have been shown to improve on the uncertainty estimates compared
to VI approaches. Deep neural networks trained with backpropagation typically have the
disadvantages such as the need to tune a large number of hyperparameters, tendency to overfit
the training data, and models with backpropagation do not give a calibrated probabilistic
predicition. Furthermore, Bayesian techniques discussed aboe lack the ability to scale to
large datasets and network architectures. [28] therefore introduces a scalable method for
learning Bayesian neural networks called Probabilistic Backpropagation (PBP) and shows
that PBP provides accurate estimates of the posterior variance on the network weights.
Bayesian approaches to neural networks can automatically infer the hyperparameter values
by marginalizing them out of the posterior distribution, and can also naturally account for un-
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certainty in the parameter estimates and can propagate this uncertainty into predictions. [28]
offers a probabilistic appraoch to backpropagation algorithm by propagating probabilities
forward through the network to obtain marginal likelihood and then propgating the gradients
of the marginal likelihood backwords. By using this probabilistic approach to backprop,
PBP can produce calibrated uncertainty estimates of the posterior uncertainty in the network
weights, and also offers robust overfitting since they average over parameter values instead of
choosing a single point estimate. [9] compares the dropout approach to obtaining uncertainty
estimates with PBP and shows a significant improvement in RMSE and uncertainty estima-
tion. While the approach taken by PBP is comparable to our work, and have been shown to
work on both classification and regression problems, such Bayesian approaches to neural
networks have not been shown to work well considering high dimensional inputs such as
images. PBP works only on low dimensional classification settings, and have shown results
for active learning classifiers. However, PBP have not yet been shown to work well on CNNs
to obtain uncertainty estimates when considering image data for active learning.

Deep Gaussian Processes

Deep Gaussian Processes (DGPs) are multi-layer hierarchical generalisations of Gaussian
Processes and are equivalent to neural networks with multiple infinitely wide hidden layers.
[29] develops an approximate Bayesian learning scheme to enable DGPs to be applied on
large scale regression problems using an approximate Expectation Propagation scheme. Their
approach further uses the probabilistic backpropagation algorithm for learning to show that
such methods are better than sampling-based approximate inference methods for Bayesian
neural networks. By using DGPs, [29] shows that these nonparametric probabilistic models
offers a greater capacity to generalise and can provide better calibrated uncertainty estimates
than alternative deep models. [29] focuses of Bayesian learning of DGPs which involves
inferring the posterior over the layer mappings and hyperparameter optimisation via the
marginal likelihood. However, results on DGPs only shows initial work on classification, but
does not show significant gain over GP. Additionally, DGPs or GPs have not yet been shown
to work well on high dimensional inputs and it is computationally much more expensive to
train these models for image data to get uncertainty estimates. However, our approach to
using Bayesian CNNs can be very easily used to obtain uncertainty estimates over images
for an active learning setting by only applying dropout at test time. There are significant
disadvantages to using DGPs, especially considering the approximate EP framework, and the
difficulty of training DGPs on high dimensional inputs.
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2.4.2 Other Acquisition Functions for Images

Several methods have previously been proposed for active learning algorithms for images,
since for images and videos providing training data is expensive in terms of human time and
effort. However, most of these approaches are based on commonly used machine learning
models such as SVMs. No previous work for active learning of images had been used
considering CNN models due to CNNs being prone to overfitting with small datasets. [30]
previously proposed acquisition functions based on uncertainty sampling where they used an
uncertainty measure that generalises margin based uncertainty and used a SVM classifier for
multi-class classification. Similarly, [31] developed entropy based active learning where the
learner chooses an image to label that maximizes the expected amount of information again
about the set of unlabeled images. Their approach called "Minimum Expected Entropy",
although used an entropy based active learning framework to measure informativeness, used
a committee of K-NN and SVM classifier to estimate class probabilities for the unlabelled
images. Unlike their approach, we use the deep learning framework for the use of Bayesian
CNN models, since CNNs have been shown to achieve state of the art performance for images
[1]. Furthermore, [32] combined the information density and most uncertainty measure
together to select query points for image classification. To the best of our knowledge, no
previous method had therefore been used using CNN models. In this work, we therefore
demonstrate the effectiveness of Bayesian CNNs for active learning in image classification
tasks.

2.5 Combining Active and Semi-Supervised Learning

In this section, we take a different approach to our work. We consider the idea of combining
active learning and semi-supervised learning, extending work from [33] by using CNN
models which was previously not considered. Further from [33], we combine the two fields
under a Gaussian random field model, but instead using a CNN model architecture for a
classifier. We begin by describing the combined active learning and semi-supervised learning
framework of [33] formulated with a graph-based semi-supervised learning approach and a
Gaussian random field.

In the semi-supervised learning approach, we again use labelled and unlabelled datasets L
and U, and construct a graph G = (V,E) where the nodes correspond to the n data points.
The edges are represented by a nxn weight matrix W which is given by a radial basis function
(RBF) with weights wi, j. We consider nearby image points in the Euclidean space. While
[33] considered a relaxation of the requirement that labels should be binary, we experiment
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with both binary and multi-class labels. The approach of [33] is based on using harmonic
energy minimizing functions where a low energy corresponds to a slowly varying energy
function over the graph. Since we want unlabelled points that are nearby in the graph to have
similar labels, the energy function is defined as:

E(y) =
1
2 Â

i, j
wi, j(y(i)� y( j))2 (2.16)

The minimum energy function is therefore given as f = argminy|L=yLE(y) and this harmonic
energy minimizing function can be computed in terms of matrix methods. Defining the
diagonal matrix D = diag(di) where di = Â j wi j and the combinatorial laplacian is the nxn
matrix given by D = D�W , then the laplacian matrix can be partitioned into blocks given
by:

D =

"
Dll Dlu

Dul Duu

#
(2.17)

and if we let f =

"
fl

fu

#
then the solutiona of the mean harmonic energy function for the

unlabelled points is given by

fu =�D�1
uu Dul fl (2.18)

By forumulating the semi-supervised learning problem in terms of a Gaussian random field
on this graph, we can then perform active learning on top of this similar to as defined by
[33]. Similar to [33], we propose to perform active learning with the Gaussian random
field model by greedy querying points so as to minimize the risk of the harmonic energy
minimization function. We also consider the risk to be the estiamted generalisation error of
a Bayes classifier. More on this semi-supervised learning framework can be found in [33].
However, in contrast to the approach taken by [33], while we similarly query points which
minimizes the risk, after querying points from the pool set, we evaluate the final output using
a CNN classifier with a softmax output. Note that our method is based on computing RBF
over the feature representation obtained from a CNN, whereas the approach taken by [33] is
based on computing RBF over raw images.

