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1 Introduction 
 
 
1.1 Motivation and Applications 
 
In the past decades, our world has steadily evolved into a highly globalized, inter-connected 
environment where transnational conversations are becoming ever more present in our daily life. 
From the end of the Second World War, English has become the new “lingua franca”, most business 
meetings or informal conversations between people of different nationalities being pursued in 
English by default. Naturally, there has been a surge in English examinations on offer, either as a 
gateway to access English-speaking universities such as in the case of universally accepted exams like 
Test of English as a Foreign Language (TOEFL) or Cambridge English Advanced (CAE) or as a starting 
point to a career in an English-speaking country by offering niche orientated examinations such as 
Business Language Testing Service (BULATS). 
 
The main aim of this project is to develop an automated assessment system of spontaneous non-
native speech.  One of the main motivations behind building an automated grading system is that 
even well-trained human graders can be inconsistent in grading, introducing human bias in terms of 
the weights that they attach on various components of the grading process or by various other 
exogenous factors. Therefore, automated graders can solve this consistency issue, additionally 
providing feedback at a fraction of the cost associated to human graders. Besides feedback speed 
and consistency, other feasible applications can emerge such as self-tutoring apps that also assess 
learners on quality of conversational English and not solely based on written competence, as it is 
currently the case. 
 
While closed-class question based automatic assessment systems can easily provide feedback and 
are extremely accurate, in situations where constructed responses are needed this introduces 
difficulties for the automated grader. In order to provide accurate feedback it has to take into 
consideration not only notions of correct grammar, richness of vocabulary or complex syntactical 
constructions, but the system also has to take into account elements of pronunciation, prosody, 
coherence and topic development. An algorithm must not only attach weights to the previously 
enumerated components, but also to extract highly discriminative features that could aid this 
process. 
 
Early research into automated graders of spontaneous non-native speech have focused mostly on 
elements of prosody and pronunciation, such as attempting to characterize aspects of 
communicative competence by Hidden Markov Model forced-alignment in order to obtain  posterior 
probabilities for pronouncing certain phones. These scores were combined with various other 
features such as number of words per second or duration of phonemes to obtain the final grades 
(Franco et al., 2000).  Zechner and Bejar(2006) have expanded the feature set by including elements 
of lexical sophistication and content and passing them to a Support Vector Machine to obtain 
predictions. Van Dalen et al. (2015) introduce for the first time the uncertainty of predictions by 
using a Gaussian Process on audio features related to fundamental frequency or energy and fluency 
features such as disfluencies or silence duration. The same research paper also introduces an 
innovative combination scheme which backs off to human grades in case of high uncertainty in 
predictions. In terms of extracting more information from audio signal, as opposed to using hand-
crafted fluency and audio features as previously mentioned, Yu et al. (2015) introduce a Bidirectional 
Long Short-Term Memory Network framework for extracting sequential highly abstract features 
from audio data, further adding a Multi-linear Perceptron layer at the end to obtain predictions.  
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1.2 Intended goals 

 
This work is under the umbrella of the Automated Language Teaching and Assessment (ALTA) 
project in collaboration with Cambridge University English for Speakers of Other Languages (ESOL) 
group to develop new methods for assessment of spoken English. Our contributions to the overall 
aim of the project can be divided in two categories. Firstly, we expand the work of Rashid (2015) and 
aim to extract more sophisticated linguistic features pertaining to dependency-grammars from the 
parse trees of our Automated Speech Recognition Transcription. We introduce a state-of-the-art 
Smoothed Partial Tree Kernel to assess the similarity of our ASR transcripts in comparison with 
manually transcribed text from the DTAL, obtaining a similarity converging to 80% for various 
configurations of dependency-grammar derived tree structures. Experiments show that this 
similarity is enough to extract simple linguistic features such as Part-of-Speech tags or Grammatical 
Relation tags, but still not high enough to enable us to use more complex structural features such as 
Skeletons or Annotated Skeletons as a substitute. The other major component of the project is the 
use of a Deep Gaussian Process grader to obtain better predictive means and well-calibrated 
propagation of uncertainty. While our experimental findings show that even using a very sparse 
Deep Gaussian Process with no hidden layers yields higher correlation with human graders in 
comparison to using a fully Gaussian Process grader on the same data, we also notice some 
problems with the propagation of uncertainty in estimates which affects our variance  based back off 
model. 
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2 English Language Examination Format 
 
This chapter is used as an introduction to the common framework of assessing foreign languages, 
while also giving brief details regarding the format of BULTAS. 
 

