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Abstract

Bayesian deep learning is an active area of study where approximate Bayesian inference is
applied to neural architectures. In the past decade, an abundance of inferential methods
have been proposed; none of which have been tested on rigorous nor tailored benchmarks
of statistical modelling.
To address the lack of strong baselines, we investigate the suitability of active learn-
ing to disambiguate the comparison among inferential methods on the grounds that
information-based sequential decision-making scenarios make better use of that for which
Bayesian neural networks are known.
In this work, by the means of an active learning framework we compare several ap-
proximate inference methods, such as variational inference (e.g. mean field variational
inference and variational matrix Gaussian), Markov Chain Monte Carlo methods, and
MC dropout, alongside architectures with different degrees of stochasticity.
We exemplify that the effects of the posterior approximation are better indicated by their
usage in a sequential decision-making scenario.
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1 Introduction: On Active Learning as a Strong Baseline

Motivation Bayesian deep learning is a fairly active field of study where approximate Bayesian in-
ference is applied to neural architectures. Building upon David MacKay’s and Neal
Radford’s pioneering works, the machine learning community took up the idea of riding
the wave of the unrivalled deep learning revolution with great enthusiasm. Combining
neural networks – a ubiquitous presence in every research sub-field that branches off
machine learning – with a principled way of managing uncertainty seemed an attractive
idea.
In the past decade, Bayesian deep learning became a “hyperactive” area in machine
learning research. Year after year, new approximate inference methods, as a result of
either substantial or minor variations of well-established ones, are discussed across con-
ferences and symposia. On the other hand, new proposals are validated empirically,
relying either on machine learners’ good faith or on the good work of reviewers to note
unintentional discrepancies in the experimental settings. However, debugging machine
learning code is a tedious task and flaws can easily slip by the author’s attention. Re-
cently, the inadequately empirical approach, which is at the core of any evaluation in
machine learning, has raised some concerns among the community. The importance of
using identical experimental setups within research groups to assess and contrast the
quality of the Bayesian approximate methods has been reiterated.
The scarcity of rigorous experimental setups impedes progress in this area, and not only
this area. Other machine learning sub-fields have suffered from setbacks due to the lack
of appropriate testing. Among the language modelling community, years of presumed
results did not actually take place as the standard stack LSTM models were not being
tuned properly, and it turned out the performance of the new versions showed no im-
provement upon the old (Melis et al., 2017).
With the intention of addressing this, some recent works have started to adopt as a
common testing ground a popular regression experiment on nine UCI datasets, as well
as more meaningful evaluation metrics such as the predictive log-likelihood, along with
standard ones (Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016). However,
there continue to be differences in the experimental settings, leading to ambiguity and
confusion. Nowadays, the praxis used for evaluating and comparing approximate infer-
ence methods is via supervised learning, where the system passively receives the data
to be trained on. By doing so, we do not leverage what Bayesian neural networks are
really known for: modelling uncertainty! Bayesian neural networks’ most powerful char-
acteristic is not exploited at all, and their ability to interact and influence the world by
knowing what they do not know, is not even considered.

Aims & Scope This work aims to address the scarcity of robust and rigorous baselines, and to introduce
testing grounds where the performance of the model is a proxy of the quality of its uncer-
tainty estimates. We propose the active learning framework as a more rigorous testing
ground for the evaluation of the posterior approximation. We believe that a closed-loop
sequential decision-making environment, in which the model by generating queries se-
lects the most unfamiliar data-points to be added to its training dataset, is worth greater
attention. Active learning application to uncertainty evaluation lies on the grounds that
the informativeness of a data-point goes hand-in-hand with how the model deals with
uncertainty from an information theoretic standpoint.
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This work is inspired by a remarkable attempt by Riquelme et al. (2018). They compare
several Bayesian inference methods in a Thompson Sampling framework over a series
of contextual bandit problems. They show that many approaches that are successful
in a supervised setting (e.g. supervised learning on MNIST) underperform in decision-
making scenarios, hence resulting in sub-optimal exploration. Their analysis paved the
way for using sequential decision-making scenarios as a meaningful ground for comparing
Bayesian inference approximations. Sharing similar intentions and views, we expand on
a different decision-making framework.

1.1 Thesis Contribution

The main contribution of this work is to show active learning’s adequacy when it comes
to comparing different approximate inference methods. We propose the use of active
learning as a “Bayesian toolbox” to gain more meaningful insights into the effect of the
posterior approximation, and ultimately on the quality of uncertainty estimation. We
compare different approximate inference methods: we consider several variational in-
ference algorithms as well as Monte Carlo dropout, a practical Bayesian approximate
inference method, and Stochastic Gradient Langevin Dynamics, one of the most famous
Stochastic Gradient Markov Chain Monte Carlo implementation. Our investigation walks
on a double track: we compare several ways of approximating Bayesian inference in neu-
ral networks and apply these approximations to different neural architectures (e.g. fully
stochastic fully connected models, hybrid models where stochastic and deterministic com-
ponents coexist, etc.). The common thread is active learning. Through active learning,
we define an experimental protocol that is identical for all our inference methods; we
draw comparisons among methods on a level playing field. We do not limit our analysis
to one dataset; instead, we investigate multiple ones with different degrees of complexity,
and we base our findings on a combined analysis. We introduce a new testing bench
for Bayesian neural networks, and present it as an alternative to passive learning on
MNIST1.
In sum, this work shows that posterior approximations are better indicated by their us-
age in sequential decision-making (e.g. querying for active learning). Via active learning,
we ease the comparison among different approximate inference methods.

Thesis
Outline

This work is structured as it follows. In §2, we review the basics of Bayesian infer-
ence, and Bayesian neural networks. From a theoretical standpoint, we discuss the
Bayesian approximate methods we implement, and ultimately contrast. In §3, we assess
our implementations by testing them on MNIST. In §4, we present active learning, and
discuss querying strategies, along with their interpretation of uncertainty and their ap-
plication to Bayesian neural networks. We elaborate on the fact that active learning and
Bayesian deep learning fit well together. In §5, we move to a more in-depth investigation
of approximate inference methods by the means of active learning. In §6, we draw our
conclusions, and comment on future research directions.

1In §3, we define what we mean by passive learning.
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2 Bayesian Neural Networks

A Brief
Historical
Excursus

Initial attempts to integrate flexibility, scalability, and predictive performance – all built-
in characteristics of neural networks – with principled Bayesian modelling of uncertainty
resulted in approaches strictly limited to small architectures (MacKay, 1992; Hinton &
Van Camp, 1993). Further attempts to scale up to deeper Bayesian neural networks
(BNNs) took advantage of restrictive approximations of the posterior distribution. As-
sumptions of independence between weights are often made (Graves, 2011; Blundell
et al.,2015). Variational inference (VI) – a popular technique that recasts intractable
Bayesian integration as an optimisation problem – is first applied to neural networks
by Hinton & Van Camp (1993). Almost two decades later, Graves (2011) proposed a
practical approach with fully factorised Gaussian posteriors, which implemented a simple
but biased gradient estimator. Building upon that, Blundell et al. (2015) introduced
an unbiased gradient estimator, leveraging on the generalised reparametrization trick
presented by Kingma & Welling (2013). To reduce the variance during training, the
local reparametrization trick is introduced (Kingma et al., 2015). More recent works
focus on modelling correlations between weights to capture the posterior dependencies
(Louizos & Welling, 2016; Sun et al., 2017; Bae et al., 2018). By turning to a different
route, Neal (2012) came up with an alternative approximate inference method based on
Hamiltonian dynamics – it will be named Hamiltonian Monte Carlo (HMC). His work
is considerably picked-up and extended-on (Chen et al., 2014), and simplifications of
the initial scheme (quite computationally costly) are suggested (Welling & Teh, 2011).
In 2015, Gal & Ghahramani proposed Monte Carlo dropout as a Bayesian approximate
inference method. More experimental research examines new frontiers such as noisy nat-
ural gradient, scalable Laplace approximation, or functional variational inference (fVI)
(Zhang et al., 2017; Ritter et al., 2018; Sun et al., 2019).

Chapter
Outline

This chapter aims to provide the reader with an overview on the theoretical framework
of approximate Bayesian inference. Throughout this work, well-established approximate
inference schemes are discussed thoroughly. In §2.1, we briefly cover the basics behind
learning with uncertainty estimates. In §2.2, we review the probabilistic interpretation
of neural networks, along with the theoretical motivation for approximate inference.
In §2.3, we discuss approximate inference methods by identifying their strengths and
weaknesses, and by outlining the trades-offs between the expressiveness of the posterior
approximation and the scalability of the method. In §2.4, we present variational inference
methods. We discuss a mean field Gaussian approximation to the posterior distribution
(also known as Bayes By Backpropagation), along with learning more structured matrix
variate Gaussian posteriors. In §2.5, we review Monte Carlo dropout. In §2.6, we discuss
stochastic gradient methods, such as Stochastic Gradient Langevin Dynamics (SGLD).

2.1 Bayesian Modelling

Back to the
“Past”

Back in the 18th century, Reverend Thomas Bayes (1702-1761) showed us how to do in-
ference about hypothesis (i.e. uncertain quantities) from data (i.e. measured quantities).
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Bayes’ rule (in its most straightforward vest) is formulated as:

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)

This process is called inference. But, what does it mean to be Bayesian within a ma-
chine learning framework? Firstly, being Bayesian in machine learning means dealing
with parameters uncertainty. This allows us to obtain distributions of “answers” to a
given question rather than just point estimates.
Given the training inputs X = {x1, . . . ,xN}1 and the corresponding outputs Y =
{y1, . . . ,yN}2, we define a likelihood distribution p(Y|X,ω) as the probabilistic model
that describes the outputs given the inputs under some parameter settings ω ∈ Ω, and
we place a prior distribution over the parameter space p(ω). By invoking Bayes’ rule,
we compute the posterior distribution over the parameter space,

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)

The posterior distribution indicates the most probable model parameters given the data.
The normalisation constant is computed as:

p(Y|X) =

∫
Ω
p(Y|X,ω)p(ω)dω

This is the (conditional) marginal likelihood, also referred to as model evidence. To make
predictions for a new text input x∗, we obtain the predictive posterior probabilities by
integration (i.e. by averaging over all the possible parameters’ configurations). This is
expressed as:

p(y∗|x∗,X,Y) =

∫
Ω
p(y∗|x∗,ω)p(ω|X,Y)dω

The predictive posterior gives the predictive probability of a test input conditioned on
the observables X,Y.

The Elephant in
the Room ...

As a final remark, Bayesian methods heavily rely on integration. We integrate to com-
pute the model evidence; we integrate over the parameter space to evaluate the output
distribution. However, the elephant in the room is that the model evidence is analytically
intractable for neural architectures. Hence, posterior and posterior predictive distribu-
tions are intractable too.
Later in the chapter, we review methods for practical approximate inference in BNNs.

1Throughout this work, we try to be consistent with the following notation: vectors are in bold lower-
case letters (x), matrices in bold upper-case letters (X), and scalars in standard letters (x). Finally, we
use ω to denote a set of variables (e.g. ω = {W1}Li=1).

2We review the Bayesian analysis of a dataset X,Y containing N i.i.d. instances.
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2.2 Knowing What We Do Not Know

“Scale Well,
Work Well”

In past decades, neural models have been extensively applied to a wide range of AI fields
such as computer vision (Rowley, 1999), reinforcement learning (Mnih et al., 2013; Mnih
et al., 2015), speech and text recognition (Bengio et al., 2003), speech synthesis (Oord
et al., 2016), chemical and molecular modelling (Wei et al., 2016), and many others.
Undoubtedly, neural networks popularity comes from the fact that neural architectures
scale well and work well on several grounds. Neural networks are hierarchical and mod-
ular learning machines, whose fundamental units are called neurons (commonly referred
to as nodes). Neurons are arranged in layers, and layers are the building blocks of the
network. By increasing the depth (i.e. stacking layer after layer) neural networks pro-
gressively improve their representational power; this allows us to model more complex
and abstract data features.

A Single Hidden
Layer Neural

Network

We review a single hidden layer fully connected network, as it is a prerequisite for future
discussions. Our input x to the network is a vector with Q elements, and we transform
it with a linear map to a K elements vector. The weight matrix W1 (i.e. a linear map)
and the bias vector b1 (i.e. a translation) operate the affine linear transformation. A
non-linear differentiable activation function σ(·) (such as ReLU3 (Nair & Hinton, 2010)
or TanH) is then applied to xW1 + b. Accordingly, the network output ŷ is obtained
by means of a second linear transformation W2 that connects the hidden layer to the
model output,

ŷ = σ(xW1 + b)W2

where ŷ is a vector of C elements. Therefore, W1 is a Q ×K matrix, W2 is a K × C
matrix, and b is a K dimensional vector. W1, W2, and b are the learnable parameters
in our network. We can easily generalise to L layer network by treating each layer’s
output fWi

i (·) as a non-linear mapping. The output of the network is:

ŷ = fWL
L ( . . . fW1

1 (x))

where each network’s weight matrix Wi has dimensions of Ki−1 × Ki and the bias bi
has dimension of Ki for each layer i = 1, . . . , L. In classification, the network learns a
categorical distribution over the classes. The model output is:

ŷ ∼ Cat(y|fω(x))

where ŷ is a categorical distribution over C classes.
MLE The model parameters are fitted using a maximum likelihood criterion,

WMLE = arg max
W

p(Y|X,W)

= arg max
W

log p(Y|X,W)

Training our network consists of finding an optimal set of weights. The optimisation
is carried out via stochastic gradient descent (SGD), and we assume that p(Y|X,W)
is differentiable w.r.t. the network’s parameters. In classification tasks, the maximum

3In our work, we use rectified linear units relu(x) = max(x, 0).
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likelihood criterion is the same as minimising the cross entropy4. The loss is computed
as the cross entropy between two categoricals y and ŷ,

E(X,Y) = − 1

N

N∑
n=1

log(p̂n,cn)

where p̂c = exp(ŷc)/
∑

c′ exp(ŷc′) and cn is the observed class for the input n.
MAP To avoid overfitting, a prior distribution is introduced, and the resulting training criterion

is maximum a posteriori,

WMAP = arg max
W

log p(W|X,Y)

= arg max
W

log p(Y|X,W) + log p(W)

For instance, placing Gaussian priors results in L2 regularisation, and the objective
function of the single hidden layer network becomes:

L(W1,W2,b) = EW1,W2,b(X,Y) + λ1||W1||2+λ2||W2||2+λ3||b||2

where λi is a scaling parameter. As we train neural networks in the MAP setting, we
still ignore uncertainty about the parameters. In turn, the network might not generalise
well; this results in overconfident predictions in data regimes that are not well covered.
MLE approaches are referred to as frequentist approaches.

A Probabilistic
Perspective:
Vanilla Vs.