The active learning approach based on minimizing the risk of the harmonic energy function
on graph-based semi-supervised learning is defined as follows. Similar to [33], we compute
the estimated risk as R̂( f ) = Ân

i=1 min( fi,1� fi). If we perform active learning and query a
point xk,yk, then this point will also change the Gaussian field and its mean energy function.
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Denoting the new harmonic function to be f (xk,yk), then the changed estimated risk will be
given by

R̂( f+(xk,yk)) =
n

Â
i=1

min( f (xk,yk)
i ,1� f (xk,yk)

i ) (2.19)

but since we do not know yk for the pool point before it is queried, we assume the estimated
risk to be approximated by

R̂( f+xk) = (1� fk)R̂( f+(xk,0))+ fkR̂( f+(xk,1)) (2.20)

and the active learning criterion for a binary classification task as defined by [33] is to choose
the next query that minimizes the estimated expected risk

k = argmin
k0

R̂( f+xk0 ) (2.21)

We extend the work from [33] to a multi-class classification setting for image classification
task, by similarly combining the active and semi-supervised learning framework. This
extension can be easily made by defining the expected estimated risk to be simply

R̂( f+xk) = fkR̂( f+(xk,y)) (2.22)

and similarly query the next point which minimises the energy function following equation
2.21. However, the only difference in our work is that we evaluate the output of the active
learning algorithm using a traditional CNN classifier with a softmax output. As defined
above, we similarly compute the harmonic energy function and the estimated risk for both
the binary and multi-class setting, but instead evaluate the output with a CNN classifier.

In the experimental results section, we will evaluate the performance of this Gaussian
random field harmonic energy based active learning criterion on image classification task.
More importantly, we will compare our dropout uncertainty acquisition functions with this
combination framework to evaluate which method performs better. The framework described
in this approach, based on extension from [33] is a more computationally expensive task
compared to our dropout active learning approach, since this involves computing the estimated
risk for all the points in the pool set. We will evaluate this scheme in the experimental results
section, first for a binary classification task, and then extended for multi-class classification.
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Experimental Results and Analysis

In this chapter, we demonstrate our experimental results and present the effectiveness of
our proposed Bayesian active learning acquisition functions based on using the Bayesian
CNN architecture. We illustrate that by using model uncertainty casting dropout training
in neural networks, we can perform information theoretic Bayesian active learning with
Bayesian CNNs. We show that a significant improvement in classification performance can
be achieved even with training Bayesian CNN models with very few labelled training data.
We demonstrate state of the art results compared to existing active learning techniques and
apply our methods to Bayesian CNNs which has not been done before.

We illustrate the importance of obtaining good model uncertainty estimate by comparing
the dropout acquisition functions with softmax based methods which do not capture model
uncertainty. We inspect the use of different model architectures and non-linearities in the
Bayesian CNN model which corresponds to different GP covariance functions to capture
uncertainty. Our results on MNIST demonstrates the importance of model architectures
and non-linearities, which affects the performance of the active learner quite significantly.
We also compare our proposed algorithms with approaches that combines active learning
with graph-based semi-supervised learning for images on a binary image classification tasks.
Finally, we include a summary of our experimental results and illustrate that our active
learning approach in the deep learning framework achieves state of the art performance.

3.1 Experimental Setup

We show the performance of our dropout Bayesian CNN based acquisition functions on
the MNIST dataset. We perform dropout after all convolution and weight layers in the
LeNet5 CNN model architecture to capture model uncertainty. All our experimental results
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are averaged over 5 experiment repetitions. In the active learning experimental setup, we
initially start with only 20 training data points and fit a model on this dataset. We ensure
that the initial training set of 20 datapoints consists of a uniform distribution of all classes
to ensure that the initial model is trained with all classes of images. We validate on 10,000
labelled samples, and our setup has a pool set of 40,000 points from which to select our
query points to be added to the training set. Further to using dropout during training and test
time, we further add a L2 regulariser in the top NN layer of the CNN architecture, with a
weight decay parameter to be fine-tuned by cross validation. Our model uses the ADAM
optimizer [34], and we use 50 training epochs for every training label set with a batch size
of 128. Unless otherwise state, we use the ReLU activation function for the non-linearity
in the Bayesian CNN models. At every acquisition iteration, we subsample 2000 points
from the pool set for which to estimate the predictive distribution from MC dropout samples,
and we use this pool subsample to query the point to be added to training set. Every time a
point x is selected, we delete this pool point from the pool set and add it to the training set.
The CNN model architecture is re-trained after every pool point acquisition and the test set
accuracy is evaluated using 10,000 test samples. All our experiments were done using the
Keras framework [35].

The experiment configuration files, scripts and results are available at https://github.com/
Riashat/Active-Learning-Bayesian-Convolutional-Neural-Networks.