2.1 Proficiency Levels 

 
The Common European Framework of Reference for Languages (Verhelst et al., 2009) provides a 
shared framework under which the elaboration of language syllabuses, curriculum guidelines, 
examinations and textbooks are devised across Europe. It represent a comprehensive formulation of 
what type of knowledge and skills language learners must attain in order to use a specific foreign 
language in a context. It also provides clear definitions of the varying levels of proficiency, which we 
detail in table 1: 
 

Level Brief Description 

Proficient User C2 Can understand with ease virtually everything heard or read 

C1 Can understand a wide range of demanding, longer texts and 
recognize implicit meaning 

Independent User B2 Can understand the main ideas of complex text on both concrete and 
abstract topics 

B1 Can understand the main points of clear standard input on familiar 
matters 

Basic User A2 Can understand sentences and frequently used expressions related to 
areas of most immediate relevance 

A1 Can understand and use familiar everyday expressions and very basic 
phrases aimed at the satisfaction of needs of a concrete type 

Table 1: CEFR language level details 
 

2.2 BULTAS Examination Structure 

 
The Business Language Testing Service is an examination targeted for business-context situations, 
tailored for professionals who would like to attest that their English competency is at an appropriate 
level to be hired at corporations. The speaking part of the examination is composed of five main 
parts: 
 

 Part 1: test takers respond to eight basic questions about themselves and their work 
 Part 2 : repetition of text that might be read aloud in a business situation 
 Part 3 : the candidate talks about a work-related topic 
 Part 4 : involves delivering a mini-presentation describing a pie chart or a bar char in a 

business context 
 Part 5 : test takers must imagine that they are in a specific situation with a colleague and 

have to respond to question that may be asked in that situation 
 
 

Each section is graded between 0 and 6, resulting in a maximal score for the speaking component of 
30. 
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3 Smoothed Partial Tree Kernels 

 
In Natural Language Processing, a central challenge is the design of complex and intricate features 
that can aid in research topics such as Question Classification or Sentiment Analysis. Since hard-
coding such features has proven to be a daunting task, methods to automatically encode enough 
lexical and syntactic information into features had to be devised. 
 
Kernel methods represent a stepping stone in the development of Machine Learning, being behind 
one of the most simple but effective early ML algorithms such as Perceptrons or Support Vector 
Machines. Kernels also hold a significant role in our project, since both of our Grader methods such 
as Gaussian Processes and its extension, the Deep Gaussian Process rely on kernel methods.  
 

Since we are dealing with text, we do not have an easily definable 𝑅𝑑 input domain. With this in 
mind, Tree Kernels were introduced by Duffy and Collins (2001) and represent an instance of 
Convolutional Kernels, which involve a recursive computation over fragments of discrete structures, 
such as in our case statistical parse trees. 
 

3.1 Tree Kernels 

 
Each parse tree is represented in a bag-of-words fashion : 
 

ℎ(𝑇) = [ℎ1(𝑇), ℎ2(𝑇), … , ℎ𝑛(𝑇)] 
 
where ℎ𝑖(𝑇) counts the number of occurrences of the i-th sub-tree in parse tree T. 
 

𝐾(𝑇1, 𝑇2) = ℎ(𝑇1) ∗ ℎ(𝑇2) 
 
where 𝐾(𝑇1, 𝑇2) is defined as the tree kernel between parse trees T1 and T2. 
 