Bayesian

In this work, we implement neural models under a probabilistic perspective, where we
deal explicitly with uncertainty by inferring distributions over the model’s parameters.
Compared to a frequentist approach, being Bayesian implies quantifying uncertainty in
a principled way. In vanilla neural networks (i.e. deterministic models), the weights are
represented by single and fixed values (i.e. point estimates). Conversely, BNNs place
prior distributions over the weights, and obtain a posterior via Bayesian learning. We
replace the network’s weights with distributions over the parameters (Bishop, 2006). By
treating the parameters as unknown quantities, the Bayesian framework provides a prin-
cipled way to avoid overfitting and overconfidence. In BNNs, the model prediction is
given by the weighted average of infinitely many predictions based on infinitely many
models drawn from the posterior distribution. Therefore, the network average prediction
tends to generalise well. However, both the posterior over the model parameters and the
predictive posterior in neural architectures are usually intractable as the marginal likeli-
hood is difficult to compute. In the following section, we discuss Bayesian approximate
methods to the posterior distribution.

Notation remark. It is worth bringing to the reader’s attention a minor change in the
notation that applies to the next sections. This is to avoid creating confusion between
deterministic weights matrices and stochastic random weights matrices. From now on in
this chapter, we use W to denote random matrices variables.

4The negative log-likelihood is the sum of the cross entropy over all the instances. Maximising
the likelihood implies minimising the negative log-likelihood, that in turn implies minimising the cross
entropy.
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2.3 The Approximate Inference’s Landscape

MCMC Vs. VI As mentioned, the posterior distribution and the predictive distribution for neural net-
works are intractable. To circumvent this problem, modern Bayesian inference relies on
approximate inference methods. In this work, we focus on two powerful classes of algo-
rithms that have been extensively used: Markov Chain Monte Carlo (MCMC) and VI.
These methods are based on different ways of approaching Bayesian integration. The
general idea behind MCMC is that we draw a finite number of samples from the posterior
distribution. In VI, instead, we approximate the posterior distribution via a variational
distribution (for instance a Gaussian distribution parametrised by variational parameters
θ), and we obtain an approximate posterior distribution that is as close as possible to
the true posterior via the optimisation of a variational objective.
We leave behind the Laplace approximation, as it stands to reason that it leads to severe
under-fitting (Lawrence, 2001), and it does not scale well to deep architecture. For this
reason, it has not been picked-up and extended-on by the community, at least not at a
recent time5. A notorious alternative that is left behind as well, but is worth mention-
ing, and investigating further is Hernández-Lobato & Adams (2015)’s probabilistic back
propagation (PBP). This method makes use of expectation propagation, and improves
upon VI methods. It leads to fast predictions and accurate uncertainty estimates.

Strengths &
Weaknesses

As indicated, in this work we focus on MCMC and VI methods. Both inferential methods
have weaknesses and strengths, and it is an arduous task to identify which one is the best
on a task-by-task basis. However, a good way to ease the comparison is to reason along
two coordinates: the expressiveness of the predictive uncertainty, and the computational
complexity. In terms of expressiveness, MCMC algorithms are proven to converge to the
true posterior. On the other hand, VI methods cannot faithfully match the intractable
true posterior distribution, which is is approximated by a class of distribution and within
this class we identify (via optimisation) the best approximation. Hence, the approximat-
ing variational distribution is restricted to a given class that might not include the true
posterior. Usually, we learn with fully factorised posterior (we refer to it as mean-field
VI). This is a restrictive approximation that leads to under-fitting uncertainty, and it
impedes the learning (Barber et al., 2011). A recent investigation on sequential decision-
making scenarios shows that mean field VI performs poorly (Riquelme et al., 2018).
To address this pitfall, more structured posteriors are proposed. The more flexible and
richer the variational distribution is, the better the performance of the network. How-
ever, more powerful alternatives tend to limit the scalability. In this work, to incorporate
correlations we place a variate matrix Gaussian over the weights’ matrices, as in (Louizos
& Welling, 2016).
To accommodate large-scale machine learning, both methods present a stochastic gra-
dient minibatch-based variation (see §2.6.1 and §2.4.1): Stochastic Gradient Variational
Bayes (SGVB) (Kingma & Welling, 2013), and Stochastic Gradient Langevin Dynam-
ics (SGLD) (Welling & Teh, 2011), a scalable MCMC method. Both algorithms paved
the way to minibatch-based VI and MCMC, respectively. From a practical standpoint,
SGVB is an appealing method due to the fact that the variational distribution is effi-

5More recent works propose a revival of the Laplace inference, and overcome the overfitting via lineari-
sation of the model output around the MAP estimate leading to a Linear Gaussian model (Foong et al.,
2019). To alleviate the lack in scalability, other approaches applied Kronecker-factored Approximate
Curvature (K-FAC) (Ritter et al., 2018).
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ciently optimised. On the other hand, SGLD is computationally expensive as we need to
store a large number of samples. Recently, Monte Carlo dropout has been proposed as a
practical approximate inference method that easily scales up to deep neural architectures
(Gal & Ghahramani, 2016).
In this work, we focus on VI, MC dropout, and SGLD. We review these methods in §2.4,
§2.5, and §2.6, respectively.

2.4 Variational Inference

Preliminaries in
Variational

Inference

As discussed in §2.1, Bayesian modelling relies on integration. A practice that we would
call marginalisation (in Bayesian parlance). VI replaces marginalisation with the optimi-
sation of a variational objective. In other words, we recast inference as an optimisation
problem by defining an approximating variational distribution qθ(ω) parametrised by θ,
such that qθ(ω) is close to the true posterior p(ω|X,X), which we cannot evaluate ana-
lytically. This is achieved by minimising the Kullback-Leibler (KL) divergence (Kullback
& Leibler, 1951) between qθ(ω) and p(ω|X,Y) w.r.t the variational parameters θ,

KL(qθ(ω)||p(ω|X,Y)) =

∫
Ω
qθ(ω)log

qθ(ω)

p(ω|X,Y)
dω ≥ 0

We consider the KL divergence as a measure of closeness between two distributions;
by minimising the discrepancy we reduce the dissimilarity between the two. At pre-
diction, we replace the posterior distribution over the parameter space p(ω|X,X) with
q∗θ(ω), which is the optimum of the optimisation objective. The predictive posterior
p(y∗|x∗,X,Y) is approximated as a variational predictive distribution q∗θ(y

∗|x∗),

p(y∗|x∗,X,Y) =

∫
Ω
p(y∗|x∗,ω)p(ω|X,Y)dω

≈
∫

Ω
p(y∗|x∗,ω)q∗θ(ω)dω , q∗θ(y

∗|x∗)

In practice, we approximate the variational predictive distribution with MC integration,

q̂θ(y
∗|x∗) =

1

T

T∑
t=1

p(y∗|x, ω̂t) −−−−−→
T −→∞

∫
Ω
p(y∗|x∗,ω)qθ(ω)dω

≈ p(y∗|x∗,X,Y)

where T is the number of MC samples of ω̂t ∼ qθ(ω).
ELBO In VI methodology, we minimise the divergence of qθ(ω) to p(ω|X,Y) by maximising a

variational lower bound LVI(θ) (a.k.a. evidence lower bound (ELBO) (Neal & Hinton,
1998; Jordan et al., 1999)). As shown by Kingma & Welling (2013), a variational lower
bound that can be maximised with respect to the variational parameters θ is derived on
the (conditional) marginal log-likelihood (i.e. log model evidence). This is formalised as:

log evidence = log p(Y|X) = KL(qθ(ω)||p(ω|X,Y)) + LVI(θ)

The bound is equal to the (conditional) marginal log-likelihood as the approximate pos-
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terior and the true posterior match6. Leveraging the fact that the KL divergence is
non-negative, it follows that:

log p(Y|X) ≥ log p(Y|X)−KL(qθ(ω)||p(ω|X,Y))

=

∫
Ω
qθ(ω)log p(Y|X)dω −

∫
Ω
qθ(ω)log

qθ(ω)

p(ω|X,Y)
dω

=

∫
Ω
qθ(ω)log

p(Y,ω|X)

qθ(ω)
dω

=

∫
Ω
qθ(ω)log p(Y|X,ω)dω −

∫
Ω
qθ(ω)log

qθ(ω)

p(ω)

= Eqθ(ω)[log p(Y|X,ω)]−KL(qθ(ω)||p(ω)) , LV I(θ)
= Eqθ(ω)[log p(Y|X,ω)] + H[qθ(ω)]−H[qθ(ω), p(ω)]7

We make the modelling assumption p(ω|X) = p(ω) as ω is a sufficient statistic in our
model. The lower bound can be separated into two sub-functions. The first term in the
RHS is the expected log-likelihood, which cannot be computed analytically. The second
term is the KL divergence that can be computed in closed-form. In fact, for certain
choices of qθ(ω) and p(ω) the KL is tractable. As we reason on BNN approximations,
the choice of variational family is important, and the success of VI relies on it. This is a
matter for further discussion in §2.4.2.
Alternatively, we can derive the variational lower bound by starting from the (condi-
tional) marginal log-likelihood,

log p(Y|X) = log

∫
Ω
p(Y,ω|X)

qθ(ω)

qθ(ω)
dω

≥
∫

Ω
qθ(ω)[log p(Y,ω|X)− log qθ(ω)]dω

= Eqθ(ω)[log p(Y,ω|X)− log qθ(ω)] , LV I(θ)
= Eqθ [log p(Y,ω|X)] + H[qθ(ω)]

We use the Jensen’s inequality8 to carry out our derivation. This can be also rearranged
to the canonical form:

log p(Y|X) ≥ Eqθ(ω)[log p(Y|X,ω)]−KL(qθ(ω)||p(ω))

If log p(Y|X) is constant w.r.t θ, maximising the LVI(θ) w.r.t θ is the same as minimising
KL(qθ(ω), p(ω|X,Y)). The minimisation of the KL divergence w.r.t. the variational
parameters θ results in an approximating distribution that is the closest to the true

6KL(q||p) = 0 if the two distributions q and p are identical.
7We decomposed the KL into entropy and cross-entropy given that KL(q||p) = H[q, p]−H[q].
8If αi are positive numbers which sum to 1, and f is a concave function, the Jensen’s inequality states

that f(
∑n
i=1 αixi) ≥ (

∑n
i=1 αif(xi))
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posterior. In practice9, our minimisation objective is:

KL(qθ(ω)||p(ω|X,Y)) ≈ −
∫

Ω
qθ(ω)log p(Y|X,ω)dω + KL(qθ(ω)||p(ω))

= −
N∑
n=1

∫
Ω
qθ(ω)log p(yn|xn,ω)dω + KL(qθ(ω)||p(ω))

Our attempt at fitting an approximate posterior by maximising the variational lower
bound results in a distribution that both explains well the data through the expected
log-likelihood term and does not overfit as the KL term acts as a regulariser10.
A naive approach to optimising the variational lower bound is via Monte Carlo sam-
pling on both the expected log-likelihood and the KL11. Thus we arrive at a tractable
variational objective,

LVI(θ) ≈
1

T

T∑
t=1

log p(Y|X, ω̂t)− [log qθ(ω̂t)− log p(ω̂t)]

with ω̂t ∼ qθ(ω).
A Naive

Approach
Taking the gradients of the variational objective LV I(θ) is not as easy as it seems.
As proposed by Paisley et al. (2012), we can make a stochastic approximation of the
gradients through a (naive) unbiased MC estimator,

∇θEqθ(ω)[f(ω)] = ∇θ
∫

Ω
f(ω)qθ(ω)dω

=

∫
Ω
f(ω)∇θqθ(ω)dω

=

∫
Ω
f(ω)qθ(ω)∇θlog qθ(ω)dω

= Eqθ(ω)[f(ω)∇θlog qθ(ω)]

≈ 1

T

T∑
t=1

f(ω̂t)∇θlog qθ(ω̂t)

with ω̂t ∼ qθ(ω). We use the identity ∇θqθ(ω) = qθ(ω)∇θlog qθ(ω). It follows that
∇θEqθ(ω)[f(ω)] = Eqθ(ω)f(ω)∇θlog qθ(ω). This estimator exhibits high variance, and
Paisley et al. (2012) have proved it to be impractical for our purposes.

2.4.1 Practical Variational Inference

Computing the
Gradients

As discussed in §2.4, we need to build a MC estimator of the variational lower bound.
Computing its exact gradients w.r.t. θ is unfeasible. In a not-ideal circumstance, op-
timisation methods have to deal with stochastic gradient estimates. We know that the

9Maximising the variational lower bound is carried out as minimising the negative evidence lower
bound.

10The KL term is also interpreted as the complexity loss. We maintain the simplicity of the prior.
11In the previous derivations, we assume the KL is tractable and we can compute it in closed-form.

For generality, instead, we assume that the KL divergence is also intractable.
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convergence of SGD heavily depends on the variance of the gradient estimator12. If the
gradient w.r.t the variational parameters is too large, in practice the optimisation will
fail to converge, or it will take an impractical amount of time. The bias and variance of
the estimator play a crucial role in the stochastic optimisation. The path-wise gradient
estimator (Kingma & Welling, 2013; Rezende et al., 2014; Titsias & Lázaro-Gredilla,
2014), known as the generalised parametrization trick, is the one that has been used the
most within the BNN community, as well as in this work. The reparametrization trick
can be applied to continuous random variables drawn from probability densities – in our
scenario qθ(ω) – that can be reparametrised as:

Eqθ(ω)[f(ω)] −−→ Eq(ε)[f(T (θ, ε))]

where T (θ, ε) is a differentiable θ-dependent transformation (Jankowiak & Obermeyer,
2018).

Stochastic
Minibatch

Variational
Inference

Later in this chapter, we discuss how VI scales to large datasets. That implies how to
adapt VI to stochastic minibatch-based backpropagation. In minibatch stochastic op-
timisation, for each epoch the training dataset is randomly split into M equally-sized
batches, and the gradient update is averaged over the elements in each batch. In this
regard, Kingma & Welling (2013) and Rezende et al. (2014) propose an unbiased differ-
entiable minibatch-based MC estimator. More insights will be given below.

The Reparametrization Trick and Stochastic Optimisation Kingma et al. (2015)
introduce a practical estimator w.r.t θ by reparametrising the variational posterior qθ(ω)
by means of a differentiable transformation g(θ, ε) with ε ∼ p(ε). Under mild conditions,
they show that it is possible to express all model random variables ω as ω = g(θ, ε)13,
where ε is an auxiliary variable drawn from an independent marginal distribution p(ε)
(Kingma & Welling, 2013). The reparametrization trick allows us to use backpropaga-
tion. We are able to rewrite the MC estimator of an expectation w.r.t a distribution that
is parametrised by θ, to be differentiable w.r.t θ. Indeed, we build a MC estimator of an
expectation w.r.t. a probability distribution parametrised by θ, such that:

Eqθ(ω)[f(ω)] = Ep(ε)[f(g(θ, ε))] ≈ 1

T

T∑
t=1

f(g(θ, ε̂t))

with ε̂t ∼ p(ε). We apply this approach to the variational lower bound,

L̂(θ)V I =

T∑
t=1

log p(yn|xn,ωt = g(θ, εt))−KL(qθ(ω), p(ω))

with ε̂t ∼ p(ε). To accommodate the need for an estimator of the variational lower
bound based on minibatches, Kingma & Welling (2013) propose an unbiased differen-

12Robbins & Monro (1951) prove that stochastic gradient ascent converges to a local optimum given
an appropriately decreasing step size. However, in practice, the speed of convergence depends on the
gradients’ variance. Empirically, it is shown that a too large variance results in impractically slow
convergence.