3.2 Performance of Acquisition Functions

3.2.1 Experimental Results

In this section, we evaluate the performance of each of our dropout based acquisition functions
on the MNIST dataset. In this section, we show the performance of each of our active learner
on the 10,000 MNIST test samples, starting with 100 training data points. The focus of the
experiments below is to demonstrate that the Bayesian CNN models can avoid overfitting
on the small dataset. For every query point added to the training set, we show the training
and validation accuracy plots to ensure that overfitting is avoided for each active learning
acquisition from the pool set. We present the experimental results for each of our dropout
acquisition functions using the Bayesian CNN implementation. Note that it is important
to analyse model fitting issues for every active learning acquisition iteration. Since we are
dealing with small training datasets for our Bayesian CNN models, we need to illustrate that
these models casting dropout as approximate Bayesian inference can avoid model overfitting.
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Dropout Bald

Fig. 3.1 Performance of the active learning algorithm using Dropout BALD acquisition
function on MNIST. Model Fitting on small training dataset using Bayesian CNN framework

Figure 3.1 shows how the performance of the Bayesian CNN classifer improves with the
number of queries made by the active learner. The subplot further shows that the CNN models
avoid overfitting even when trained with a very small dataset. By using the uncertainty
information from MC dropout samples, the Dropout BALD acquisition function generalises
quite well on the unseen data. The model fitting results in figure 3.1 are shown only for
few acquisitions, notably the acquisitions at the beginning and towards the end. The model
achieves a better fit at the 180th acquisition iteration compared to the 10th acquisition
iteration. In this experiment, at every iteration, we query 10 image points at a time instead of
1. The significance of this will be discussed later. Most importantly, the results demonstrate
that the Bayesian CNN model does not overfit at any of the active learning acquisitions as
illustrated by figure 3.1.
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Dropout Variation Ratio

Figure 3.2 shows the performance of our Dropout Variation Ratio active learning algorithm,
illustrating the significance of robustness to model fitting in small data regime. Figure 3.2
shows that even though the model is slightly prone to overfitting for the 10th acquisition
iteration, where we only have 200 training samples, it becomes less prone to overfitting for
the 180th acquisition iteration. However, it is important to note that even for 200 training
samples, the model does not overfit. As illustrated in [6], this is the benefit of using Bayesian
CNN compared to a traditional CNN, as the Bayesian approach makes the model robust to
overfititng issues.

Fig. 3.2 Test accuracy and model fitting using Dropout Variation Ratio acquisition function



3.2 Performance of Acquisition Functions 29

Dropout Maximum Entropy

Fig. 3.3 Test accuracy and model fitting using Dropout Max Entropy acquisition function

We implement our Dropout Maximum Entropy acquisition function. Similar to the commonly
used approach based on querying points with maximum entropy, the only difference with our
approach is that we use the mean of the predictive distribution to compute the entropy, instead
of simply taking the predicted probabilities. In later section, we will further demonstrate
how our Dropout Max Entropy acquisition function can outperform the baseline maximum
entropy based acquisition functions.
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Dropout Bayes Segnet

Fig. 3.4 Test accuracy and model fitting using Dropout Bayes Segnet acquisition function

Figure 3.4 further illustrates the significance of using the Bayes Segnet acquisition function.
Similar to other methods, our proposed active learning algorithm again shows no model
overfitting for the small data regime for each of the acquisition iterations.

3.2.2 Discussion

The experimental results in this section illustrate that our active learning algorithms avoids
overfitting for each acquisition iteration using the Bayesian CNN model. We illustrate the
performance of each of our proposed acquisition functions on the MNIST dataset. For each of
the acquisition functions, we show the performance on the test set, along with the validation
plots to illustrate model fitting.

In the next section, we will compare our proposed active learning algorithms with baseline
acquisition functions typically used in active learning. For the baseline functions, we use
a traditional CNN model architecture, and compare our methods based on using Bayesian
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CNNs. For the traditional CNN model based active learning, we only add dropout layers
during training without any dropout approximation at test-time.

3.3 Comparison of Acquisition Functions

We compare our proposed acquisition functions with other acquisition functions typically
used in active learning. In particular, we compare our proposed dropout Bayesian CNN
active learning algorithms with other baseline acquisition functions used (random, maximum
entropy and maximum margin). Here we start with 20 training data points and query upto
1000 points. This means, our model is trained with a final labelled set of 1000 training
samples, and tested on 10,000 samples. Note that, instead of querying only 1 point at a time
from the pool set, as before, here we again query 10 points at each iteration. This is also to
avoid too many repeated training of CNN models which requires computational resources
and time.

In a later section, we will demonstrate the significance of querying 1 points or higher number
of points at time from the pool set. We also compare our MC dropout functions with softmax
functions typically used in CNN models. [9] further discusses the significance of softmax
output compared to passing a distribution through a softmax. In our results below, we further
justify the importance of uncertainty estimate in active learning by comparing MC dropout
with standard softmax outputs. [9] shows that the predictive probabilities obtained from
the softmax output cannot be interpreted as model confidence since a model can be highly
uncertain about its predictions even with a high softmax output.

The experimental results in this section illustrate that our proposed acquisition functions
for active learning can significantly outperform the other baseline functions on the MNIST
image dataset. However, by comparing our proposed functions, we note the importance of
using good uncertainty estimates for active learning. As illustrated later, we see that our
Dropout BALD and Dropout Variation Ratio acquisition functions can outperfrom Dropout
Bayes Segnet and Dropout Maximum Entropy. This is mainly because taking the maximum
entropy as a measure of most uncertain point is perhaps not a good measure since the entropy
values are also affected by the probability distribution of all the classes. Furthermore, as
discussed earlier, our Dropout Bayes Segnet function uses standard deviation of probabilities
as an uncertainty measure, which is not a good measure. The experimental results below
demonstrates this.
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3.3.1 Experimental Results

Fig. 3.5 Comparison of MC dropout acquisition functions with Baseline acquisition functions

At first, we simply compare our proposed algorithms with baseline functions. Figure 3.5
compares our proposed MC dropout uncertainty estimate based Bayesian CNN acquisition
functions with other baseline functions commonly used in active learning. From figure 3.5,
the baseline algorithms are based on maximum entropy, random and best-second-best. Result
in figure 3.5 demonstrates the usefulness of using our proposed active learning acquisition
functions. However, result in figure 3.5 does not necessarily show whether model uncertainty
is required for active learning, since it maybe that our method outperforms simply due the
effectiveness and properties of the acquistion function such as BALD. However, in figure
3.6 we further illustrate that this is otherwise. Figure 3.6 the significance of using MC
dropout uncertainty estimates. We show that the MC dropout based acquisition functions
can outperform the softmax based functions. The simply softmax based algorithms without
test-time dropout uses the same model architecture with dropout layers during training, and
obtains only deterministic class predictive probabilities. We will demonstrate the importance
of uncertainty estimates in more details in a later section.
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Fig. 3.6 Significance of uncertainty estimates : Comparison of acquisition functions using
MC dropout samples and softmax output

Figure 3.6 further shows the comparison of our active learning algorithms with a traditional
CNN architecture with a softmax output. For example, in softmax BALD, the same acquisi-
tion or utility function is used similar to BALD, with the difference that Dropout BALD uses
MC samples to obtain a predictive distribution through a softmax output, whereas softmax
BALD the predictive probability obtained from a softmax output of a CNN architecture. This
result is further illustrated in the next section. Note again that the Dropout acquisition func-
tions also has softmax output, with the only difference that it obtains a predictive distribution
through Monte-Carlo test-time dropout, instead of deterministic class predictive probabilities
from the softmax output of a traditional CNN.