𝐼𝑖(𝑛) =  {
1 𝑖𝑓 𝑖 − 𝑡ℎ 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 𝑖𝑠 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑛 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
Using the above mentioned index function we arrive at: 
 

ℎ𝑖(𝑇1) =  ∑ 𝐼𝑖(𝑛1)

𝑛1∊ 𝑁1

 

ℎ𝑖(𝑇1) =  ∑ 𝐼𝑖(𝑛1)

𝑛1∊ 𝑁1

 

 
It naturally follows to the final formula:  
 

𝐾(𝑇1, 𝑇2) =  ∑ ∑ ∑ 𝐼𝑖(𝑛1)

𝑖

𝐼𝑖(𝑛2)

𝑛2∊ 𝑁2𝑛1∊ 𝑁1

=  ∑ ∑ 𝐶(𝑛1, 𝑛2)

𝑛2∊ 𝑁2𝑛1∊ 𝑁1

  

 
It can be computed in polynomial time with the following recursive definitions:  
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𝐶(𝑛1, 𝑛2) = 0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑛1 𝑎𝑛𝑑 𝑛2 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 

 
𝐶(𝑛1, 𝑛2) = 1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑛1 𝑎𝑛𝑑 𝑛2 𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒

− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠  

𝐶(𝑛1, 𝑛2) =  ∏ [1 + 𝐶(𝑐ℎ(

𝑛𝑐(𝑛1)

𝑗=1

𝑛1, 𝑗), 𝑐ℎ(𝑛2, 𝑗)] 

Where 𝑛𝑐(𝑛1) is the number of children of node 𝑛1 and 𝑐ℎ(𝑛2, 𝑗) is the j-th children of node 𝑛2. 
In this case, we easily notice that 𝑛𝑐(𝑛1) = 𝑛𝑐(𝑛2) since the definition is conditioned on having the 
same syntactic productions. 
 
The above definitions represent the Syntactic Tree Kernel (STK) (Collins and Duffy, 2002), in which 
sub-graphs of the parse tree can be matched even though they have different leaves or surface 
forms, with the condition that the pre-terminal parent nodes have the same production. 
Nevertheless, Croce (2011) has argued that STKs leave room for improvement in terms of exploiting 
semantic smoothness, such as in the case of the sentences “the big beautiful apple” and “a nice 
large orange”, where in the case of STKs just the syntactic structure of “apple” and “orange” are 
matched. Additionally, STKs cannot be applied to dependency structures, which can be loosely 
defined as being derived from dependency-grammar features where all nodes are seen as being 
terminal, thereby connecting words in terms of their grammatical relationships.  
 
3.2 Partial Tree Kernels 
 
To deal with the loss of syntactic information characteristic of STKs, we introduce a new Tree 
structure entitled Partial Tree (Moschitti, 2006). To better illustrate the difference between the two 
different spaces, we take the simple case of a constituent parse tree of the sentence “Mary brought 
a cat”. In the case of sub-trees, just sub-graphs containing the full production of a parent node are 
taken into consideration, whereas for partial trees any possible combinations of incomplete or 
partial productions are admissible. The following figure better illustrates the difference. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Upper – subtree decomposition ; Lower – partial tree decomposition [Moschitti, 2006] 
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We appropriately define the new Δ function for Partial Trees: 
 

𝛥𝑃𝑇𝐾(𝑛1, 𝑛2) =  0 if the labels of 𝑛1, 𝑛2 are different 
 

𝛥𝑃𝑇𝐾(𝑛1, 𝑛2) =  𝜇(𝜆2 + ∑ 𝜆𝑑(𝐼1)+𝑑(𝐼2)

𝐼1,𝐼2

∏ 𝛥𝑃𝑇𝐾 (𝑐𝑛1(𝐼1𝑗), 𝑐𝑛1(𝐼1𝑗))

𝑙(𝐼1)

𝑗=1

 

Where we have defined 𝑑(𝐼1) =  𝐼1𝑙(𝐼1) − 𝐼11 + 1 and 𝑑(𝐼2) =  𝐼2𝑙(𝐼2) − 𝐼21 + 1 and 𝐼1, 𝐼2 represent 

any type of subsequence of children for node 1, respectively node 2 of any length as long as the 
subsequences are equal. 
 