13wi,j = g(θi,j , εi,j)
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tiable minibatch-based MC estimator of the expected log-likelihood,14

LVI(θ) ≈ L̂VI(θ) =
N

M

M∑
m=i

log p(Ym|Xm,ω = g(θ, ε))−KL(qθ(ω), p(ω))

where {Xm,Ym}Mm=1 are M samples randomly drawn from the dataset X,Y containing
N samples, and ε is the random noise vector. The optimisation procedure is reported in
Algorithm 1.

Algorithm 1 Stochastic Gradient Variational Bayes (SGVB)

Given our observables X,Y
Initialise parameters θ
repeat
Xm,Ym ←− Randomly sampled minibatch of M data-points (drawn from full dataset)
ε←− Randomly sampled variables from noise distribution
g←− ∇θL̂VI(θ) (Gradients of the minibatch estimator w.r.t. θ)
Update variational parameters θ (e.g. SGD)
until convergence of parameters (θ)
return θ

As shown by Kingma & Welling (2013)

Var[log p(Ym|Xm,ω)] = N2
( 1

M
Var[Lm] +

M − 1

M
Cov[Lm, Ll]

)
where Li is short notation for log p(ym|xm,ω = g(θ, εm)) which is the contribution to
the log-likelihood of the m-th data-point.
It is inferred that the contribution to Var[log p(Ym|Xm,ω)] by the covariance does not
scale with M. The Var[Lm] contribution to the estimator variance is inversely propor-
tional to the minibatch size. In other words, the estimator variance is dominated by
the covariance term. This is preventing us from decreasing the estimator variance by
increasing the minibatch size. As suggested by Kingma et al. (2015), a way to force the
covariance term to be zero is to sample separate Wi for each data-point in the minibatch.
This is impractical.

The Local Reparametrization Trick Kingma et al. (2015) propose a new reparame
trization trick that leads to a statistically efficient gradient estimation. This is obtained
by enforcing the covariance term to be zero by directly sampling random pre-activation
functions, instead of weight matrices Wi. This trick is known to translate global uncer-
tainty into local uncertainty (Kingma et al., 2015).

A Simple
Example

Let’s consider the single hidden layer fully connected network – its simplicity turns out to
be useful again. However, this time we learn with a fully factorised Gaussian posterior,

qθ(wj,k) = N (wj,k;µj,k, σ
2
j,k) ∀wj,k ∈W{1,2}

14For simplicity, again, we assume that the remaining term (i.e. KL divergence of the variational
posterior from the prior) is computed analytically/deterministically; otherwise a similar procedure is
carried out.
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Given a M × Q input matrix X, a Q × K weight matrix W1, which maps the input
space to the hidden space, and a K × C matrix W2, which maps the hidden space to
the output space, we denote by A = XW1 the input feature matrix to the next layer
from the input below15, and by B = AW2 the pre-activation matrix16. The conditional
posterior for the pre-activation is a Gaussian as well,

qθ(bm,k|A) = N (bm,k;µ
act
m,k, (σ

act
m,k)

2) ∀bm,k ∈ B{1,2}

where the mean and the variance are defined as:

µact
m,k =

∑
j

am,jµj,k

(σact
m,k)

2 =
∑
j

a2
m,jσ

2
j,k

This implies sampling the pre-activations as:

bm,k = µact
m,k + σact

m,k · ηm,k

where ηm,k ∼ N (0, 1).

2.4.2 Variational Inference Algorithms

Several VI approaches branched off Graves (2011). We discuss the technicalities behind
the two that are under scrutiny in this work. We start with the work of Blundell et al.
(2015) that led to the “ubiquitous method” known as Bayes By Backpropagation. Then,
we review the work of Louizos & Welling (2016) that opened up towards learning with
more structured posteriors.

Bayes By Backpropagation (BBB) A common VI method is Bayes By Backprop-
agation (Blundell et al., 2015). The name comes from the fact that we learn probability
distributions over the weights via a backpropagation-compatible approach.

Mean Field
Approx.

Blundell et al. (2015) approximate the true posterior of a Bayesian model with a fully
factorised distribution,

qθ(ω) =
L∏
i=1

qθ(Wi) =
L∏
i=1

Ki∏
j=1

Ki+1∏
k=1

qµi,j,k,σi,j,k(wi,j,k) =
∏
i,j,k

N (wi,j,k;µi,j,k, σ
2
i,j,k)

Here, we imply full independence between weights. They reparametrise the weights of
each fully connected layer,

wj,k = µj,k + σj,k · εj,k
= µj,k + log(1 + exp(ρj,k)) · εj,k

15In the case of the first layer (i.e. input layer), A would equal to X and B = XW1
16To simplify our notation we are omitting the non-linearity function σ(·) and the bias.

13



where µj,k and ρj,k are the variational parameters θ, and εj,k is drawn from a standard
normal distribution N (0, 1). We reparametrise σj,k to enforce its positivity through a
Softplus function17. This allows an unconstrained optimisation of the variance. The
proposed reparametrization inevitably results in doubling the number of the parameters.
The reparametrised variational objective is:

log p(Y|X) ≥ LVI(θ) = Ep(ε)

[
log p(Y|X,ω)− log

qθ(ω)

p(ω)

]
VFE which is usually formulated as variational free energy FVFE(θ) (Yedidia et al., 2001;

Friston et al., 2007). Analogously, the latter is computed using MC estimates:

F̂VFE(θ) ≈ 1

T

T∑
t=1

log qθ(ω̂t)− log p(ω̂t)− log p(Y|X, ω̂t) = −L̂V I(θ)

with ω̂t ∼ qθ(ω).

Variational Matrix Gaussian (VMG) As discussed in §2.3, learning with fully fac-
torised distribution omits correlations between weights. This is a restrictive approxima-
tion. On the other hand, variational matrix Gaussian (VMG) allows the learning of input
and output covariances for each network’s layer18. The matrix variate Gaussian (Gupta
& Nagar, 2018) is a distribution over random matrices, that it is fully parametrised by
a R × C mean matrix M, a R × R covariance (among rows) matrix U, and a C × C
covariance (among columns) matrix V,

p(W) = NM(M,U,V)

=
exp(−1

2
tr[V−1(W −M)TU−1(W −M)])

(2π)np/2|V|n/2|U|n/2

We can recast the matrix variate distribution as a multivariate Gaussian distribution
(Gupta & Nagar, 2018):

p(vec(W)) = N (vec(W); vec(M),V ⊗U)

where vec(·) is an operator that vectorises the matrix by stacking the columns into a single
vector. The resulting covariance matrix is given by Kronecker product (⊗) between V
and U. Similarly, we derive a lower bound on the marginal likelihood,

LV I(θ) = Eqθ(ω)[log p(Y|X,ω)]−KL(qθ(ω)||p(ω))19

17Softplus(x) = log(1 + exp(x))
18In §2.4.2 we use a fully factorised posterior, that implies we estimate a variance for each single weight,

instead, by learning with a variate matrix Gaussian we estimate a variance over each row and columns
of the weight matrix.
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We reparametrise the expected log-likelihood as:

Eqθ(ω)[log p(Y|X,ω)] ≈ 1

T

T∑
t=1

log p(Y|X, ω̂t)

where ωt ∼ qθ(ω). Each network weight matrix is sampled as Ŵi,t = M + U
1
2 ÊtV

1
2

and Êt ∼MN (0, I, I). As discussed in §2.4.1, the local reparametrization trick leads to
a more efficient estimator. The local reparametrization trick can still be applied in this
context due to the fact that the inner product between a matrix Ai and a matrix variate
Gaussian Wi is still a matrix variate Gaussian (Gupta & Nagar, 2018). As in §2.4.1,
Bi = AiWi is distributed as:

p(Bi|Ai) =MN (AiM,AiUAT
i ,V)

Sampling from this distribution is inefficient due to the fact that we need to compute
the square root of the row covariance AiUAT

i . Louizos & Welling (2016) propose an
efficient method by sampling from the marginal distribution (i.e. diagonal) over the
pre-activations,

p(bi|ai) = N (aiM, (aiUai)
T �V)

Again, bi conditioned on ai follows a multivariate Gaussian distribution. Louizos &
Welling (2016) adopt the concept of pseudo-data from Snelson & Ghahramani (2006)
and condition each pre-activation variable on pseudo-inputs Ã and pseudo-outputs B̃
such that:

p(bi|ai, Ã, B̃) = N (aiM + σT12Σ
−1
11 (B̃− ÃM), (σ22 − σT12Σ

−1
11 σ12)� V )

Each covariance term is estimated as:

Σ11 = ÃUAT σ12 = ÃUaTi σ22 = aiUaTi

This allows a more efficient sampling of the network pre-activations.

19Refer to the Appendix A for a derivation of the KL-divergence between two matrix variate Gaussians.
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2.5 Monte Carlo Dropout

Gal & Ghahramani (2015) re-interpret dropout (Srivastava et al., 2014) as an approxi-
mate inference method where the approximating distribution is a mixture of two Gaus-
sians with small variances, and one of the two Gaussians has mean equal to zero.

Dropout
as SRT

Dropout is a stochastic regularisation technique20 (SRT) where a proportion of the net-
work weights are zeroed during the training. Briefly, we review dropout on a single
hidden layer neural network. Firstly, we sample from a Bernoulli distribution with some
parameters pi ∈ [0, 1] two vectors z1 and z2 of dimensions Q and K, respectively. Hence,
the output of the first layer is obtained by σ((x � z1)M1 + b), which is equivalent to
σ(x(diag(z1)M1)). In this operation we “drop-out” (i.e. set to zero) elements in x with
1 − p1 probability. Analogously, this is repeated for the output layer. Accordingly, the
output of the single hidden network is

ŷ = σ(x(diag(z1)M1) + b)(diag(z)M2)

We rearrange the latter as ŷ = σ(xW1 + b)W2 where W1 and W2 are random variable
realisations of the network weights. At test time dropout does not take place21.

2.5.1 Monte Carlo Dropout as Bayesian Inference

MC Dropout Dropout can be interpreted as a practical Bayesian inference method. As in §2.4, a
variational distribution qθ(ω) is defined, and the KL divergence is minimised,

KL(q(ω)||p(ω|X,Y)) ∝ −
∫

Ω
q(ω)log p(Y|X,ω)dω + KL(q(ω)||p(ω))

where qθ(ω) is a Bernoulli variational approximation for each layer i in the network

Ŵi = Mi · diag([b̂i,j ]
Ki
j=1)

with b̂i,j ∼ Bernoulli(pi)
22 and Mi are the variational parameters θ. Dropout is applied

before each layer. The dropout minimisation objective is given by (Gal & Ghahramani,
2016)23:

L(θ, p) = − 1

N

N∑
n=1

log p(yn|xn, ω̂t) +
1− p
2N
||θ||2

with ω̂t = {Ŵi,t}Li=1 ∀Ŵi ∼ q∗θ(ω), and θ = {Mi}Li=1. At test time, we also perform
dropout to sample from the variational distribution, and we approximate the predictive

20Dropout is a popular regularisation technique introduced to prevent overfitting and co-adaptation
between weights.

21This is true for regular dropout, in MC dropout we do perform dropout at testing time to sample
from the variational distribution.

22If we sample zi,j from a Gaussian distribution N (1, α), similarly we recover Multiplicative Gaussian
Noise (Kingma et al., 2015).

23The KL term is approximated as L2 regularisation over the weights (Gal & Ghahramani, 2016,
Appendix, section A).
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posterior using MC integration:

p(y∗|x∗,X,Y) ≈
∫

Ω
p(y∗|x∗,ω)q(ω)dω

≈ 1

T

T∑
t=1

p(y∗|x∗, ω̂t)

with ω̂t ∼ q∗θ(ω), and T is the total number of stochastic forward passes on the same
input (e.g. each forward pass corresponds to sampling masked model weights).

2.6 Sampling Methods

An alternative to VI is to use Stochastic Gradient Markov Chain Monte Carlo (SG-
MCMC). Hamiltonian Monte Carlo (Neal, 2012) is the father of these methods. It
is still impractical as it employs the Metropolis accept-reject step and computes the
log-likelihood over the entire dataset (Riquelme et al., 2018). Different methods have
been developed to adapt Hamiltonian Monte Carlo to stochastic gradient minibatch
updates (Chen et al., 2014). In this work, we review Stochastic Gradient Langevin
Dynamics (SGLD), one of most common SG-MCMC methods. Langevin methods are
a simplification of Hamiltonian dynamics24. Originally, Langevin methods are derived
as the discretisation of a stochastic differential equation whose equilibrium happens to
conform to the posterior distribution (Welling & Teh, 2011),

dωt =
1

2
∇ωlog p(ωt) + dηt

where ηt is the standard Brownian motion. More complex Hamiltonian approaches (e.g.
enhancing the dynamics by momentum variables) do not scale well with large datasets.
Welling & Teh (2011) suggest a simple modification of SGD where they inject a controlled
amount of noise to the gradients’ updates25 such that the model’s parameters converge to
the posterior distribution. Again, we use a MC approximation of the posterior predictive
by generating a set of samples {ω̂t} “collected” from the trajectory. It has been proved
that MCMC methods (Robert & Casella, 2013) converge to the true posterior for a
decreasing step-size εt

26 (Teh et al., 2016). This is true if the Robbins and Monro
conditions are satisfied (Robbins & Monro, 1951) despite the fact that we omit the
accept-reject tests27,

∞∑
t=1

=∞ ,

∞∑
t=1

ε2t <∞

24Langevin methods only require a single leapfrog step. This simplifies the inference considerably, and
allows for larger dataset.

25SGLD only requires the gradient updates on minibatches.
26Empirically, it has been shown that a fixed step-size converges faster, and leads to better performances

(Nagapetyan et al., 2017). In this work, we decrease the step-size as in (Li et al., 2016)
27That implies all the states visited by the SGLD’s update rule are accepted.

17



2.6.1 Stochastic Gradient Langevin Dynamics (SGLD)

An Enhanced
SGD

In practice, Stochastic Gradient Langevin Dynamics is similar to a popular class of
stochastic optimisation methods (Robbins & Monro, 1951), where the gradient update
on subsets of the dataset is used to approximate the true gradient over the entire dataset.
For instance, SGD update rule is:

∆ωt = εt

(
∇log p(ωt) +

N

M

M∑
m=1

∇log p(ym|xm,ωt)
)

Unlike SGD, we inject noise in the gradient update to encourage exploration. Thanks to
the noise, the parameters do not collapse to the MAP mode; instead, the trajectory of
the parameters converges to the full posterior (Welling & Teh, 2011).