Querying even fewer datapoints - Upto 100 samples

In order to achieve data efficiency, we further looked into the significance of querying even
few points (up to 100 instead of 1000) and demosntrate how our model performs when
trained with even fewer labelled samples. Note that the result in figure 3.7 maybe affected
by model overfitting issues since we have too few training data to train the Bayesian CNN
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models. For future work, one interesting direction would be further achieve a high predictive
performance even if the model is trained with upto 100 training labelled samples only.

Fig. 3.7 Querying upto 100 labelled samples and validating on 10,000 samples on MNIST.
Significance of using fewer labelled samples for training

3.3.2 Discussion

The experimental results in this section illustrates the significance of our proposed acquisition
functions, compared to other baseline functions typically used. Figure 3.5 shows that
the MC dropout acquisition functions can significantly outperfrom the maximum entropy
and random acquisitions. Further to this, figure 3.6 shows that even when applying the
same acquisition function, the uncertainty estimates from MC dropout samples to obtain a
predictive distribution plays an important role. Due to a much better uncertainty estimate
obtained from MC dropout, these acquisition functions typically outperform the softmax
outputs of a traditional CNN architecture. This further demonstrates the significance of
usina a Bayesian CNN implementation compared to a traditional CNN for active learning.
Here, also note that our Dropout Bayes Segnet performs as poorly as random acquisition.
This is also because, as discussed previously, standard deviations of probabilities is not a
good measure of uncertainty. This is further justified from the results in this section. Since
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Dropout BALD can significantly outperform Dropout Bayes Segnet, it further demonstates
the importance of good uncertainty estimates for use in active learning. Finally, figure 3.7
shows the significance of querying even fewer data points from the pool set. Figure 3.7 shows
that even though the test set accuracy improves with every informative query point added
to the training set, it does not necessarily achieve same test accuracy. This is also because
100 training points for a CNN model might be too less (compared to using 1000 points) for
measuring their test performance on 10,000 samples.

3.4 Significance of Model Uncertainty for Active Learning

In section 3.3 we demonstrated the performance of our MC dropout active learners compared
to other acquisition functions. We demonstrated that an active learner based on Bayesian
CNN implementation can outperform a non-Bayesian CNN based active learner, even when
using the same BALD acquisition function. In this section, we further demonstrate this in
details.

In particular, we compare the estimates obtained with and without using dropout, and
following our the same criterion for our proposed acquisition functions. We evaluate all our
proposed acquisition functions with and without using test-time dropout, and evaluate the
performance of these models on MNIST test data again to further justify the importance of
the uncertainty estimates for active learning. Here, we want to demonstrate the significance
of model uncertainty in active learning, which can be obtained from a Bayesian CNN based
active learning algorithm compared to a traditional CNN architecture.
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3.4.1 Experimental Results

Fig. 3.8 Comparison of active learning with Bayesian CNN vs traditional CNN (with and
without using test-time MC dropout samples)

Figure 3.8 compares our proposed acquisition functions for a Bayesian CNN implementation
compared to a traditional CNN output. In other words, the Dropout acquisition functions are
based on achieving model uncertainty from a Bayesian CNN, whereas the Softmax functions
simply use output a traditional CNN. Our experimental results in figure 3.8 shows that the
dropout uncertainty based acquisition functions (shown in red) can outperform the softmax
based functions for all four of our proposed algorithms. This further validates the importance
of using MC dropout samples to obtain a predictive distribution, since the model uncertainty
obtained from approximate Bayesian inference in CNNs can not only avoid over-fitting for
small datasets, but can also significantly improve the overall predictive performance of our
active learners. Furthermore, note how the Dropout Bayes Segnet and Softmax Bayes Segnet
performs almost equally. This again demonstrates that the Bayes Segnet approach does not
give us good uncertainty estimates for use in active learning. In contrast, having a good
estiamte for BALD and variation ratio based acquisition functions is of importance in active
learning.
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Fig. 3.9 Demonstrating the importance of good uncertainty estimates in small data settings
for active learning

Figure 3.9 further demonstrates the results above in small data settings. Figure 3.9 is a
zoomed version of figure 3.8 for the same data and experiment. The comparison between the
active learning algorithms based on with and without using test-time dropout can be seen
more significantly in the small data setting, querying only upto 500 points for training instead
of 1000. When querying only upto 500 labelled training samples, it is far more clear of how
the dropout acquisition functions can outperform the softmax ones. This further justifies that
using a softmax at the output layer of a CNN does not give us model uncertainty unlike using
test-time dropout.

3.4.2 Discussion

The experimental results in section 3.4 above demonstrates the importance of a good un-
certainty estimate for use in active learning. Figure 3.8 shows that the MC dropout model
uncertainty estimates in Bayesian CNN plays a significant role for improving the performance
of our active learner, compared to using a traditional CNN model. Note how the differences
are more signifincant for the BALD and Variation Ratio based acquisition functions, com-
pared to Maximum Entropy and Bayes Segnet. The results here also draws an important
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comparison between the performance of each of our acquisition functions as well. From here,
we can justify that BALD and Variation Ratio are better utility functions compared to simply
taking the maximum entropy point from the pool set. It also further demonstrates that the
standard deviations of probabilites is not a good measure of uncertainty, which is justified
from the maximum test accuracy reached by each of the active learners. The Bayes Segnet
based acquisition function performs poorly compared to Dropout BALD and Variation Ratio.