𝜇 is the vertical decay factor, which controls the amount of penalty imposed as we progress down 
the depth of our dependency parse tree. On the same note, 𝜆 represent the horizontal decay factor, 
which controls the penalty applied on children subsequences, thus enabling us to penalize children 
subsequences of great length or children subsequences with large gaps. 
 
Croce et al. (2011) introduce a more general tree kernel applicable on all types of dependency parse 
trees, thus being able to exploit any combination of lexical and syntactic similarity. 
 

3.3 Smoothed Partial Tree Kernel 

 

In the case of Smoothed Partial Tree Kernels we have the following definitions of Δ: 
𝛥𝑆𝑃𝑇𝐾(𝑛1, 𝑛2) =  𝜇𝜆𝜎(𝑛1, 𝑛2) for leaf nodes 

 

𝛥𝑆𝑃𝑇𝐾(𝑛1, 𝑛2) =  𝜇𝜎(𝑛1, 𝑛2) ∗  [𝜆2 + ∑ 𝜆𝑑(𝐼1)+𝑑(𝐼2)
𝐼1,𝐼2,𝑙(𝐼1)= 𝑙(𝐼2) ∏ 𝛥𝑆𝑃𝑇𝐾 (𝑐𝑛1(𝐼1𝑗), 𝑐𝑛1(𝐼1𝑗))

𝐼1
𝑗=1 ]  

 
𝜎(𝑛1, 𝑛2) defines an open similarity function which can take into account any type of matches 
between labels of two nodes. 
 

3.4 Efficient Implementation of SPTKs 

 
For the implementation of SPTKs we have followed the guidelines in Croce et al (2011), starting by 
partitioning the computations present in the above equation with respect to the overall length of 
the children subsequences present there. Denoting the length of subsequences by p we arrive at the 
equivalent equation: 
 

𝛥𝑆𝑃𝑇𝐾(𝑛1, 𝑛2) =  𝜇𝜎(𝑛1, 𝑛2) ∗ (𝜆2 + ∑ 𝜎𝑝(𝑐𝑛1
, 𝑐𝑛2

)

𝑚

𝑝=1

) 

where m = 𝑚𝑖𝑛( 𝑙(𝑛1), 𝑙(𝑛2) ) and 𝜎𝑝 is evaluating the number of common sub-graphs in children 

subsequences of length p. If we take the two child subsequences to be 𝑠1𝑎 =  𝑐𝑛1
and 𝑠2𝑏 =  𝑐𝑛2

we 

arrive at the following updated equation for 𝜎𝑝: 

 

𝜎𝑝(𝑠1𝑎, 𝑠2𝑏) =  𝜎(𝑎, 𝑏) ∗  ∑ ∑ 𝜆|𝑠1|−𝑖+|𝑠2|−𝑟 ∗ 𝜎𝑝−1(𝑠1[1: 𝑖], 𝑠2[1: 𝑟])

|𝑠2|

𝑟=1

|𝑠1|

𝑖=1

 

 

Denoting ∑ ∑ 𝜆|𝑠1|−𝑖+|𝑠2|−𝑟 ∗ 𝜎𝑝−1(𝑠1[1: 𝑖], 𝑠2[1: 𝑟])|𝑠2|
𝑟=1

|𝑠1|
𝑖=1  as 𝐷𝑝 we can rewrite the set of equations 

as: 
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𝜎𝑝(𝑠1𝑎, 𝑠2𝑏) =  {
𝜎(𝑎, 𝑏) ∗   𝐷𝑝(|𝑠1|, |𝑠2|) 𝑖𝑓 𝜎(𝑎, 𝑏) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
With this simplified notation we arrive at the following recursive relation: 
 

𝐷𝑝(𝑘, 𝑙) =  𝐷𝑝(𝑠1[1: 𝑘], 𝑠2[1: 𝑙]) +  𝜆𝐷𝑝(𝑘, 𝑙 − 1) + 𝜆𝐷𝑝(𝑘 − 1, 𝑙) −  𝜆2𝜆𝐷𝑝(𝑘 − 1, 𝑙 − 1) 

 
With the above recursive formulation, the algorithmic complexity of SPTKs is similar to the one for 
PTKs, respectively O(p𝑝2|𝑁𝑇1||𝑁𝑇2|), where p is the largest number of children of a given node in 
the two trees. However, this is generally not very large, in our dataset being on average 3. 
 