SGLD The SGLD update rule is:

∆ωt =
εt

2

(
∇log p(ωt) +

N

M

M∑
m=1

∇log p(ym|xm,ωt)
)

+ ηt

with ηt ∼ N (0, εt). As aforementioned, the full posterior, as well as the predictive poste-
rior at test time, is approximated through ensembling28. A burn-in period is considered
before we start collecting samples. MCMC needs few iterations (i.e. burn-in) to ap-
proach for instance a mode of the target distribution. By injecting uniform noise in all
parameters’ directions, we hinder the optimisation process (Marceau-Caron & Ollivier,
2017). This results in slow mixing.

p-SGLD Li et al. (2016) refine the method introducing a diagonal preconditioning matrix G(ω)
(p-SGLD). Li et al. (2016) integrate the adaptive preconditioner from the RMSProp
optimisation scheme with SGLD. At time t, the update rule is:

∆ωt =
εt

2

[
G(ωt)

(
∇log p(ωt) +

N

M

M∑
m=1

∇log p(ym|xm,ωt)
)]

+ G
1
2 (ωt)ηt

with ηt ∼ N (0, εt). We update the preconditioner sequentially, and use only the current
gradient information,

G(ωt+1) = diag
(
1� (λ1 +

√
V (ωt+1))

)
V(ωt+1) = αV(ωt) + (1− α)ḡ(ωt;Xm,Ym)� ḡ(ωt;Xm,Ym)29

where ḡ(ωt;Xm,Ym) = 1
M

∑M
m=1∇log p(ym|xm,ωt) is the empirical mean of the gra-

dient of a minibatch Xm,Ym, and α ∈ [0, 1]. The parameter λ controls the extreme of
the curvatures, and α balances the contribution of past and current weights. By scaling
both the injected noise and the gradients’ updates, we fine-tune the step-size along each
parameter’s direction.

28This is an enormous drawback for this approach that scales so well on large datasets. Ensembling
creates additional memory cost and computational complexity.

29� and � represent element-wise matrix product and division, respectively.
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3 Preliminary Investigations

In this chapter, we investigate several approximate inference methods and network ar-
chitectures. We use passive learning1 on the MNIST dataset: we train on the whole
dataset, and do not query any data-point, as the model is not actively involved in the
selection of the dataset it is trained on.
The chapter is structured as it follows. In §3.1, we report our preliminary investigations of
several approximate inference methods, alongside insights into their implementation. In
§3.2, we discuss 2 evaluation metrics that we consider in our analysis, alongside accuracy.
In §3.3, we comment our results and on the need for a more principled banchmarking
practice, such as active learning.
The theoretical framework needed to train, predict, and sample from the networks is
thoroughly described in the previous chapters (see §2). However, in this section we also
take the opportunity to discuss additional technical insights along with our results. All
the implementations are in Pytorch, and are compatible with GPU processing.

3.1 Investigating Approximate Inference Methods via Passive Learning

Passive
Learning on

MNIST

The purpose of this section is to report the model performances for the chosen ap-
proximate inference methods, as well as providing benchmarks for further analysis and
substantiating our claim for a more expressive benchmark. Ultimately, as mentioned
before, this section gives detailed insights of our implementations: we describe several
algorithmic design principles that we considered throughout our investigations.

Our
Methodology

Overall we investigate 3 inference methods (VI, MC dropout and SGLD), and 2 archi-
tectures: fully stochastic fully connected networks and Neural Linear models (see Table
2). A description of our experimental setups follows. We split the dataset into 3 subsets:
a training set, a validation set, and a test set. Each set contains 40k, 10k and 10k digits,
respectively. The chosen resolution of each digit is set to 32×32. The training set and
validation set are pre-processed by cropping the digits at a random location. This step is
included as regularisation strategy. Empirically, we noticed that the learning is hindered
if no pre-processing is done. The model tends to over-fit the training set, and this leads
to a loss in classification accuracy on the validation set, and ultimately on the test set.
The models are trained for 100 epochs, unless stated otherwise. For all models presented,
the optimisation is done with SGD (Kiefer et al., 1952), and a batch size of 256 is used.

Our Findings We report our findings in Table 2. To accommodate for the stochasticity in the train-
ing, the results shown in Table 2 are obtained by averaging over 5 distinct runs. As a
benchmark, we report test accuracy of the fully connected network with 2 hidden layers
trained in (Simard et al., 2003). We also report the performances of a fully connected
network that applies dropout as a regularisation strategy, as in (Srivastava, 2013). An
analysis on preliminary findings is drawn up in §3.3.
An excursus on the implementations reported in Table 2, along with their technicalities
follows below.

1We use passive learning as the opposite of active learning.
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3.1.1 Variational Inference Models

Variational
Inference &

Sharing
Information

among Weights

As discussed in §2.4, Variational inference (VI) approaches aim to approximate the poste-
rior by finding a distribution within a tractable family that minimises the KL divergence
to the posterior (Kingma et al., 2015). These approaches solve an optimisation prob-
lem. The main criticism of variational approaches is that they underestimate uncertainty
(Bishop, 2006), which could lead to a sub-optimal way of querying data-points (in active
learning parlance). We implement Bayes By Backpropagation and variational matrix
Gaussian (VMG) algorithms, which correspond to the VI method of (Blundell et al.,
2015), and of (Louizos & Welling, 2016), respectively. As mentioned in §2.4, it is com-
mon to approximate the posterior by a mean field approximation. In this scenario, each
neural network’s weight is modelled via an independent Gaussian distribution. The rea-
son we implement VI methods with matrix variate Gaussian posteriors is to consider the
correlations among weights.

Mean Field Approximation All the methods named Bayes By Backpropagation (see
Table 2) implement the mean field approximation, and it is a stochastic gradient VI al-
gorithm based on the work of (Blundell et al., 2015).

Generalised
Reparame-

trization
Trick

Optimisation is efficiently performed by using the generalised reparametrization trick
to obtain an unbiased estimate of the ELBO’s gradient with respect to the variational
parameters. The reparametrization trick is used, and the forward pass is performed by
instantiating the weights’ matrices through sampling from the respective distributions.
In Bayes By Backpropagation (Local Reparametrization), the local reparametrization
trick presented in (Kingma et al., 2015), is implemented. In this case, we end up sam-
pling pre-activation functions. The local reparametrization implementation computes
the KL divergence term in closed-form, as we use an isotropic Gaussian centred at 0
with unit variance.

Variance
Initialisation

A common issue encountered in training when introducing model uncertainty is that
the optimisation process would diverge. Here, we define the posterior approximation on
the weights to be a fully factorised Gaussian, i.e. qθ(wj,k) = N (µj,k, σ

2
j,k). In order

to ensure convergence in training, variance initialisation has to be carefully considered.
The variational approximation for each layer is initialised as it follows: the weight means
µj,k ∼ N (0, 0.05), along with the weight standard deviations that are parametrised as
σ = log(1 + exp(ρ))2, and ρj,k ∼ N (−4, 0.05), ∀(µi,j , ρj,k) ∈W. There are few reasons
behind the success of the proposed initialisation. We initialise to such a small variance,
due to the fact that the variance of the weights is directly proportional to the variance
of the gradient estimator. A larger variance in the gradient estimator would cause the
algorithm to diverge. By reducing the variance in the initialisation, we reduce the vari-
ance of the gradient estimator, and we favour convergence. Another important aspect
that needs to be addressed is that as long as the variances are small, we are performing
MAP estimation. Or at least, we are learning similarly to MAP estimation. At first,
the network experiences MAP behaviour, and as the optimisation proceeds, the variance
is encouraged to grow in order to minimise the KL divergence. In fact, as the weight
variances are so small, the variational approximation approaches a delta function around

2Refer to §2.4 for the reason behind the variance reparametrization through the parameter ρ and for
the use of a Softplus function.
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the means. This leads to the data being well-fitted. It is worth wondering whether that
leads to very limited coverage of the posterior, resulting in poor uncertainty estimates.
In Table 1, we show that a less conservative variance initialisation leads to worse results
in terms of accuracy, and also to a less calibrated model.

Log ρ Initialisation

Bayes By Backpropagation U(-2, -3) N (-4, 0.05)

Negative Predictive LL 0.0848 ± 0.0047 0.0317 ± 0.0040
Error (%) 2.5680 ± 0.0873 0.9140 ± 0.0531

Expected Calibration Error 0.0113 ± 0.0010 0.0061 ± 0.0004

Table 1: Average and std. test predictive log-likelihood (LL), test error, and test
expected calibration error (ECE)(with M = 10 bins) for different variance initialisation
in Bayes By Backpropagation using an isotropic Gaussian likelihood. A fully connected
network of 2 hidden layers with 400 units each is used. Results are obtained averaging
over 5 distinct runs.

Priors on
Weights

In the case of Bayes By Backpropagation3 both the components of the ELBO are esti-
mated using the MC approximation, as both can be rewritten as an expectation over the
variational posterior. We consider 2 priors, an isotropic Gaussian centred at zero and
with unit variance, along with a Gaussian Mixture Model (GMM), where each density
has zero mean, and the standard deviations of the 2 mixture components, σ1 and σ2,
are 0.135 and 0.001, respectively. The scaling factor, π, is 0.5. Our prior resembles a
spike-and-slab (Mitchell & Beauchamp, 1988). Here, we do not optimise the parameters
of the prior. Empirically, it has been shown that it yields worse results (Blundell et al.,
2015). Bayes By Backpropagation, when using priors, and estimating the ELBO with
the MC approximation is trained longer, 200 epochs.

Deep Matrix Variate Bayesian Networks This VI algorithm needs extra attention
on the parameters’ initialisation, and on the assumptions we operate under. We initialise
the mean M, the covariance matrices U (among-row) and V (among-column) to the
scheme proposed in (He et al., 2015). In order to have a computationally tractable model,
we approximate the covariance with a diagonal matrix, hence we assume independent
rows and columns – we are not fitting a full matrix variate Gaussian posterior as in
(Zhang et al., 2017). Overall, this results in a per-layer parametrization that requires
less learnable parameters compared to a simple fully factorised Gaussian posterior (see
Table 3). Moreover, even if there are less parameters to learn, we do allow “information
sharing” between the weights due to the correlations (see §2.4.2). We parametrised
the prior of each weight matrix p(W) to a zero mean and unit variance matrix variate
GaussianMN (0, I, I). As in (Hernández-Lobato & Adams, 2015), we divide the input to
each layer by the square root of its dimensionality to keep the scale of the pre-activations
independent of the incoming connections. We incorporate pseudo-inputs to allow a more
efficient sampling of the posterior. We used 150 pseudo-data pairs (Ã, B̃) for each layer,
unless stated otherwise. We initialise the pairs (Ã, B̃) sampling from U [−0.01, 0.01]. To

3We use the generalised reparametrization trick.
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account for the biases, we assume that each input to the layers is augmented with an
extra dimension containing all 1s. Thus, code-wise, we do not have an explicit variable
for the biases but rather, we concatenate a vector of 1s to the input at each layer, and
then we use an augmented weight matrix. This is equivalent to optimising the biases
explicitly. It is worth mentioning that the reproducibility of any model that includes a
VMG layer is compromised due to the computation of a matrix inversion to sample the
network pre-activations (see §2.4.2). We lose numerical precision due to rounding errors,
and that results in some randomness in learning. However, this leads to mild differences
in learning curves.

3.1.2 MC Dropout Models

MC Dropout as
Approximate

Inference

As discussed in §2.5, dropout is a SRT where the output of each neuron is zeroed out
with probability pdrop at each forward pass (Srivastava, 2013). We implement dropout
uncertainty (a.k.a MC dropout) presented in (Gal & Ghahramani, 2016), where approx-
imate inference is done as a product of Bernoulli’s implemented as dropout before each
layer. The model uncertainty is estimated by collecting the results of stochastic forward
passes through the network (see §2.5). The number of stochastic forward passes (T) used
to estimate uncertainty during training is 5. On the other hand, we use 10 forward itera-
tions to estimate uncertainty at test time. We do not do the forward passes concurrently;
in other words, we do not loop over the forward iterations, instead we use a minibatch
augmentation trick. Each minibatch is repeated as many times as the number of forward
iterations. We compute 10 forward passes at once by augmenting the minibatch at the
beginning of the first layer. For example, the first minibatch is 256 × 1024. Hence, the
input to the first layer has dimensionality of 2560 × 1024 (T = 10). This is to optimise
the run-time.

3.1.3 Stochastic Gradient Langevin Dynamics

Adding
Stochasticity in

Gradients
Update

In BNNs, MCMC methods are one of the simplest but most reliable techniques. Sampling
methods estimate the posterior distribution through drawing samples. We review these
methods in §2.6. Here, we implement SGLD (Welling & Teh, 2011; Marceau-Caron &
Ollivier, 1988) which modifies SGD to provide random values to the parameters’ updates,
which happen to be distributed according to a Bayesian posterior. Bayesian inference is
as simple as running “noisy SGD”.

Including
Preconditioning

A different strategy that augments the gradients and noise according to a precondition-
ing matrix has been implemented as well (see §2.6.1). We use a preconditioner based on
the RMSprop algorithms, as proposed in (Li et al., 2016). pSGLD uses RMSprop pre-
conditioning. As suggested in (Li et al., 2016), to aid convergence, we scale the Langevin
noise by the number of data-points in the dataset. The initial learning rate is 0.001 for
both SGLD and preconditioned SGLD. The prior is a Gaussian N (0, 1). The network is
optimised for 400 epochs. The Bayesian posterior ensemble is built by storing the last
100 samples taken every 2 epochs (thinning process), or 390 weight updates. We use an
ensemble of networks sampled from the trajectory (computationally quite costly). At
least 15 epochs of burn-in period are used. The learning rate is scaled exponentially
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based on the number of optimisation steps4, as in (Li et al., 2016).

3.1.4 Neural Linear Models

A Compromise
between

Deterministic &
Stochastic

We consider architectures where approximate Bayesian inference is only used for small
pieces of the overall network. The Neural Linear models consist of a deterministic CNN
feature extractor followed by one stochastic fully connected layer (e.g. Mean Field Ap-
prox., Full Covariance, VMG). Our CNN is a simple deterministic feature extractor
consisting of 3 convolutional layers with 8, 16, and 32 filters, respectively, a max-pool
non linearity function, and a dense layer of 512 units. A 5×5 kernel is used in the first
filter, and a 3×3 kernel for the next two. Batch normalisation (Ioffe & Szegedy, 2015)
is used after each convolutional layer, followed by a ReLu activation function. This
choice was made to be simple and maximally general. Hence, we consider inference only
over the last layer of the neural network. This class of algorithms is popular among
the ML community, and the popularity derives from the fact that the Neural Linear
decouples representation learning and uncertainty estimation (Riquelme et al., 2018).
In Mean Field Approximation, the last layer is a Bayes By Backpropagation layer (VI
family), where local reparametrization is used, and the KL is computed in closed-form.
Analogously, Full Covariance implements the local reparametrization trick, and a low-
rank matrix approximation (rank = 2) of the variance matrix is used. This approach
is dropped in further analysis due to the excessively long run-time. It is important to
mention that the architecture is optimised jointly. This is to ease the inference in the
“head” by means of the feature representation learnt by the “body”.