3.5 Bayesian CNN Model Architectures and Non-Linearities
for Active Learning

In this section, we further demonstrate the significance of different Bayesian CNN model
architectures and non-linearities for use in active learning. [9] suggested that the combination
of NN non-linearities and weight regularisation would correspond to different Gaussian
Process covariance functions for uncertainty estimates. In this section, we further demonstrate
how the use of different CNN model configurations and activation functions can change the
predictive mean and variance obtained from the output of the Bayesian CNN model. We
investigate the change in uncertainty estimation for different configurations, for choosing the
best architecture that can give a reliable uncertainty estimate for use in active learning. For
our Dropout BALD acquisition function, we used different non-linearity at every layer of the
Bayesian CNN model architecture. Our results in this section demonstrates the importance
of choosing the right model architecture and non-linearity for use in active learning. This is
in similar line as to how choosing the covariance function for GPs plays an important role in
the uncertainty estimates that GPs have to offer.

3.5.1 Experimental Results

We use only the Dropout BALD active learning algorithm for demonstration of the signifi-
cance of model architectures. Here, we start with 100 training points, query 10 points at each
iteration, querying up to 1000 points and evaluate the performance on 10,000 MNIST test
samples.
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3.5.2 Bayesian CNN Non-Linearities

Fig. 3.10 Significance of different non-linearity in the CNN architecture, corresponding to
different GP covariance functions in the Bayesian CNN architecture, using Dropout BALD
acquisition function

Fig. 3.11 Comparing Bayesian CNN model non-linearities on the Random acquisition
function
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Figure 3.10 illustrates the significance of using different activation functions or non-linearities
in the Bayesian CNN implementation. The result shows the importance of using ReLU
activation functions in CNN model compared to using the sigmoid activations. The different
activation functions would give different uncertainty estimates from the Bayesian CNN model,
since each GP covarince function has a one-to-one correspondence with NN non-linearities.
Figure 3.10 illustrates that using a sigmoid activation function can make the active learning
algorithm perform very poorly. This maybe because using sigmoid activation functions,
uncertainty cannot be well captured for use in active learning unlike using ReLU and TanH
activations. Our result here shows that a good uncertainty estimate obtained from a Bayesian
CNN model can significantly impact the performance of our active learning algorithms, which
can be demonstrated by comparing figure 3.10 with figure 3.11. We further compare the
different Bayesian CNN non-linearities on the random acquisition function. Figure 3.11 again
illustrates that the ReLU and TanH non-linearities mostly outperforms, while the sigmoid
activation function performs poorly. This further justifies the poor uncertainty estimate that
we get from the sigmoid activation, which is comparable to a poorly chosen covariance
function for the equivalent GP. Comparing figures 3.11 and 3.10, it is interesting to note the
significance of using the BALD function compared to random acquisitions. Using Dropout
BALD, for higher number of samples, the performance of the sigmoid model architecture
improves, whereas for random acquisition it always performs poorly. The results in this
section further justifies that for deep learning models, we cannot use a sigmoid activation
function after every convolutional layer. Our results not only illustrate the significance of
Dropout BALD, but also demonstrates the importance of choosing the appropriate model
non-linearities for obtaining good uncertainty estimates from the predictive distribution of
the Bayesian CNN (based on choosing ReLU versus Sigmoid activations) for active learning.
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3.5.3 Bayesian CNN Model Architectures

Fig. 3.12 Signifance of different non-linearity in the CNN architecture, corresponding to
different GP covariance functions in the Bayesian approximation of Dropout

We then evaluated different model architectures for the Bayesian CNN LeNet5 architecture.
We evaluated different sizes of the Gaussian kernel of the CNN to see how modelling of
the distribution over the kernels (ie filters) is affected for different sizes of Gaussian filters.
Furthermore, we experimented with different number of hidden units in the top NN layer of
the Bayesian CNN model. These are tunable parameters which affects the performance of
the active learning algorithm. For future work, these parameters can also be fine-tuned using
Bayesian optimization [36]. Our experimental results in figure 3.12 shows that by fine-tuning
the CNN model configutations, we can further improve the predictive performance of our
active learners for images.
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Fig. 3.13 Signifance of different non-linearity in the CNN architecture - influence of the
number of hidden units in top NN layer in a CNN

Figure 3.13 then shows the significance of the number of hidden units in the top NN layer of
the Bayesian CNN model. From figure 3.13 we can conclude that the number of hidden units
perhaps does not play an important role in varying the uncertainty estimates from a Bayesian
CNN model. Again, this parameter can be fine-tuned by using Bayesian optimization [36].

3.5.4 Discussion

Figures 3.10 and 3.11 shows the significance of the non-linear units in the output of a
CNN, which approximates to different GP covariance functions. Hence, the non-linear units
changes the uncertainty estimates obtained from our Bayesian CNN model which further
affects the performance of the active learners. Additionally, figure 3.12 shows the effect
in the performance of the active learning algorithm for different sizes of kernels. Different
kernel filters using in CNNs when combined with the Bayesian approximation to dropout
can give different uncertainty estimates. We also evaluated the significance of using different
number of hidden units at the top NN layer of a CNN architecture. It is well known that an
infinite number of hidden units corresponds to GP approximation and so we evaluate the
significance of increasing the total number of hidden units at the top layer of our CNN model
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architecture. Different number of hidden units also corresponds to different GP covariance
functions and hence different uncertainty estimates over image classification.

3.6 Significance of Computation Time in Active Learning

One difficulty of performing active learning in a deep learning setting is that the model needs
to be fitted with every new query point acquisition. In other words, every time a query is
made from the pool set, the model needs to be fitted again. In the deep learning setting, this
maybe difficult because such models are often highly prone to overfitting, especially when
using a small dataset. In this section, we investigate the significance of query rate. Instead of
querying only one point at a time from the pool set, we evaluate the trade-offs of querying
more than one point at a time, to avoid the expensive model re-training process at every
iteration.