Choosing SPTKs over STKs or Syntactic Semantic Tree Kernels (Moschitti, 2006) is additionally 
motivated by the following advantages: 
 

 STKs and SSTKs can only work on constituency trees which due to the high WER present in 
our ASR transcriptions make Constituency-Grammar derived trees less robust. 

 Similarity between leaf nodes in SSTKs is only computed for complete matches originated 
from parent nodes. SPTKs allow flexibility in assessing lexical or syntactic similarity between 
large numbers of leaf nodes, which is a discernable advantage taking into consideration 
again the  high WER which might result in insertions, deletions or inversions in the ASR 
transcripts. 

 

3.5 Similarity between parse trees 

 

To have a similarity score between 0 and 1, a normalization in the kernel space must be done in the 
following way: 

𝑆𝑖𝑚 =  
𝑇𝐾(𝑇1, 𝑇2)

√𝑇𝐾(𝑇1, 𝑇1)𝑇𝐾(𝑇2, 𝑇2)
 

 
 

3.6 Construction Process of Tailored Dependency Tree Structures 

 
As we have previously explained in the previous subchapter, SPTKs accommodate for virtually any 
possible dependency-grammar derived tree structure, while still respecting Mercer’s conditions of 
kernel validity. 
 
Schematically, we would prefer to have dependencies attached on edges but the SPTK formulation 
does to cater for this. Hence, the main constructions phases are the following: 
 

 Build central nodes which contain the information we are most interested in 
 Add dependencies and additional information as children nodes to the central nodes 

In this report we are to explore the following structures: 

3.7 Grammatical – Relation Centered Tree 

 
 
The current tree structure has the following set of classes of nodes: 
 

 Syntactic nodes : encode dependency functions (Grammatical Relations) 
 Pre-terminal nodes: represent the PoS tag of the parent Syntactic Node 
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 Lexical nodes : encode one lexical item in the form < 𝑙𝑒𝑚𝑚𝑎𝑛: 𝑃𝑜𝑆𝑛 > 
 
 A GR Centered Tree of the sentence “What instrument does Hendrix play?” is presented in the 
following figure. 

 
                                   Figure 2: Grammatical Relation Centered Tree (Basili, 2014) 
 
 

3.8 Lexical Centered Tree 

 
This type is composed by the following classes of nodes: 

 Lexical nodes : representing a lexical item in the form < 𝑙𝑒𝑚𝑚𝑎𝑛: 𝑃𝑜𝑆𝑛 > 
 Terminal nodes : either encode a dependency function (Grammatical Relations) or 

represent the PoS-tag of the parent Lexical Node 
 
A Lexical Centered Tree of the sentence “What instrument does Hendrix play?” is present in figure 3: 

 
 
                                           Figure 3: Lexical Centered Tree (Basili, 2014) 
 
 

3.9 Compositional Dependency-Grammar Derived Structures 

 
One of the main limitations of the previously described structures is that semantic information is 
assessed in a context free way, the semantic composition of the varying node types proposed being 
neglected in the computation of SPTKs. 
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An enhancement in terms of migrating our tree kernels from the sphere of Distributional Semantics 
to Distributional Compositional Semantics is introduced by Basili et al. (2014) by explicitly 
incorporating the compositionality phenomenon in the tree structure.  
 