3.2 Evaluation Metrics

In this work, as evaluation metrics we report the predictive log-likelihood and the ex-
pected calibration error (ECE), along with accuracy. In the next sections, we provide
more insights into predictive log-likelihood and ECE, which have been extensively used
to contrast BNNs performances, respectively in the work of Gal (2016) and Zhang et al.
(2017), and many others.

3.2.1 Predictive Log-Likelihood

The predictive log likelihood captures how well the model fits the data. We approximate
the log score using MC integration:

log (y∗|x∗,X,Y) ≈ log
( 1

T

T∑
t=1

p(y∗|x∗, ω̂t)
)

with ω̂t ∼ q∗θ(ω). Larger values indicate a better fit.

4A practical rule is used, the step-size is scaled by εt = at−γ and γ ∈ (0.5, 1].
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3.2.2 Expected Calibrated Error (ECE)

Model
Calibration

Matters!

We report the expected calibration error along with the predictive log-likelihood and
test error as a scalar statistic of model calibration, and as a proxy for the quality of
model uncertainty estimation. The underlying assumption is that well-calibrated BNNs
provide good uncertainty estimation, due to the fact that calibration can be interpreted
as “in-distribution” uncertainty.
Briefly, we review the work of Guo et al. (2017). Let’s consider a supervised multi-class
classification problem, and a neural network that is trained with input X ∈ X , and label
Y ∈ Y = {1, . . . , C}. We define a perfect calibration as:

P(Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1]

where Ŷ is a class prediction, and P̂ is the associated probability of correctness. To
compute a scalar statistic of calibration, we first estimate the expected accuracy, by
grouping predictions in M interval bins, and computing the accuracy of each bin,

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

where Bm is the set of indices of samples that fall within the m-th bin. The average
confidence within the bin is defined as:

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

where p̂i is the i-th sample confidence obtained by applying the softmax function to the
network output5. Accordingly, perfect calibration implies acc(Bm) = conf(Bm) for all
m. Thus, the expected calibration error is defined as:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|

where M is a fixed number of bins, and n the number of samples.
A More

Intuitive
Explanation

To gain an intuitive understanding, let’s think of acc(Bm) as the true fraction of correct
instances within the m-th bin, and conf(Bm) is the mean of post calibrated probabilities
for the instances in the m-th bin (i.e. the average confidence within the m-th bin).
Ideally, we would like a confidence estimate P̂ to represent a true probability. In other
words, if our network makes 100 predictions, and it is confident 0.8 for each prediction,
then we should expect 80 out of 100 predictions to be correct. The lower the value of
ECE, the better the calibration of the model.

5In BNNs p̂i =
1

T

∑T
t=1 Softmax(f ω̂t(x)) with ω̂t ∼ qθ(ω).
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3.3 “ One-Off ” Metrics Do Not Work Too Well

Are “ One-Off ”
Metrics

Informative
Enough?

At this point, it seems reasonable to ask whether standard metrics (such as predictive
log-likelihood, expected calibration error, accuracy, etc.) evaluated in a passive learning
scenario are meaningful when it comes to contrasting different approximate inference
schemes. From here on out, we refer to these metrics as “one-off” metrics. As we infer
from Table 2 – we report the performances of different inference methods and different
architectures on MNIST – it is difficult to gauge the quality of the approximations based
on “one-off” metrics. It is not clear at least on MNIST, whether these metrics are able
to discriminate which model (or inference method) outperforms the others. We provide
some evidence in favour of the idea that “one-off” metrics do not deliver on the quality
of uncertainty estimation. For instance, it is not easy to contrast inferential methods
in fully connected networks based on our experimental findings in Table 2. The com-
parison is not as thorough as we would like it to be. As discussed in §2.3, we would
expect VMG to outperform models based on mean field approximation. This is a re-
strictive assumption. In fact, it is likely that the true posterior has correlations between
weights. VMG and stochastic gradient models are the only models under consideration
that take into account covariances. As a result, they allow a more truthful estimation of
the posterior, and overall they should perform better. In §5, we draw similar conclusion
on Fashion MNIST (see Table 5). It is not clear either whether pSGLD outperforms
SGLD, as we would expect. These observations are valid for both the 400 unit fully
connected networks, as well as the 800 unit fully connected ones. Regarding the Neural
Linear models, it is difficult, almost impossible, to show any significant trends as well:
the models perform similarly. In §5, we repeat the same analysis on Fashion MNIST and
SVHN (see Table 6). Again, it is not possible to highlight any trends.

A little later in this work, we propose AL as a suitable Bayesian diagnostic toolbox,
and show that more meaningful comparisons can be drawn between approximate infer-
ence schemes.
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Inference Method #Layer/#Units Negative Predictive LL Error (%) Expected Calibration Error

Neural Linear Models

Mean Field Approx. Deterministic CNN Extractor:
3 Convolutional Layers

Max Pooling (2,2)
Dense(512)

0.0211 ± 0.0024 0.6320 ± 0.0605 0.0046 ± 0.0004
Full Covariance (rnk = 2) 0.0217 ± 0.0032 0.6300 ± 0.0210 0.0048 ± 0.0003

Variational Matrix Gaussian 0.0256 ± 0.0030 0.6700 ± 0.0379 0.0051 ± 0.0005
MC Dropout (pdrop = 0.2) 0.0209 ± 0.0040 0.6040 ± 0.0896 0.0048 ± 0.0005

Benchmark Deterministic Fully Connected Models

Maximum Likelihood (Simard et al., 2003) 2/800 - 0.7 -
Dropout (Srivastava, 2013) 2/800 - 1.25 -

Our Benchmark 2/400 0.0348 1.0300 0.0061

Variational Inference Fully Connected Models

Bayes By Backpropagation∗

(Gaussian Prior)
2/400 0.0317 ± 0.0040 0.9140 ± 0.0531 0.0061 ± 0.0004
2/800 0.0313 ± 0.0023 0.9060 ± 0.0441 0.0062 ± 0.0004

Bayes By Backpropagation∗

(GMM Prior)
2/400 0.0427 ± 0.0007 1.3020 ± 0.0564 0.0119 ± 0.0005
2/800 0.0436 ± 0.0015 1.3100 ± 0.0540 0.0118 ± 0.0007

Bayes By Backpropagation
(Local Reparametrization)

2/400 0.0347 ± 0.0017 1.0600 ± 0.0363 0.0062 ± 0.0002
2/800 0.0341 ± 0.0015 1.0380 ± 0.0471 0.0062 ± 0.0004

Variational Matrix Gaussian
2/400 0.0279 ± 0.0027 0.7980 ± 0.0491 0.0057 ± 0.0003
2/800 0.0262 ± 0.0027 0.7180 ± 0.0741 0.0053 ± 0.0007

Dropout Uncertainty Fully Connected Models

MC Dropout (pdrop = 0.2)
2/400 0.0353 ± 0.0014 1.1480 ± 0.1130 0.0062 ± 0.0004
2/800 0.0306 ± 0.0007 0.9640 ± 0.0441 0.0061 ± 0.0005

Sampling Methods - Fully Connected Models

Stochastic Gradient Langevin Dynamics
2/400 0.0374 ± 0.0041 0.8211 ± 0.0335 0.0062 ± 0.0002
2/800 0.0359 ± 0.0034 0.8193 ± 0.0193 0.0066 ± 0.0002

Preconditioned Stochastic Gradient Langevin Dynamics
2/400 0.0400 ± 0.0014 0.8283 ± 0.0335 0.0068 ± 0.0003
2/800 0.0444 ± 0.0070 0.8233 ± 0.0170 0.0072 ± 0.0002

Table 2: Average and std. test predictive log-likelihood (LL), test error, and test ex-
pected calibration error (ECE) (with M = 10 bins) for different approximate inference
schemes and network architectures (Neural Linear models, 400-400 or 800-800 fully con-
nected models). The results are obtained on MNIST dataset consisting of 32×32 images
from 10 different classes with 50,000 training, 10,000 validation, and 10,000 testing sam-
ples. We average over 5 different runs. ∗ 200 epochs are used to guarantee convergence.

Inference Method #learnable parameters

Neural Linear Models

Mean Field Approx. 208k
Full Covariance (rnk = 2) 210k

MC Dropout 206k
VMG 247k

Fully Connected Models∗

Bayes By Backpropagation 1.148m
VMG 972k

MC Dropout 574k

Table 3: Number of learnable parameters for different network architectures. ∗ The
number of learnable parameters are reported for fully connected architectures with 2
hidden layers with 400 units each. It is worth mentioning that the number of learnable
parameters for the SGLD architectures is the same as the one for MC dropout.
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4 Active Learning: Theory and Applications

What is Active
Learning?

Active learning (AL) (a.k.a “query learning”) is a well-established statistical research
field that the machine learning community has taken over, expanded-on, and eventually
“re-branded” (Cohn et al., 1996). In statistics literature, AL is referred to as optimal
experimental design (Atkinson, 1992; Chaloner & Verdinelli, 1995).
Usually, AL is presented as a powerful tool to overcome the so-called labelling bottleneck.
Labelling large datasets through human annotators is a costly and slow process (Zhu,
2005), and finding a way to narrow down a small “salient” subset to be labelled is of
course appealing. However, our work does not focus at all on attaining data efficiency,
instead, the data acquisition process is the relevant aspect.
In any AL framework, the system is initially trained on a small amount of data, and then
it is asked to seek the most informative data-points to be trained on. We gain experience
by gathering data interactively and progressively through queries. In classification, for
each query the model consults an oracle (e.g a human labeler) to observe the true class
of the queried data, in regression the output.

Pool
Sampling

Our learner is responsible for expanding its own training dataset. It queries an input x∗

from a dataset of unlabelled data Dpool, and once it observes the output y∗, it includes
the new experience in the next training (x∗ moves from Dpool to Dtrain1 and the model
parameters ω are updated, accordingly). This active learning scheme is often called
pool-sampling AL.

Why Active
Learning?

At this point, the reader might foresee the reason we believe AL is a suitable testing
ground to disambiguate the comparison between such an abundance of approximate
inference methods. Indeed, AL is a more principled tool to reason on the trade-offs
discussed in §2.3. Through AL, we elaborate on the expressiveness of the posterior, as
the acquisition process leverages on the model’s representation of the uncertainty. We
believe that a model that “knows what it knows” and as well “knows what it doesn’t
know” queries in a more informed way. In any AL framework, “accurate” estimates of
uncertainty are needed to obtain a good performance. Building upon Hernández-Lobato
& Adams (2015), Gal et al. (2017), and Zhang et al. (2017), we investigate approximate
inference methods via AL, and present empirical evidence of its adequacy.

Chapter
Outline

AL literature is vast, and covers several fields. In this chapter, we next turn our fo-
cus to information theoretic approaches in AL. In §4.1, we discuss how to “optimally”
query data-points. In particular, we review the work of Houlsby et al. (2011) and of
Gal (2016). We discuss two acquisition functions that leverage different ways of dealing
with uncertainty. We also discuss how to make use of the variational distribution qθ(ω)
in BNNs to build up computationally tractable approximations of these criteria.

4.1 Acquisition Functions

The system, once trained on a small proportion of the dataset – at this point our system
is just knowledgeable enough about the environment to start actively collecting data
– takes action through acquisition functions. In other words, acquisition functions dic-
tate the way our model interacts with the environment. Different heuristics have been

1To be consistent with the notation in §2, we define Dtrain = X,Y.
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proposed on the way to query. In fact, querying strategies differ on how they assess the
expected informativeness of our candidates (i.e. data-points in Dpool). From a statistical
standpoint, we select “optimally” the data-points to query by maximising an acquisition
function:

x∗ = arg max
x∈Dpool

α(x, p(ω|Dtrain))2

In this work, as querying strategies we use predictive entropy (often referred to as max
entropy), and BALD, a more principled criterion introduced by Houlsby et al. (2011).

Predictive Entropy Predictive entropy is defined as:

H[y|x,X,Y] = −
∑
c

p(y = c|x,X,Y)log p(y = c|x,X,Y)

The predictive entropy has its maximum value as the probability of an input x to take
any class c = 1, · · · , C is uniform and equal across all classes (i.e. the prediction is highly
uncertain). By computing H[y|x,X,Y] ∀x ∈ Dpool, we evaluate each data-point in Dpool
according to “how much” information is contained in the predictive distribution under
a given model. Hence, we can select the data-point in Dpool for which the model is most
uncertain.

Predictive
Entropy
Approx.

Predictive entropy is intractable to compute for BNNs. An estimator approximating it
is built as it follows,

H[y|x,X,Y] = −
∑
c

p(y = c|x,X,Y)log p(y = c|x,X,Y)

= −
∑
c

(∫
Ω
p(y = c|x,ω)p(ω|X,Y)dω

)
log
(∫

Ω
p(y = c|x,ω)p(ω|X,Y)dω

)
≈ −

∑
c

(∫
Ω
p(y = c|x,ω)q∗θ(ω)dω

)
log
(∫

Ω
p(y = c|x,ω)q∗θ(ω)dω

)
≈ −

∑
c

( 1

T

T∑
t=1

p(y = c|x, ω̂t)
)

log
( 1

T

T∑
t=1

p(y = c|x, ω̂t)
)

, Ĥ[y|x,X,Y]

with ω̂t ∼ q∗θ(ω) and t = 1, · · · , T indexing the t-th stochastic forward pass.
For clarity purposes, we re-propose how we approximate the posterior predictive distri-

2We abuse the standard notation. In batch-mode active learning, the arg max returns not a single
data-point, but multiple ones at once. This is further discussed in §5.1.
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bution in the context of BNNs:

p(y = c|x,X,Y) =

∫
Ω
p(y = c|x,ω)p(ω|X,Y)dω

≈
∫

Ω
p(y = c|x,ω)q∗θ(ω)dω

≈ 1

T

T∑
t=1

p(y = c|x, ω̂t)

=
1

T

T∑
t=1

Softmax(f ω̂t(x))

with ω̂t ∼ q∗θ(ω). As T approaches infinity, we recover the predictive entropy for a given
data-point,

Ĥ[y|x,X,Y] −−−−−→
T −→∞ H[y|x,X,Y]

BALD As an alternative to predictive entropy, we review a more principled acquisition
function that is based on mutual information between model predictions and the posterior
distribution,

I[y,ω|x,X,Y] = H[ω|X,Y]−Ep(y|x,X,Y)

[
H[ω|y,x,X,Y]

]
= H[y|x,X,Y]−Ep(ω|X,Y)

[
H[y|x,ωt]

]
where H[y|x,X,Y] is the predictive entropy, Ep(ω|X,Y)

[
H[y|x,ωt]

]
is the expected pre-

dictive entropy w.r.t the posterior distribution over the model parameters ω. In AL,
we maximise the decrease in expected posterior entropy. This results in selecting the
data-point x from Dpool, for which the predictive entropy is high – on average the model
is highly uncertain – and the expected predictive entropy is low. There still exist param-
eters’ configurations that result in overconfident disagreeing predictions (Gal, 2016). We
can view this as seeking informativeness through disagreement between predicted out-
comes under the model parameters. That is why we refer to this criterion as Bayesian
Active Learning with Disagreement (BALD)3. The work of Depeweg et al. (2017) opens
up a new interpretation of BALD as an estimation of epistemic uncertainty. By epis-
temic uncertainty we mean uncertainty due to the randomness in ω. On the other side,
aleatoric uncertainty originates from randomness inherent to the data. The first term
can be interpreted as the total uncertainty within our prediction under the model, whilst
the second term is a measure of the aleatoric uncertainty. The difference between the
two results in the epistemic uncertainty.