3.6.1 Experimental Results

Fig. 3.14 Significance of Query Rate and Computation Time for active learning in deep
learning
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The experimental results in figure 3.14 shows that the query rate, even though varies the
accuracy rate initially, eventually the same level of predictive performance is reached. Our
results demonstrate the importance of the number of queries to be made at each active
learning acquisition iteration. Furthermore, the table included in the figure shows the total
computation time for each of the experiments. From figure 3.14 we can conclude that by
querying more points at every iteration, we can improve the rate at which the accuracy
increases, while also lowering the total computation required. In other words, by querying
a higher number of points every iteration, we can reduce the total number of times the
CNN models need to be re-trained, which is useful in our active learning in deep learning
framework.

3.6.2 Discussion

Figure 3.14 illustrates the significance of query rate in active learning, which is importance
especially considering this setting in the deep learning framework. Deep learning models are
known to require large amounts of training data, and so querying only one point at a time,
and re-training a deep model for every acquisition iteration maybe computationally quite
expensive. In figure 3.14 we therefore illustrate that, instead of querying only one point, ie
choosing the most informative point, we can instead choose 5 or 10 most informative points
at a time that the model is highly uncertain about. In figure 3.14 note how the accuracy rate
of the active learner depends on the query rate. Our results show that, instead of querying
only point at time, it may perhaps be better to query 5 or 10 points at a time.

Another reason why querying only one point and adding this point to train a deep model is
perhaps less useful because this single point added to the deep network gets smoothed out in
the loss function. In other words, the addition of a single point does not bring a significant
effect in the training of the network, unless these new additional points are highly weighted
compared to the previous points.

In figure 3.14, we also make a comparison of the total computation time for each of the
experiments, depending on the query rate. Comparing Query = 5 and Query = 10, we
find that the later achieves a higher accuracy rate, while also having a lower computation
time of almost 32hours. In comparison, Query = 1 and Query = 5 takes almost double the
computation time (more than 30hours) while still not achieving a high enough accuracy rate
for the active learner. Our results also demonstrate that querying 100 points at a time is
not useful since we are selecting too many points that the model is not confident about. In
other words, Q = 100 means that we are not critically querying the most informative points
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from the pool set, which is also justified by its lower accuracy rate. From our experiments
demonstrated in figure 3.14, we therefore show that using a query rate of 10 is a good balance
in trading off accuracy rate and computation time. To re-emphasize, balancing this trade-off
is important specially considering active learners using deep models such as Bayesian CNNs
as classifiers.

3.7 Combining Active and Semi-Supervised Learning

In this section, we compare our dropout uncertainty acquisition functions with the approach
from [33] that combines active learning and semi-supervised learning methods using Gaussian
random fields and harmonic energy functions discussed previously in section 2.5. We
implemented the approach from [33] based on constructing Gaussian random fields with
raw image features using a RBF kernel in keras, while also using a CNN as the model
classifier. We compare our results in a binary classification setting. We compare binary
classification experiments comparing digits 2 and 8, and digits 3 and 8, to illustrate the
difference in performance between an active learning method, and a method that combines
active learning with semi-supervised learning. The semi-supervised learning approach using
Gaussian random fields was previously implemented in [33] using a Bayes risk classifier.
We compare this scheme with our proposed active learning algorithms, considering a binary
classifier for image classification tasks.

3.7.1 Experimental Results

The results below illustrate the comparison in terms of test accuracy rate for our active
learning framework and a Gaussian random field based semi-supervised learning framework.
We compare binary pairs of images 2 and 8, and similarly 3 and 8. Figures 3.15 and 3.16
illustrates our results, implemented on a CNN classifier. For our active learning methods, we
query 10 points at every acquisition iteration.
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Fig. 3.15 Comparing dropout uncertainty active learning algorithms with graph-based semi-
supervised learning algorithm using Gaussian random fields and Harmonic functions. Com-
parison of digits 2 and 8

Fig. 3.16 Comparing dropout uncertainty active learning algorithms with graph-based semi-
supervised learning algorithm using Gaussian random fields and Harmonic functions. Com-
parison of digits 3 and 8
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Furthermore, figure 3.16 illustrates another experiment comparing digits 3 and 8. Our results
in this section shows that in both figures 3.16 and 3.15, our dropout active learning algorithms
outperforms the Gaussian random field based active learning approach, both implemented on
a LeNet5 CNN classifier.

3.7.2 Discussion

The experimental results from figure 3.15 and 3.16 demonstrates that our dropout uncertainty
active learning algorithms outperforms the approach based on constructing graphs using semi-
supervised learning, even though the latter method is implemented with a CNN classifier.
From both figures 3.15 and 3.16, even though the semi-supervised learning based approach
has an initial high accuracy rate, it eventually performs poorly compared to proposed active
learning algorithms. In addition, our active learner Dropout Variation Ratio also has a similar
accuracy rate compared to the Gaussian random field based approach. From the results in this
section, we can conclude that a higher classifier accuracy can be achieved while being data-
efficient using an active learning framework compared to taking a semi-supervised learning
approach. Our results here are demosntrated for two different pairs of binary classification
tasks. Our proposed active learning algorithm is shown to outperform the semi-supervised
learning approach for both the tasks, even though both these algorithms are implemented
with a CNN classifier.

3.8 Comparison with Semi-Supervised Learning

In this section, we summarise all the results of our proposed active learners on the MNIST
image classification task. The experimental results below shows the high classification
accuracy that our proposed active learning algorithms can achieve using a Bayesian CNN
model trained with few labelled samples. Table 3.1 below summarises the results for each
of our active learning algorithms querying up to different numbers of training samples. We
show our results for 100, 1000 and 3000 labelled training samples and show how the test set
accuracy can be improved as we query more points from the pool set based on the information
gain.
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Table 3.1 Summary of Active Learning Experimental Results

Test Accuracy Results on MNIST for 100, 1000 and 3000 labelled training samples
Test accuracy % on 10,000 test samples with
number of used training labels

100 1000 3000

Dropout BALD 85.69 98.43 98.84
Dropout Variation Ratio 87.89 98.36 98.87
Dropout Maximum Entropy 89.55 98.26 98.84
Dropout Least Confident 89.4 97.86 98.87
Dropout Bayes Segnet 83.52 95.87 97.19

Random Acquisition 84.86 94.95 97.31
Best vs Second Best (Max Margin) 79.25 83.95 82.77
Maximum Entropy 73.86 97.70 98.20

Our experimental results show that using only 1000 labelled samples for training, testing on
10,000 samples, we can achieve a high enough classification accuracy, and the increase in
the number of samples from 1000 to 3000 does not bring a significant improvement. This
demonstrates that using active learning with the Bayesian CNN, we can train MNIST image
classification models with only 1000 training samples in order to achive a very high test
accuracy. From table 3.1 below, for 1000 labelled samples, our proposed Dropout BALD
active learning algorithm achieves the best performing classification accuracy of 98.43%.