 

3.10 Compositional Lexical Centered Tree 

 
We are to introduce compositionality by making the dependency function between heads and 
modifiers explicit in the structural form of the tree, alongside additional lexical information.  This 
new compositional node can be encoded as  < 𝐷𝑒𝑝ℎ,𝑚, < 𝑙𝑒𝑚𝑚𝑎ℎ: 𝑃𝑜𝑆ℎ, 𝑙𝑒𝑚𝑚𝑎𝑚: 𝑃𝑜𝑆𝑚 ≫ , 
where 𝐷𝑒𝑝ℎ,𝑚 represents the dependency between head and modifier. The remaining part of the 
structure is a 2-tuple of a Lexical node as previously described in LCTs. We better highlight the new 
structure in figure 4: 

                               Figure 4: Compositional Lexical Centered Tree (Basili, 2014) 
 
 
 
 

3.11 Compositional Grammatical-Relation Centered Tree 

 
In the case of GCTs, we address the compositionality deficiency by expanding the previously entitled 
Syntactic Nodes in GCTs in the same way as we did for CLCTs. The following figure is provided to 
show the differences: 
 

 
                             Figure 5: Compositional Grammatical Centered Tree (Basili, 2014) 
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4 Gaussian Processes 
 

In this chapter our intention is to give a brief introduction to Gaussian Process Regression as this 

constitutes one of our methods of grading learners’ English. 

In terms of Supervised Learning algorithms, parametric models have been from a historical 

perspective more common due to their ease of interpretability. However, on complex data sets 

these types of models may lack expressive power. With the advent of kernel methods, Gaussian 

Processes have seen a huge increase in attention as they provide nonparametric modelling power 

and also well-calibrated uncertainty estimates of its predictions. 

 

Intuitively, Gaussian Processes are distributions over functions, being fully specified by their mean 

function μ and their covariance function 𝑘(𝑥1, 𝑥2). We shall denote a Gaussian Process prior over a 

function as: 

𝑓 ~ 𝐺𝑃(𝜇, 𝐾) 

In the context of regression, a Gaussian Process can be used as a non-parametric prior over a 

function, which if combined with data will result in a posterior over the respective function. 

For simplicity we shall assume our input data X to be part of 𝑅𝑑, with mean function μ and the 

covariance function K being fully specified by the hyperparameters of the chosen kernel. 

In our project we are to focus on the Squared Exponential Kernel, which is defined by the following 

equation: 

𝑘(𝑥1, 𝑥2) =  𝜎2exp (−
|𝑥1 − 𝑥2|2

2𝑙2 ) 

Where 𝜎 is a hyperparameter controlling the overall variance, whereas l is the characteristic 

lengthscale, which controls how far apart two points have to be to change the covariance function. 

They hyperparameter 𝑙 can be a scalar or if we desire our training algorithm to automatically select 

the most important features we can choose a different characteristic lengthscale for each dimension 

of our data, the method being called Automatic Relevance Determination(ARD). This however has 

the drawback of requiring more hyperparameters to be optimized. 

Denoting out testing data as 𝑋∗and the values of the function associated to the aforementioned 

points as 𝑓∗, we can write the joint distribution of all the components of our model as: 

[
𝑓

𝑓∗
] = 𝑁 ([

𝜇

𝜇∗
] , [

𝐾𝑋,𝑋 𝐾𝑋,𝑋∗

𝐾𝑋∗,𝑋 𝐾𝑋∗,𝑋∗

]) 

The condition of 𝑓∗ given f can be derived as the following formula: 

𝑓∗|𝑓 ~  𝑁(𝜇∗ + 𝐾𝑋∗,𝑋∗
𝐾𝑋,𝑋

−1𝜇, 𝐾𝑋∗,𝑋∗
− 𝐾𝑋∗,𝑋𝐾𝑋,𝑋

−1𝐾𝑋,𝑋∗
) 
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Having arrived at the predictive distribution we can use the associated variance to showcase the 

uncertainty our Gaussian Process model has with regards to specific test input. The following figure 

shows depict the uncertainty by using standard confidence interval bands. 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 6: Above – Training data used for GP regression; Below – mean predictive estimates and 

variance associated to test points. (Ghahramani, 2010) 
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5 Deep Gaussian Processes 
 