BALD Approx. As in (Gal, 2016), we approximate the BALD acquisition function via a computationally

3Finally, we reveal what BALD stands for, it needed a sort of an introduction. We hope the reader
will excuse us.
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tractable estimator,

I[y,ω|x,X,Y] = H[y|x,X,Y]−Ep(ω|X,Y)

[
H[y|x,ωt]

]
= −

∑
c

p(y = c|x,X,Y)log p(y = c|x,X,Y)

+ Ep(ω|X,Y)

[∑
c

p(y = c|x,ω)log p(y = c|x,ω)
]

≈ −
∑
c

∫
Ω
p(y = c|x,ω)q∗θ(ω)dω·

· log
(∫

Ω
p(y = c|x,ω)q∗θ(ω)dω

)
+

+ Eq∗θ (ω)

[∑
c

p(y = c|x,ω)log p(y = c|x,ω)
]

≈ −
∑
c

( 1

T

T∑
t=1

p(y = c|x, ω̂t)
)

log
( 1

T

T∑
t=1

p(y = c|x, ω̂t)
)

+

+
1

T

∑
c,t

p(y = c|x,ωt)log p(y = c|x, ω̂t)

, Î[y, ω̂|x,X,Y]

with ω̂t ∼ q∗θ(ω).
Analogously,

Î[y, ω̂t|x,X,Y] −−−−−→
T −→∞ I[y,ω|x,X,Y]
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5 An Empirical Evaluation via Active Learning

A New
Benchmark for

Bayesian Neural
Network

In this section, we report and discuss the results obtained during the experimental in-
vestigations, along with the underlying rationale. We present an empirical comparison
of several inference schemes for deep BNNs through a new bench-marking practice via
AL. We investigate whether a sequential decision-making scenario is a suitable scheme
to assess the impact of the posterior approximation. Nowadays, approximate infer-
ence methods are contrasted on the basis of metrics that are not tailored for statistical
learning. Arguably, this section aims to show that an AL setting (more specifically a
pool-sampling AL scheme) is a suitable testing ground for a wide range of approximate
inferences.

Four Critical
Points

Throughout the chapter, we attempt to answer the following questions with the aid of
an AL framework:

∗ Are we learning sensible uncertainty estimates? Does uncertainty estimation help?
In other words, do we need to be stochastic? Or is deterministic just good enough?

∗ Which inference method is best suited for AL? Are we seeking the most informative
data-points? Are the results consistent across different datasets? If not, why?

In terms of the degree of stochasticity, and the architecture:

∗ To what extent does the network need to be stochastic? Do we need fully stochastic
networks? Would a single or a few stochastic layers be enough?

∗ How does the model architecture and its capacity affect the results?

There is a twofold benefit: we attempt to provide a plausible answer to these questions
by means of an AL framework; thus, we will assess its suitability when it comes to con-
trasting a variety of well-established inferential methods.

Chapter
Outline

The chapter is structured as it follows. In §5.1, we contrast different inferential methods
and architectures within an AL framework on MNIST (LeCun et al., 1998). In §5.2, we
compare being Bayesian vs being deterministic in AL. In §5.3, we scale up to more com-
plex datasets, such as Fashion MNIST (Xiao et al., 2017) and SVHN (Goodfellow et al.,
2013). In Appendix B, we include preliminary investigations on a simple 2D dataset via
AL.

5.1 Investigating Approximate Inference Methods via Active Learning

As aforementioned, a better way of contrasting approximate inference methods is through
a benchmark that leverages uncertainty estimation on different grounds, rather blindly
relying on “one-off” metrics. That is where AL comes into play. AL is an important
pillar of probabilistic learning, and it is widely used to attain data-efficiency. In this
chapter, we exploit its promising application to uncertainty evaluation. In AL, the
model is asked to explore regions of the space which it is most unfamiliar with. From
an empirical standpoint, we investigate how different posterior approximations affect the
network performance within an AL framework.
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5.1.1 Practical Active Learning

All models are initially trained with a random minibatch (i.e. on a small amount of
data)1. Iteratively, the model queries its own dataset out of a pool of unlabelled data-
points Dpool. The aim is to seek the most informative data-points to be trained on. The
querying strategy is dictated by acquisition functions. In §4.1, we review 2 acquisition
functions extensively used throughout our investigations, max entropy (Shannon, 1948)
and BALD (Houlsby et al., 2011). After each query, the model is updated, (i.e. re-trained
from scratch as in §3), on an augmented dataset. We move the queried data from the
pool of unlabelled data Dpool to the dataset the model is trained Dtrain. In practice, AL
consists of 4 steps:

Dtrain

Model

Oracle

Dpool

Train Model

Dpool
Move−−−−−→

Queries
Dtrain

Select Queries

Ask Labels

Figure 1: Active learning pool-sampling cartoon. Instead of a priori labelling a large
dataset, we train the model only on a minibatch. Iteratively, it queries new samples
from a pool of unlabelled data. It observes the labels, and updates its parameters on
the augmented dataset. The process continues until we reach the budget, or a suitable
degree of accuracy.

Terminology In the majority of our investigation, we are not querying a single data-point at each
acquisition step, but we query in batch. Before we dig into batch-mode AL, it is worth
introducing a few AL technical words. In the following sections, we would refer to the
batch size as the number of data-points queried in each learning cycle, and we would
refer to the budget as the total number of data-points that the model is allowed to query.
For instance if the batch size is 500, the budget is 5000 (10 steps acquisition process).

Myopic & Naive
Batch-Mode

Active Learning

The querying strategy in batch-mode AL is the following: we evaluate the acquisition
function on an unlabelled pool set using 100 MC samples2, then we observe the pool
data-points with highest acquisition value. In fact, the “informativeness” of new data-
points is established by the acquisition function. As reported in Algorithm 2, while
acquiring multiple data-points, we take the N-best that report the highest acquisition
function. For example, if our batch size is 50, and the pool of acquired data-points
contains 50k instances, we would select 50 data-points out of 50k that report the highest

1It is important to mention that from now on we refer to minibatch with a batch-mode AL perspective.
2As discussed in §4.1, max entropy and BALD are intractable in BNNs and need to be approximated

via MC integration.
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Algorithm 2 Greedy Batch-Mode Active Learning (Pool-based Sampling)

Input: # acquisition steps b, batch-size N, labelled dataset Dtrain, unlabelled pool Dpool

1 A0← ∅
2 Train model parameters p(ω|Dtrain)
3 for t ← 1 to b do
4 for x ∈ Dpool\ At−1 do
5 sx ← αacq(x, p(ω|Dtrain ∪At−1))

6 {x∗
n}Nn=1 ← arg max{sx} argmax selects more than one element

At ← At−1 ∪ {x∗
n}Nn=1

Update model parameters p(ω|Dtrain ∪At)

Output: updated model parameters, and predictive posterior at each acquisition step

acquisition function value (e.g. highest BALD score). As we discuss in Appendix B,
querying through the N-best criterion does not always work well, as we omit to consider
the overlap in information. This results in querying correlated (or equivalently nearby)
data-points (Kirsch et al., 2019; Robert Pinsler, 2019).

Getting Started As a preliminary protocol, we train our model on 500 labelled data-
points that are selected randomly. The batch size is 500 and the budget 5000, accordingly.
Figure 2 reports how accuracy and ECE vary throughout learning. We investigate fully
connected models using as inference scheme VI (Mean Field Approximation and Vari-
ational Matrix Gaussian) and MC dropout. It is possible to infer that VI with matrix
variate Gaussian outperforms the other methods in 2 distinct ways. The learning curve
is significantly steeper and converges to a better final value. Predictive log-likelihood,
accuracy, and ECE improve over random. This protocol is shown as our first evidence
that a sequential decision-making framework is a more informative testing ground for
contrasting Bayesian networks.

Paving the Way
for Further

Analysis

Although this protocol per se is not as informative as we would like it to be, it is indica-
tive for understanding how to calibrate AL. That means, how many data-points should
I start with, and how many samples at each acquisition step. As a good rule of thumb,
we want our network to be at least 60% accurate, as we start acquiring new data. If the
model is not properly trained, AL could go terribly wrong, and the acquired data-points
might hinder the learning. Therefore, it is desirable to start with a good model. The
architectures that we use for this experimental setting are fully connected models with 2
hidden layers of 400 units each. We use 2 activation functions, max entropy and BALD.
As a benchmark, we also report AL as we acquire data-points randomly.

5.2 “Am I Better Than Deterministic?”

In assessing BNNs, a critical issue is to establish whether uncertainty is well-estimated,
and whether it makes a positive contribution towards solving a given task. We compare
Bayesian networks with a deterministic benchmark within an AL scenario. In prac-
tice, by deterministic benchmark we mean a network that has the same architecture as
the Bayesian counterpart, but implements deterministic layers. Both models capture
aleatoric uncertainty (i.e. data uncertainty); we make the assumption that the degree
of improvement upon deterministic is related to the estimation of epistemic uncertainty
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Figure 2: Active Learning - A Starter. We investigate 3 inference schemes in an AL
framework. We use 2 hidden fully connected networks. We show accuracy and ECE
(dotted line) as a function of the # acquired images. We use the MNIST dataset. We
show AL for 2 acquisition functions: Max Entropy, and BALD. Random is reported as
benchmark. Initially, we train on 500 labelled data-points, and progress in batch of 500
with a budget of 5000. At each acquisition step, the networks are re-trained for 200
epochs.

(i.e. model uncertainty). Hence, by “beating deterministic” we imply a good modelling
of epistemic uncertainty.

A New Proxy
for Uncertainty

Quality

To compare inferential methods, we propose a metric that concisely summarises the
learning. We report the area between the learning curves of the models under com-
parison. We compute numerical integration, and normalise with respect to the x axis.
Ideally, the metric should be protocol-independent. For this investigation, we compute
the area between the learning curves (e.g. predictive log-likelihood as a function of#
acquired images) obtained by the Bayesian network and the deterministic benchmark,
respectively; and use it as a proxy for epistemic uncertainty estimation.
For this analysis, we update our protocol, and start with a smaller number of labelled
data-points, only 2003, and we progress in steps of 50 data-points per query. A take
home message from the previous investigation (see Figure 2) is to start with less labelled
data, and to better focus on how the model behaves prior to convergence. For the de-
terministic benchmark, we use max entropy as the acquisition function. The protocol is
repeated for fully connected models, and Neural Linear models. Moreover, we do believe
that predictive log-likelihood is more informative than accuracy as it comes to assess
uncertainty estimation. As discussed in §3.2.1, it is not a yes/no metric, but it considers
whether the model is over-confident. Therefore, from now on we report accuracy only in
the Appendix D.
It is worth mentioning that from a computational point of view, the acquisition phase
is faster with Neural Linear models than with fully connected networks; during the data
selection phase only the network head (in our scenario 1 layer) is used. Next, we discuss
our main findings for each approximate inference method and architecture.

Fully Connected Architectures As shown in Figure 3, VI with mean field approxi-
mation performs poorly, as well as MC dropout. In terms of learning curves, the latter

3The size of the stochastic minibatch is adjusted dynamically. We use the following heuristic: the
power of 2 closest to half of the size of the dataset.
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architectures perform similarly. Both inferences do not report any improvement over the
deterministic network (see Table 4). We investigate as well whether this is due to un-
derestimating uncertainty, or to stochastic optimisation. We find that the performance
of VI with mean field slowly improves as the number of training epochs increases, but
still under-performs compared to the deterministic network. It seems that this is the
evidence of the detrimental effect of underestimating the variance of the posterior as we
are restricted to a limited approximating variational distribution (see §2.3). SGLD and
pSGLD do not perform better than a deterministic network, as well. The only inference
method that outperforms deterministic is VI with matrix variate Gaussian posteriors.
It is our front-runner. This is coherent with our analysis in §2.3. Indeed, we believe
that this is due to the fact that correlations between weights are taken into considera-
tion. As a side remark, VI with matrix variate Gaussian posteriors using BALD as the
acquisition function performs better than max entropy. This is expected since BALD
greedily maximises the expected information with respect to the model parameter. As
aforementioned in §4.1, BALD reasons in terms of epistemic uncertainty. Hence, we do
expect BALD to be a more principled acquisition strategy than max entropy.

Neural Linear Models As shown in Figure 4, Neural Linear architectures behave as
a deterministic network. We think that this results from over-parameterising the prob-
lem, and by that we mean the representational power of the CNN feature extractor is so
good for MNIST it cancels out any contribution given by uncertainty. Either we simplify
the feature extractor, or we test these architectures on a more complex dataset. On this
matter, we should also consider that “easy datasets” report little aleatoric uncertainty,
thus we would expect that acquiring via BALD to be similar to acquiring via maximis-
ing entropy. Moreover, as mentioned in (Riquelme et al., 2018), we should also hold
accountable the fact that Neural Linear optimisation is tricky. The joint optimisation of
the deterministic and stochastic components could lead to a too conservative optimisa-
tion of the stochastic layer (e.g. the stochastic layer is performing MAP estimation).