We further compare our active learning algorithms with other proposed methods mainly
based on semi-supervised learning schemes. We re-emphase that our work is the first of
its kind to use active learning in a deep learning framework to achieve data-efficiency in
image processing tasks. We therefore cannot compare our results with other state of the art
active learning algorithms. The method most similar to us is based on using semi-supervised
learning. Table 3.2 below further summarises the results. Table 3.2 shows that our Dropout
BALD achieves a test error of 1.57% which is close to the current state of the art on MNIST
(using semi-supervised learning) of a test error of 0.84%. From table 3.2, we demonstrate
that our proposed methods can achieve data-efficiency which is quite close to the current
state of the art. We repeat here that our focus is not to achieve the state of the art performance
on MNIST, but to demonstrate that it is possible to use active learning in the deep learning
framework which had not been done before. Table 3.2 illustrates that using Bayesian CNN
implementation on MNIST, we can perform active learning in these settings and compare
our results with semi-supervised learning methods. One important thing to remember is that,
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using active learning we only query few points at every acquisition iteration by estimating
the predictive uncertainty over the pool points using test-time MC dropout. This is a very
easy to implement and efficient approach to obtain predictive uncertainty over the pool set.
In contrast, the semi-supervised learning methods compared here need to take account of all
the images from the pool set which is more expensive compared to simply applying test-time
dropout. Although these approaches included in table 3.2 are not directly comparable with
our results, it is the closest approach to compare in the framework of data-efficiency in deep
learning.

Table 3.2 Comparison between Active Learning and Semi-Supervised Learning methods

Test Error Results on MNIST for 1000 labelled training samples
Test error % on 10,000 samples with number of used training
labels

1000

Semi-sup. Embedding (Weston et al., 2012) 5.73
MTC (Rifai et al., 2011) 3.64
Pseudo-label (Lee, 2013) 3.46
AtlasRBF (Pitelis et al.,2014) 3.68
Semi-Supervised with GAN (Odena et al., 2016) 3.60
DGN (Kingma et al., 2014) 2.40
Virtual Adversarial (Miyato et al., 2015) 1.32

SSL with Ladder Networks (Rasmus et al., 2015) 0.84

Dropout BALD 1.57
Dropout Variation Ratio 1.64
Dropout Maximum Entropy 1.74
Dropout Least Confident 2.14
Dropout Bayes Segnet 4.13

As discussed above, the experimental results in 3.2 shows that using our proposed active
learning method in the deep learning framework for MNIST image classification task, we can
achieve similar levels of performance as that achieved through the use of semi-supervised
learning. More importantly, our algorithm can outperform the approach based on using deep
generative models using an variation auto-encoder [37], and the more recent approaches
based on combining semi-supervised learning with generative adversarial networks [38].
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3.9 Summary of Experimental Results

In this chapter, we have presented our experimental results using the proposed active learning
algorithms based on dropout model uncertainty obtained from Bayesian CNN. Our results
illustrate that the Bayesian CNN model does not overfit in the active learning image clas-
sification setting. We compared our proposed methods with several baseline acquisition
functions typically used in active learning to demonstrate that our method outperforms on
the MNIST dataset by obtaining model predictive uncertainty, which is useful for querying
the most informative points. Furthermore, we demonstrated the importance of uncertainty
estimates in active learning by comparing our proposed acquisition functions with softmax
output of a CNN, and by considering several CNN model architectures and non-linearities
which corresponds to different GP covariance functions for uncertainty estimates. Since
we are the first to consider active learning in a deep learning framework, our results further
demonstrated the importance of computation time in active learning, and we showed that
instead of querying only one point at a time from the pool set, it is more computationally
efficient to query upto 10 image points from the pool set. In order to illustrate that our
uncertainty estimation from dropout is reliable, we further compared our results in a simple
active learning regression task, comparing our method with other approximate Bayesian
and DGPs which can also give model uncertainty. However, we showed that only the MC
dropout model Bayesian approximation can be suitably extended to CNN models unlike
other methods, when considering active learning for image data. We further compared
our proposed active learning method with a graph-based semi-supervised learning scheme
which combines active learning on a binary classification task. Our results show that simply
using active learning, it is more efficient to improve test accuracy, compared to considering
semi-supervised learning approaches. Finally, we showed that using our proposed active
learning algorithms, we can achieve data-efficiency in deep learning, and achieve a test set
accuracy on MNIST data which is very close to the current state-of-the-art. Our method also
outperforms several other recent approaches which are based on semi-supervised learning.

3.10 Approximate Bayesian Neural Networks and Deep Gaus-
sian Processes

In section 2.4.1 we discussed that while there exists other methods such as deep Gaussian
Processes (DGPs) and approximate Bayesian methods for training neural networks, the
dropout training in neural networks as approximate Bayesian inference tool can only be
suitably applied for an extension in CNNs compared to other methods [6]. We repeat that,
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even though other methods such as variational methods, expectation propagation in DGPs
and probabilistic backpropgation can give suitable uncertainty estimates for complex models,
these methods have not yet been shown to be suitably applied to CNN models. These methods
have been shown to give good uncertainty measures in regression tasks, and some have been
shown to work well for low dimensional classification tasks. For example, even though
the approximate expecation propagation scheme for DGPs [29] can give good uncertainty
estimates in regression task, it cannot be suitably applied to high dimensional classification
tasks at all, especially considering inputs such as images for CNN models. In this section, we
compare the methods discussed in section 2.4.1 with the MC dropout scheme [9] in an active
learning regression setting. Our experimental results in this secton are to demonstrate that we
can rely on the dropout uncertainty estimates for use in active learning, tested in a regression
setting. We compare how good the uncertainty estimates are from each of these methods
to be able to perform active learning. Even though the main focus of our work is for active
learning in image data, here we demonstrate these results only to show that the uncertainty
estimates from dropout are reliable similar to those from probabilistic backpropagation or
DGPs. Note that the results here are not to find the best model that gives the best uncertainty
estimate for active learning, but to demonstrate that the uncertainty estimates from MC
dropout in NNs can be relied up. We demonstrate this through a regression task, using the
Boston Housing dataset only. Further from this, one interesting direction for future work
would be extend models such as probabilistic backpropagation [28] for use in CNNs to obtain
a different Bayesian CNN implementation, or perhaps to be able to use Deep GPs for higher
dimensional inputs such as images.
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Fig. 3.17 Comparison of dropout uncertainty with probabilistic backpropagaton, Black-Box
Alpha divergence and Deep Gaussian Process in an active learning regression task