Probabilistic modelling with deep architectures have experiences huge success and applicability in 
varying research domains, however Deep Neural Network Models typically require a vast amount of 
data to perform learning which is not our current case. Neal (1996) noticed that Gaussian Processes 
can be viewed as an infinite-wide Multilayer Perceptron. However, Gaussian Processes even with 
sophisticated covariance functions (Durrande et al., 2011) or with complex probabilistic structures [ 
Wilson et al.,2012] are not able to learn high-level abstractions of data such as in the case of DNNs. 
With this in mind, Damianou and Lawrence (2013) have introduced Deep Gaussian Processes, which 
can be interpreted as multi-layer hierarchical generalizations of Gaussian Processes. In contrast to 
DNNs, Deep Gaussian Processes have mappings between layers which are parametrised by Gaussian 
Processes. Therefore, they retain the nonparametric modelling power and also propagate through 
the hierarchy predictive uncertainties such as a regular Gaussian Process. Additionally, it can also 
learn layers of increasingly higher abstraction of the data due to its deep structure. 
 
 
The basic Deep Gaussian Process architecture defined by Damianou (2013) consists of the following 
graphical model in the case of 1D output regression: 

 Leaf nodes denoted as 𝑌 ∊ 𝑅𝑛 which is the observed output 
 Intermediate nodes denoted as ℎ𝑙 ∊ 𝑅𝑛∗𝑄𝑙, where 𝑄𝑙  represents the dimensionality of the l-

th hidden layer 

 Input nodes denoted as 𝑋 ∊ 𝑅𝑛∗𝑑 
 
In the case of multi-dimensional hidden layers we have the following set of equations which define 
the generative process. 
 

ℎ𝑙,𝑞 =  𝑓𝑙,𝑞(ℎ𝑙−1) + 𝜀𝑙 , 𝑞 = 1, … , 𝑄𝑙  

𝑦 = 𝑓𝐿+1(ℎ𝐿) + 𝜀𝐿+1 
 
Where 𝑓𝑙,𝑞 ~ 𝐺𝑃(0, 𝑘(ℎ𝑙−1, ℎ𝑙−1) and 𝑓𝐿+1 ~ 𝐺𝑃(0, 𝑘(ℎ𝐿 , ℎ𝐿) and 𝜀𝑙  represents noise. 

 
Our main goal is to infer the posterior distribution over the latent function mappings and over the 
intermediate hidden variables besides obtaining a marginal likelihood estimate for hyperparameter 
tuning and model comparison. However under the nonlinearities transmitted by the GP mappings 
between hidden layers, this is analytically intractable, hence approximate inference is needed. 
Titsias (2009) introduce a variational free energy method of approximating the posterior distribution 
of a set of inducing outputs u associated with m inducing points z which are introduced for 
sparsification of a standard Gaussian Process. This paper has created a surge in interest of treating 
Gaussian Process models from a variational perspective which culminated with the extension of the 
variational free energy method to Deep Gaussian Processes (Damianou, 2013). In that research 
paper, variational approximations to both latent functions and hidden variables are introduced in 
order to compute a variational lower bound to the true log likelihood bound of the probabilistic 
model that is both computationally and analytically tractable. Nevertheless, this approach has the 
drawback that the number of variational parameters that need to be optimized increases linearly 
with the number of training points, hence this method become unfeasible for medium to large scale 
datasets. Additionally, Turner and Sahani (2011) have argued that initialization remains a tricky task 
even for small models. An enhancement to the variational treatment of Deep Gaussian Processes 
has been developed by Hensman and Lawrence (2014), where a nested variational compression 
scheme is introduced that eliminates the need for optimizing over variational parameters over 
hidden variables. 
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However, none of the above mentioned methods have been tested on medium to large datasets, 
therefore for our project we have chosen a different approximate inference method, respectively 
Expectation Propagation. Bui et al. (2016) argue that their implementation is the first known 
instance of training DGPs on large scale datasets, mainly relying on a well-known GP sparsification 
method, a new Expectation Propagation scheme and a probabilistic backpropagation algorithm. All 
of the above mentioned methods will be detailed in depth in the upcoming subchapters. 
 