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. -0.0197 ± 0.0030 -0.0002 ± 0.0011 -0.0407 ± 0.0056
MC Dropout -0.0127 ± 0.0058 0.0011 ± 0.0014 -0.0409 ± 0.0091

VMG 0.0624 ± 0.0059 0.0254 ± 0.0023 -0.0027 ± 0.0020
SGLD 0.0102 ± 0.0163 0.0019 ± 0.0046 0.0015 ± 0.0013
pSGLD -0.0153 ± 0.0138 0.0004 ± 0.0045 -0.0051 ± 0.0031

Table 4: A More Thoughtful Investigation. We report the area between learning curves
between BALD and Det. Entropy. A positive area means that the network is perform-
ing better than deterministic. Conversely, a negative implies performing worse than
deterministic. Higher is better. ∗ denotes that we are reporting an area.
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Figure 3: A More Thoughtful Investigation. We investigate 5 different inference schemes
using a 2 hidden layer fully connected network in an AL framework. We use the MNIST
dataset. We show predictive log-likelihood and ECE (dotted line) as a function of the
# acquired images. We show AL for 2 acquisition functions: Max Entropy, and BALD.
We report Random and Det. Entropy (short for deterministic Entropy) as benchmarks.
Initially, we train on 200 labelled data-points, and progress in batches of 50 with a budget
of 500. At each acquisition step, the networks are re-trained for 400 epochs.
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Figure 4: “Am I Better Than Deterministic? Part I”. We investigate the Neural Linear
architecture, and use 3 different inference schemes. We use the MNIST dataset. We show
predictive log-likelihood and ECE (dotted line) as a function of the # acquired images.
We show AL for 2 acquisition functions: Max Entropy, and BALD. We report Random
and Det. Entropy (short for deterministic Entropy) as benchmarks. Initially, we train
on 200 labelled data-points, and progress in batches of 50 with a budget of 500. At each
acquisition step, the networks are re-trained for 200 epochs.
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5.3 Scaling Up to More Complex Datasets

Task
Complexity,

Network
Capacity,

Inference Choice

The previous analysis reports that the majority of Bayesian models behave similarly to
deterministic networks when tested within an AL framework. Arguably, MNIST may not
be complex enough to assess to what extent we would benefit from BNNs in a sequential
decision-making scenario. Therefore, we test our models on a more rugged ground. The
reason behind this choice is that modelling uncertainty might play a major role as we
challenge the network with more difficult tasks (and keeping the architecture constant).
We repeat the previous analysis on more complex datasets such as Fashion MNIST and
SVHN. The rationale behind this section is to disclose, by the means of AL, whether we
can draw trade-offs between dataset complexity (e.g. irreducible variability inherent to
the data, class abstraction, etc.), network capacity, and nature of approximate inference
method. Next, we discuss our main findings for each approximate inference method and
architecture.

Fully Connected Architectures On a more complex dataset (see Figure 5), all the
tested inferential methods perform better than deterministic in terms of predictive log-
likelihood, and ECE. These results confirm that uncertainty estimation plays a major role
on complex tasks within an AL framework. It is also shown that VI with matrix variate
Gaussian posteriors outperforms other inferential methods in terms of predictive log-
likelihood, and accuracy at the end of the acquisition process. However, it starts badly,
and this is reflected in Table 7 where we cannot identify a winning inferential approach.
Mean field VI and MC dropout present faster convergence in terms of predictive log-
likelihood and ECE. The latter systems perform likewise, and this confirms the similar
nature of these approximations. Mean field VI, VMG and MC dropout considerably
outperform SGLD and pSGLD in terms of predictive log-likelihood. Surprisingly, SGLD
and mean field VI result in better-calibrate models (looking at ECE). As we discuss in
§2.3, this is not what we would have expected from MCMC methods. This might be due
to the low mixing rate as we are limited to using a small step-size to collect accurate
samples. As we would expect, pSGLD outperforms SGLD.

More on
Acquisition

Functions

It is also worth mentioning – the reader may keep in mind that the project does not
focus on acquisition strategies, although it indirectly comes across interesting findings
– that overall BALD remarkably outperformed max entropy. As already mentioned,
this is found in Figure 3, as well. In Figure 5 the difference is far more accentuated:
often max entropy ends up performing worse than random (see Figure 5). This shows
across approximate inference methods that a more principled way of querying data-
points results in better learning. In addition, as clearly shown in Table 7, looking only at
accuracy is deceptive: from an accuracy standpoint most approximate inference methods
behaves as deterministic. This is not the case if we consider predictive log-likelihood and
ECE. In the same spirit as Table 2, Table 5 reports that “one-off” metrics do not allow
such comparison.

Adding an
Extra Layer

As we add a third hidden layer, as shown in Figure 6 (see Table 8), most of the inference
network behave as deterministic, similarly to what we observed with MNIST (see Table
4). The only exceptions are matrix variate Gaussian VI and MCMC methods. We
observe that VI with matrix variate Gaussian posteriors considerably outperforms the
deterministic benchmark no matter the complexity of the dataset we use, or the fact that

38



Inference Method #Layers/#Units Negative Predictive LL Error (%) ECE

Mean Field Approx. 2/400 0.3014 ± 0.0108 10.8724 ± 0.3873 0.0226 ± 0.0022
MC Dropout 2/400 0.3112 ± 0.0097 11.2883 ± 0.2360 0.0229 ± 0.0008

VMG 2/400 0.2782 ± 0.0036 10.1092 ± 0.1489 0.0233 ± 0.0020
SGLD 2/400 0.2872 ± 0.0060 10.2069 ± 0.1108 0.0248 ± 0.0024
pSGLD 2/400 0.2988 ± 0.0068 10.3443 ± 0.1721 0.0269 ± 0.0019

Table 5: Average and std. test predictive log-likelihood (LL), test error, and test
expected calibration error (ECE) (with M = 10 bins) for different approximate inference
schemes. The network architecture is 2 hidden layer fully connected with 400 units each.
The results are obtained on Fashion MNIST dataset consisting of 32×32 images from
10 different classes with 50,000 training, 10,000 validation, and 10,000 testing samples.
We randomly crop and flip the images as a regularisation strategy. We average over 5
different runs. 400 epochs are used to guarantee convergence.

we increase the network capacity. Overall, a trade-off emerges between task complexity
and network capacity. At constant capacity, increasing the dataset complexity leads to
Bayesian networks outperforming the deterministic benchmarks (see Table 7). As we
increase capacity, at constant complexity, being deterministic is just good enough (see
Table 8).

Neural Linear Models On rougher ground, Neural Linear models sit near a sweet
spot. Contrary to what we observed in Figure 4, Neural Linear models outperform in
terms of predictive log-likelihood, and ECE the deterministic benchmark, as shown in
Figure 7. Neural Linear models implementing VMG and MC dropout outperform mean
field VI, in terms of predictive log-likelihood and ECE on both datasets. VMG outper-
forms MC dropout on Fashion MNIST in terms of final predictive log-likelihood and ECE
(see Figure 7), in turn on SVHN MC dropout outperforms VMG in terms of predictive
log-likelihood, but not ECE. However, it is worth mentioning that in terms of simplicity
(i.e. hyper-parameters tuning, regularisation strategies, computational cost) VMG would
not rank well, since the stochastic layer has an extra hyperparameter to be tuned (i.e.
pseudo-inputs), a matrix inversion, and the optimisation is tricky. There is definitely
room for improvements, such as investigating whether a regularisation technique of the
variational parameters would ease the training, and make the architecture more stable4.

4This was suggested by Christos Louizos from the Max Welling’s group.
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Dataset Inference Method Negative Predictive LL Error (%) ECE

Fashion MNIST
Mean Field Approx. 0.2099 ± 0.0030 7.6244 ± 0.1143 0.0220 ± 0.0021

MC Dropout 0.2151 ± 0.0041 7.7944 ± 0.3299 0.0184 ± 0.0006
VMG 0.2184 ± 0.0047 7.6317 ± 0.1083 0.0209 ± 0.0013

SVHN
Mean Field Approx. 0.2940 ± 0.0037 8.3804 ± 0.1586 0.0199 ± 0.0006

MC Dropout 0.2987 ± 0.0048 8.6444 ± 0.0947 0.0188 ± 0.0019
VMG 0.3057 ± 0.0009 8.9663 ± 0.0488 0.0220 ± 0.0018

Table 6: Average and std. test predictive log-likelihood (LL), test error, and test
expected calibration error (ECE) (with M = 10 bins). We test Neural Linear architectures
on Fashion MNIST and SVHN datasets. We average over 5 different runs. 200 epochs
are used to guarantee convergence.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. 0.0530 ± 0.0037 0.0069 ± 0.0010 0.0190 ± 0.0018
MC Dropout 0.0531 ± 0.0004 0.0072 ± 0.0007 0.0155 ± 0.0016

VMG 0.0477 ± 0.0063 0.0321 ± 0.0015 -0.0078 ± 0.0003
SGLD 0.0213 ± 0.0027 0.0003 ± 0.0010 0.0207 ± 0.0020
pSGLD 0.0266 ± 0.0172 0.0171 ± 0.0019 0.0031 ± 0.0005

Table 7: A More Complex Dataset. We report the area between the learning curves
BALD and Det. Entropy.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. 0.0001 ± 0.0071 -0.0138 ± 0.0014 0.0065 ± 0.0008
MC Dropout 0.0045 ± 0.0081 -0.0095 ± 0.0025 0.0003 ± 0.0036

VMG 0.0217 ± 0.0134 0.0145 ± 0.0031 -0.0076 ± 0.0011
SGLD 0.0212 ± 0.0100 0.0034 ± 0.0013 0.0142 ± 0.0006
pSGLD 0.0099 ± 0.0012 0.0134 ± 0.0011 -0.0072 ± 0.0030

Table 8: A More Complex Dataset & Higher Network Capacity. We report the area
between the learning curves BALD and Det. Entropy.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. 0.0591 ± 0.0113 0.0153 ± 0.0047 0.0114 ± 0.0011
MC Dropout 0.0711 ± 0.0067 0.0103 ± 0.0047 0.0165 ± 0.0005

VMG 0.0599 ± 0.0045 -0.0092 ± 0.0020 0.0350 ± 0.0004

Table 9: Am I Better Than Deterministic? Part II - Fashion MNIST. We report the
area between the learning curves BALD and Det. Entropy.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. 0.1259 ± 0.0259 0.0200 ± 0.0018 0.0192 ± 0.0050
MC Dropout 0.2244 ± 0.0162 0.0265 ± 0.0091 0.0455 ± 0.0005

VMG 0.1647 ± 0.0114 -0.0059 ± 0.0019 0.0606 ± 0.0010

Table 10: Am I Better Than Deterministic? Part II - SVHN. We report the area
between the learning curves BALD and Det. Entropy.

40



50
0

10
00

15
00

20
00

25
00

30
00

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Predictive LogLikelihood

B
A
LD

En
tr

op
y

D
et

. E
nt

ro
py

R
an

do
m

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

F
u

ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 -
 M

e
a
n

 F
ie

ld
 A

p
p

ro
xi

m
a
ti

o
n

50
0

10
00

15
00

20
00

25
00

30
00

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Predictive LogLikelihood

B
A
LD

En
tr

op
y

D
et

. E
nt

ro
py

R
an

do
m

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

F
u

ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 -
 M

C
 D

ro
p

o
u

t

50
0

10
00

15
00

20
00

25
00

30
00

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Predictive Log Likelihood

B
A
LD

En
tr

op
y

D
et

. E
nt

ro
py

R
an

do
m

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

F
u

ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 -
 p

S
G

LD

50
0

10
00

15
00

20
00

25
00

30
00

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Predictive LogLikelihood

B
A
LD

En
tr

op
y

D
et

. E
nt

ro
py

R
an

do
m

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

Predictive Log Likelihood

M
F

M
C
D

V
M

G
SG

LD
pS

G
LD

D
ET0.

00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

F
u

ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 C
o

m
p

a
ri

so
n

 -
 B

A
LD

50
0

10
00

15
00

20
00

25
00

30
00

La
be

le
d 

Ex
am

pl
es

 in
 T

ra
in

in
g 

Se
t

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

Predictive Log Likelihood

B
A
LD

En
tr

op
y

D
et

. E
nt

ro
py

R
an

do
m

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Calibration Error

F
u

ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 -
 S

G
LD

Fu
ll
y 

C
o

n
n

e
ct

e
d

 M
o

d
e
ls

 -
 V

M
G

50
0

10
00

15
00

20
00

25
00

30
00

Figure 5: A More Complex Dataset. We investigate 5 different inference schemes using a
2 hidden layer fully connected network in an AL framework. We use the Fashion-MNIST
dataset. We show predictive log-likelihood and ECE (dotted line) as a function of the
# acquired images. We show AL for 2 acquisition functions: Max Entropy, and BALD.
We report Random and Det. Entropy (short for deterministic Entropy) as benchmarks.
Initially, we train on 500 labelled data-points, and progress in batches of 250 with a
budget of 2500. At each acquisition step, the networks are re-trained for 400 epochs.
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Figure 6: “A More Complex Dataset & Higher Network Capacity”. We investigate
5 different inference schemes using a 3 hidden layer fully connected network in an AL
framework. We use the Fashion MNIST dataset. We only show predictive log-likelihood
and ECE (dotted line) as a function of the # acquired images for VMG and SGLD. We
show an inference methods comparison figure as well. Please refer to Appendix D for the
complete figure. We show AL for one acquisition function: BALD. We report Random
and Det. Entropy (short for deterministic Entropy) as benchmarks. Initially, we train
on 500 labelled data-points, and progress in batches of 250 with a budget of 2500. At
each acquisition step, the networks are re-trained for 400 epochs.
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Figure 7: Am I Better Than Deterministic? Part II. We investigate the Neural Linear
architecture, and use 3 different inference schemes. We show predictive log-likelihood and
ECE (dotted line) as a function of the # acquired images. We show AL for one acquisition
function: BALD. We report Random and Det. Entropy (short for deterministic Entropy)
as benchmarks. Top: We use the Fashion-MNIST dataset. Initially, we train on 500
labelled data-points, and progress in batches of 250 with a budget of 2500. Bottom: We
use the SVHN dataset. Initially, we train on 1000 labelled data-points, and progress
in batches of 250 with a budget of 2500. At each acquisition step, the networks are
re-trained for 400 epochs. For the VMG model, we reduce the number of pseudo-inputs
to 50, and train initially for 400 epochs on a minibatch, and then at each acquisition
step, the network is re-trained for 100 epochs (early-stopping).
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Hybrid Models: an Additional Stochastic Layer By means of AL, we investi-
gate whether we can improve the Neural Linear architecture (and whether being more
Bayesian would lead to better performances in AL) by replacing the deterministic fully
connected layer in the feature extractor with an additional stochastic component. We
call the architecture Hybrid. We investigate VI with mean field approximation and with
matrix variate Gaussian posteriors, and ultimately MC dropout. Figure 8 shows that
Hybrid MC dropout outperforms the Neural Linear MC dropout on Fashion MNIST.
Indeed, being more stochastic with VI does not lead to any improvement. This trend is
not confirmed on SVHN, where being more stochastic does lead to improvements with
respect to the the Neural Linear architecture (as benchmark). As reported in Table 11
and Table 12, MC dropout considerably outperforms the corresponding Neural Linear
architecture on both datasets. With confidence, our analysis shows that MC dropout in
Neural Linear architectures and Hybrid ones is the right inference to choose on account
of low complexity, easy fine-tuning, and quality of uncertainty estimates. Again, AL
proves to be the right ground to contrast inference methods and architectures.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. -0.0001 ± 0.0061 -0.0085 ± 0.0017 0.0030 ± 0.0027
MC Dropout 0.0267 ± 0.0039 -0.0002 ± 0.0045 0.0116 ± 0.0014

VMG 0.0103 ± 0.0085 0.0099 ± 0.0034 -0.0165 ± 0.0035

Table 11: Neural Linear Vs. Hybrid on Fashion MNIST. We report the area between
the Neural Linear and Hybrid models’ learning curves. BALD is used as the acquisition
function.