We compare our results with several other methods for obtaining uncertainty estimates.
Figure 3.17 compares the different methods discussed above in an active learning regression
task. We illustrate these results using the Boston Housing dataset, starting with only 20
training datapoints and querying upto 400 training samples. We used a given configuration
for the dropout uncertainty NN model, and compared it with different a values in Black-Box
alpha, probabilistic backpropagation [28] and a readily available implementation of the Deep
Gaussian Process [29]. Even though figure 3.17 shows that the BB-a outperforms all the
other methods, this method has not yet been shown to perform well on classification tasks,
and yet to demonstrate good performance for high dimensional inputs such as images. From
figure 3.17, we want to justify that even though the dropout uncertainty estimate may not be
as good as BB-a for this specific active learning regression setting, the MC dropout Bayesian
approximation is the only available method to be easily extendable to CNNs, and therefore
can be used for active learning in image classification tasks using Bayesian CNNs, while also
avoiding overfitting for the small data regime.



Chapter 4

Conclusions

4.1 Summary and Discussion

In this thesis, we introduced the framework of using active learning for image data using
Bayesian convolutional neural networks. We propose the use of active learning in a deep
learning framework for image classification task which has not been explored before. This
was mainly because CNNs in deep learning were known to require large amounts of training
data. Therefore, previously active learning could not be used as a suitable framework since
the goal of active learning was to reduce the number of training data required while maining
similar levels of classification performance.

In our work, we build on the recently proposed framework of Bayesian convolutional neural
networks. Recent work showed that dropout training in neural networks can be cast as
approximate Bayesian inference in neural networks [9]. This was suitably extended for
proposing Bayesian convolutional neural networks [6], illustrating the significance that
Bayesian ConvNets can be trained with small amounts of training data for images. Further
from this, it was shown from [9] that model confidence and uncertainty can be represented in
a deep learning framework, by using average stochastic forward passes of dropout at test-time.
The predictive distribution obtained by performing Monte-Carlo estimates of dropout can be
used as a measure of uncertainty for image classification tasks.

We combine the framework of Bayesian approximation to dropout in CNN models to ob-
tain uncertainty estimates from a predictive distribution with information theoretic active
learning. We use the model uncertainty from Bayesian CNNs to propose information tho-
ertic entropy based measures for active learning. In this work, we have proposed several
new acquisition functions that can be used in a deep learning setting when using active
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learning. Furthermore, our work have shown that by capturing model uncertainty from the
Bayesian approximation to dropout, we can query the most informative points with which a
deep model such as a CNN can be trained to achieve close to state of the art results on the
MNIST dataset. Our experimental results have shown that our proposed acquisition functions
can easily outperform the acquisition functions typically used in active learning. We have
also justified the importance of a good uncertainty estimate that is required for active learning.

The work in this thesis further illustrates the significance of using active learning in a deep
learning framework for image classification task. Our work is the first to propose active
learning using Bayesian CNN classifiers for image datasets. We illustrate state-of-the-art
predictive accuracy measures on the MNIST dataset using the active learning framework.
Our framework is the first to propose that active learning can be performed with CNN
models for images. We demonstrate that using very few labeled samples for training, we
can achieve data-efficiency in image classification tasks, by querying the most informative
image points by following our proposed acquisition functions. By comparing our results
with semi-supervised learning methods, we can achieve a test set performance which is close
to the current state of the art, but using an active learning algorithm in the deep learning
framework.

4.2 Future Work

This thesis work can open up many opportunities for the use of active learning in the deep
learning framework, towards the overall goal of achieving data-efficiency in deep learning
which is an open research problem. In our work, we only considered the use of dropout
as Bayesian approximation to represent model uncertainty for active learning. Although
other methods for representing uncertainty also exists, they have not yet been shown to
perform well on CNN models. One useful future research direction will be to extend other
approximate Bayesian NN methods onto CNN models to provide a different interpretation
of uncertainty estimates over classification tasks. For future work, it would be useful to
come with a more calibrated uncertainty estimate to further improve the performance and
data-efficiency of active learning algorithms.

Additionally, it would be interesting to see if these methods can be applied to more real
world applications, for example considering health care data such as Brain MRI scans where
labelled data is scarce. These algorithms, if efficiently implemented in real-world data
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settings, then it can have a major impact towards bringing data-efficiency in deep learning.
Furthermore, one possible future direction is to consider video processing tasks using active
learning, or other similar frameworks in computer vision. A lot of recent work considered
the task of image and video caption generation, where these models use attention based
models. It would be interesting to see if active learning can further help towards bringing
data-efficiency in these caption generation systems.

For future research in this framework of applying active learning in deep learning context,
one obvious direction would be to come up with more efficient active learning acquisition
functions. Since active learning involves repeated training of the deep model, it would be
interesting if this repeated training can be avoided to save computation time and resource.
This is also one reason why active learning was not previously considered with CNN models,
since repeated training of CNN models is very expensive. However, for future work, we
would want to come up with a clever way of solving this problem to make active learning
more widely used for deep learning applications such as in computer vision, natural language
processing and speech recognition. Additionally, data-efficiency is still an open research
problem in deep reinforcement learning frameworks, where agents need to be trained with
large amounts of training data (trajectories). It would be interesting to consider the use of
active learning in deep reinforcement learning settings, where agents can be trained with the
most informative trajectories from its experience.
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