Inference method Predictive LL∗ Accuracy∗ ECE∗

Mean Field Approx. 0.1109 ± 0.0275 0.0391 ± 0.0043 0.0100 ± 0.0042
MC Dropout 0.1272 ± 0.0206 0.0405 ± 0.0056 0.0110 ± 0.0013

VMG 0.0712 ± 0.0191 0.0645 ± 0.0028 -0.0317 ± 0.0021

Table 12: Neural Linear Vs. Hybrid on SVHN. We report the area between the Neural
Linear and Hybrid models’ learning curves. BALD is used as the acquisition function.
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Figure 8: Neural Linear Vs. Hybrid. We compare the Neural Linear Vs. Hybrid, and
use 3 different inferential schemes. We show predictive log-likelihood and ECE (dotted
line) as a function of the # acquired images. Refer to Figure 7 for the experimental
setup.
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6 Conclusion

Our work demonstrated the adequacy of the AL framework for contrasting several ap-
proximate inference methods, alongside its promising application as an empirical measure
of the quality of uncertainty estimation.
A significant difference between passive learning and the AL framework is that the latter
plays on an information-based ground and thus makes direct use of uncertainty estima-
tions. In §3, we demonstrated that passive learning did not allow a meaningful compar-
ison between approximate inference methods, and their respective architectures. It did
not gauge whether we were provided with sensible uncertainty estimates. Furthermore,
our empirical evaluation (see Table 2) could not identify the analytical traits of the in-
ferential methods discussed in §2.3.
On the other hand, in §5, we investigated fully stochastic fully connected architectures
and hybrid models (Neural Linear and Hybrid Networks) via AL on 3 datasets: MNIST,
Fashion MNIST, and SVHN. We were able to disambiguate the comparison among both
inferences and architectures. As VMG outperforms the others, we have a clear front-
runner across fully connected models if we base the comparison on the evaluation metrics
at the end of the acquisition process. Across Neural Linear architectures, MC dropout
and VMG inference methods both outperformed mean-field VI, with the latter leading
to overall better-calibrated models on both Fashion MNIST and SVHN (see Figure 7).
Being Bayesian comes at a price. The AL framework helped us to understand the effect
of considering uncertainty. Overall, on the basis of decision-making processes, neural
networks benefitted from being Bayesian, but not on all the environments we tested.
Being Bayesian did not necessarily bring advantages over being deterministic, as shown
in Figure 4. Through the AL framework, we identified a trend between task complexity,
network capacity, and inference choice. We observed that there is no advantage using
probabilistic models when the task is too simple (or the network capacity is too high).
It found that as we scale up to more difficult environments, uncertainty estimation plays
a more decisive role.
In light of these observations, arguably this work showed AL’s effectiveness when it comes
to providing recommendations of which architecture and inference method to use.

6.1 Future Directions

In this section, we discuss some exciting future directions. As a general direction, we
believe that an analogous investigation should be repeated on a broader variety of ap-
proximate inference methods.
It follows a more in-depth analysis of 2 topics that we believe are good avenues for
promising extensions. In §6.1.1, we suggest investigating whether there is a more prin-
cipled metric to summarise the model performances in AL. In §6.1.2, we present some
preliminary thoughts on how to decouple uncertainty in the epistemic and the aleatoric
components.

6.1.1 Towards More Expressive Metrics in Active Learning

In this work, to ease the comparison among inferential methods, we propose a metric
that concisely summarises the learning. We estimate the area between learning curves
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throughout the acquisition process. However, this metric has a few drawbacks that
need to be considered. This metric weights the history of the learning more than the
performance as we reach the budget. Networks that at the beginning of the acquisition
process start well, are favoured. Our metric often is inconclusive to disambiguate the
comparison (see Table 7 and Table 8), and just looking at the learning curves gives more
meaningful insights. There is definitely room for improvement for a more principled way
to summarise the learning.

6.1.2 Expanding on Uncertainty Evaluation

Building up on §5.2, we would like to leave the reader with this query. Do we not
perform better than deterministic methods despite well-calibrated uncertainty estimates?
Or, do we not outperform deterministic methods as a consequence of badly-calibrated
uncertainty estimates? Answering these questions is the natural progression of this work.
In Appendix C we report our initial attempt.
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A Additional Theoretical Background

KL Divergence between Matrix Variate Gaussians

For clarity, we re-propose the derivation by Louizos & Welling (2016). Let’s recast
MN 0(M0,U0,V0), andMN 1(M1,U1,V1) asN0(vec(M0),U0⊗V0) andN1(vec(M1),U1⊗
V1), respectively. The KL between the two multivariate Gaussians is defined as:

KL(N0‖N1) =
1

2
(tr(Σ−1

1 Σ0)(µ1 − µ0)TΣ−1
1 (µ1 − µ0)−K + log

|Σ1|
|Σ0|

)

=
1

2
(tr((V1 ⊗U1)−1(V0 ⊗U0)) + (vec(M1)− vec(M1)− vec(M0))−

− (V1 ⊗U1)−1 (vec (M1)− vec (M0))− np+ log
|V1 ⊗U1|
|V0 ⊗U0|

)

Splitting it into three sub-terms ta, tb, tc, and applying properties of the Kronecker prod-
ucts,

ta = tr
(

(V1 ⊗U1)−1 (V0 ⊗U0)
)

= tr
((

V−1
1 ⊗U−1

1

)
(V0 ⊗U0)

)
= tr

((
V−1

1 V0

)
⊗
(
U−1

1 U0

))
= tr

(
U−1

1 U0

)
tr
(
V−1

1 V0

)
tb = (vec (M1)− vec (M0))T (V1 ⊗U1)−1

(vec (M1)− vec (M0))

= vec (M1 −M0)T
(
V−1

1 ⊗U−1
1

)
vec (M1 −M0)

= vec (M1 −M0)T vec
(
U−1

1 (M1 −M0) V−1
1

)
= tr

(
(M1 −M0)T U−1

1 (M1 −M0) V−1
1

)
tc = log

|V1 ⊗U1|
|V0 ⊗U0|

= log
|U1|p |V1|n

|U0|p |V0|n

= p log |U1|+ n log |V1| −
− p log |U0| − n log |V0|

Combining them all together,

KL (MNN0,MN 1) =
1

2

(
tr
(
U−1

1 U0

)
tr
(
V−1

1 V0

)
+

+ tr
(

(M1 −M0)T U−1
1 (M1 −M0) V−1

1

)
−

− np+ p log |U1|+ n log |V1| −
− p log |U0| − n log |V0|)
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B Preliminary Investigations on a 2D Dataset

A Simple 2D
Dataset

In this section, we contrast different approximate inference methods using a 2D toy
dataset. A 2D space is straightforwardly displayable, and we can track all the steps in
the AL process. We use the moons dataset, a simple binary classification task. Each
class is generated from a deterministic function with additive Gaussian noise (σ = 0.2).
We use single hidden fully connected architecture with 25 units. The aim of this exper-
imental session is to visualise the AL process, as well to gain a clear understanding of
how the different inference methods behave. Therefore, we evaluate the class probability
predictions on a grid over the whole input space at each acquisition step. We report the
history of the probability surface throughout the AL procedure. Initially, we train on 30
data-points (15 for each class), and we progress either in steps of 1 or 5, with a budget of
10, or 50, accordingly. Figure 9, and Figure 10 show the results of our investigation. As a
general remark, it is possible to observe that at the beginning of the acquisition process,
Bayesian networks are prone to enlarge the area which they are most uncertain about.
Overall, Bayesian networks show well-calibrated uncertainty estimation: mean field VI
and MC dropout report wider uncertainty compared to VMG and SGLD. It is inferred
that VI with matrix variate Gaussian posteriors, and the sampling method Stochastic
Gradient Langevin Dynamics outperform the others.

A More
Principled Way

of Batching

If we have a closer look at Figure 10, it is clear that there is significant room for im-
provement in batch-mode AL. We greedily select the most informative data-points (see
Algorithm 2). However, our greedy selection might not be the most informative jointly.
Not surprisingly, the queried data-points happen to be close to each other (and on a 2D
space this is easily visible!). Individually, the data-points are highly informative, but ar-
guably more spaced out draws would have resulted in better uncertainty estimation (i.e.
better coverage of the gap between the 2 moons). In fact, we are not taking into account
(our naive way of batching) the correlation between data-points in any acquisition batch.
This is discussed in (Kirsch et al., 2019).
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Figure 9: The Moons Dataset & Probability Surface: Single Query. We train a single
hidden fully connected network with 25 hidden units initially on 30 data-points. We
query 1 data-point at a time. Overall, we make 10 queries. We investigate 4 inference
methods, along with a deterministic network. We report the mean of the posterior
predictive. In the deterministic case, it is identical to maximum likelihood predicted
values. We report the first 4 draws, and the final one. Queried data-points are displayed
as crosses.
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Figure 10: The Moons Dataset & Probability Surface: 5 Queries. We train a single
hidden fully connected network with 25 hidden units initially on 30 data-points. We query
5 data-point at a time. Overall, we make 10 queries. We investigate 4 inference methods,
along with a deterministic network. We report the mean of the posterior predictive. We
report the first 4 draws, and the final one. Queried data-points are displayed as crosses.
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C Uncertainty Decomposition in Active Learning

Decoupling
Uncertainty: a

Primer

In this section, we report some thoughts and preliminary analysis on epistemic uncer-
tainty. We focused on fully connected architectures, and we contrasted VI with mean
field approximation to VI with matrix variate Gaussian posteriors on both MNIST and
Fashion MNIST. This experiment aimed to provide insights into the fact that VI with
mean field failed to outperform the deterministic benchmark on MNIST (see Table 4).
Indeed, on a more complex ground, it “beats deterministic” (see Table 7). This was
also to empirically correlate active learning’s performance to the modelling of epistemic
uncertainty. As reported in (Kwon et al., 2018), we decomposed the variance of the
variational predictive distribution q̂θ(y∗|x∗) into aleatoric and epistemic uncertainty:

Varq̂θ(y∗|x∗) [p (y∗|x∗)] = Eq̂θ(y∗|x∗)
[
y∗⊗2

]
−Eq̂θ(y∗|x∗) [y∗]⊗2

=

∫
Ω

[
diag

(
Ep(y∗|x∗,ω) [y∗]

)
−Ep(y∗|x∗,ω) [y∗]⊗2

]
qθ(ω)dω︸ ︷︷ ︸

aleatoric

+

+

∫
Ω

(
Ep(y∗|x∗,ω) [y∗]−Eq̂θ(y∗|x∗) [y∗]

)⊗2
qθ(ω)dω︸ ︷︷ ︸

epistemic

where v⊗2 = vvT and diag(v) is a diagonal matrix with the elements of v. The first line
is the definition of variance, the second is from a variant of the law of total variance.
A detailed derivation is reported in (Kwon et al., 2018). The first term estimates the
inherent variability of the output y∗, while the second weights the variability over ω. The
latter can be explained away with more data (Kendall & Gal, 2017). From a Bayesian
standpoint, the predictive variance is estimated as

1

T

T∑
t=1

diag (p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1

T

T∑
t=1

(p̂t − p)⊗2

︸ ︷︷ ︸
epistemic

where p̄ =
1

T

∑T
t=1 p̂t and p̂t = Softmax(fωt(x∗)), where ωt is the t-th realised network

parameter set {ω̂t}Tt=1. As suggested in (Shridhar et al., 2018), we compute homoscedas-
tic epistemic uncertainty by averaging over all classes (i.e. over heteroscedastic uncer-
tainties).

More Thoughts
& Observations

Our preliminary investigation, which were difficult to interpret, reported that VI with
mean field on MNIST increased its epistemic uncertainty as it acquired more data. Con-
versely, epistemic uncertainty stayed bounded in Fashion MNIST. High epistemic uncer-
tainty might explain the poor performance on MNIST (see Figure 3). However, these
are provisional remarks and a more principled investigation is needed.
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D Additional Experimental Figures
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Figure 11: A More Thoughtful Investigation. We investigate 5 different inference
schemes using a 2 hidden layer fully connected network in an active learning frame-
work. We use MNIST dataset. We show accuracy and ECE (dotted line) as a function
of the # acquired images. Initially, we train on 200 labelled data-points, and progress
in batches of 50 with a budget of 200.
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Figure 12: A More Complex Dataset. We investigate 5 different inference schemes
using a 2 hidden layer fully connected network in an active learning framework. We
use Fashion-MNIST dataset. We show accuracy and ECE (dotted line) as a function of
the # acquired images. Initially, we train on 200 labelled data-points, and progress in
batches of 250 with a budget of 2500.
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Figure 13: “A More Complex Dataset & Higher Network Capacity”. We investigate 5
different inference schemes using a 3 hidden layer fully connected network in an active
learning framework. We use Fashion MNIST dataset. We show predictive log-likelihood
and ECE (dotted line) as a function of the # acquired images. Initially, we train on 500
labelled data-points, and progress in batches of 250 with a budget of 2500.
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Figure 14: Am I Better Than Deterministic? Part II. We investigate the Neural Linear
architecture, and use 3 different inference schemes. We show accuracy and ECE (dotted
line) as a function of the # acquired images. Top: We use the Fashion-MNIST dataset.
Initially, we train on 500 labelled data-points, and progress in batches of 250 with a
budget of 2500. Bottom: We use the SVHN dataset. Initially, we train on 1000 labelled
data-points, and progress in batches of 250 with a budget of 2500.
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Figure 15: “Contrasting on a Visual Scale - Fashion MNIST”. Heat-Maps contrasting
Hybrids to Neural Linear models. We report the area between Hybrid and Neural Linear
models. BALD is used as the acquisition function.

Mean Fie
ld Approx.

MC Dropout

VMG

Mean Fie
ld Approx.

MC Dropout

VMG

Predictive Log-Likelihood Accuracy ECE

Mean Fie
ld Approx.

MC Dropout

VMG

Mean Fie
ld Approx.

MC Dropout

VMG

Hybrid

Neural Linear

S
co

re

Figure 16: “Contrasting on a Visual Scale - SVHN”. Heat-Maps contrasting Hybrids
to Neural Linear models. We report the area between Hybrid and Neural Linear models.
BALD is used as the acquisition function.
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