5.1 Fully Independent Training Conditional Approximation 

 
Full Gaussian Process Models experience cubic complexity with regards to the number of training 
points used, extending this complexity to a deep architecture such as DGPs would quickly make 
computational intractable. Hence, sparse approximation methods are of utmost importance. In our 
project we rely on methods that explicitly sparsify the probabilistic model. FITC (Snelson and 
Ghahramani, 2006) approximations are devised by choosing a smaller set M << N of function values 
u in the latent function domain space with their associated inducing points denoted by z. These 
values are optimized with respect to the marginal likelihood. Therefore, our new probabilistic model 
can be written in the following way: 
 

𝑝𝑢𝑙
= 𝑁(𝑢𝑙; 0, 𝐾𝑢𝑙,𝑢𝑙

)𝑓𝑜𝑟 𝑙 = 1, … , 𝐿 

𝑝(ℎ𝑙|𝑢𝑙 , ℎ𝑙−1) =  ∏ 𝑁(ℎ𝑙,𝑛;𝑛 𝐾ℎ𝑙,𝑛,𝑢𝑙
𝐾𝑢𝑙,𝑢𝑙

−1 𝑢𝑙 , 𝐾ℎ𝑙,𝑛,ℎ𝑙,𝑛
− 𝐾ℎ𝑙,𝑛,𝑢𝑙

𝐾𝑢𝑙,𝑢𝑙
−1 𝐾𝑢𝑙,ℎ𝑙,𝑛

)    

𝑝(𝑦|𝑢𝐿+1, ℎ𝐿) =  ∏ 𝑁(𝑦𝑛;𝑛 𝐾ℎ𝐿,𝑛,𝑢𝐿+1
𝐾𝑢𝐿+1,𝑢𝐿+1

−1 𝑢𝐿+1 , 𝐾ℎ𝐿,𝑛,ℎ𝐿,𝑛
− 𝐾ℎ𝐿,𝑛,𝑢𝐿+1

𝐾𝑢𝐿+1,𝑢𝐿+1
−1 𝐾𝑢𝐿+1,ℎ𝐿,𝑛

)    

 
 
The computational complexity of this sparse model has been reduced to O(L𝑀2) 
 

5.2 Expectation Propagation 

 
Before proceeding further with our approximate inference scheme applied to DGPs, we present a 
brief review of Expectation Propagation (Gelman et al., 2014). 
 
As the variational free-energy method, Expectation Propagation is aiming to minimize the Kullback-
Liebler divergence between the true posterior distribution  𝑝(𝜃|𝑦) and a tractable approximation, 
which is usually chosen to be a multivariate normal, 𝑞(𝜃). Therefore , 𝑞(𝜃) is constructed such as to 
approximate the target, which can be expressed in more detail as 𝑝(𝜃|𝑦) = 𝑝(𝜃) ∏ 𝑝(𝑦𝑘|𝜃)𝑛

𝑘=1   
 
Expectation Propagation is a fast and parallelizable method of distributional approximation by 
partitioning the data and producing better posterior approximation in the following iterative way: 
 

 Splitting the data : Y is split into K parts, each with its associated likelihood 𝑝(𝑦𝑘|𝜃) 
 Initializing the posterior distribution : initial site approximation denoted 𝑡𝑘(𝜃) are chosen 

from tractable families od distributions, hence obtaining an initial approximation to the 

posterior 𝑞(𝜃) = 𝑝(𝜃) ∏ 𝑡𝑘(𝜃)𝐾
𝑘=1    

 EP iterations from k=1, …,K: 

 Cavity distribution : 𝑞−𝑘(𝜃) = 𝑞(𝜃)/𝑡𝑘(𝜃)  

 Tilted distribution : 𝑞/𝑘(𝜃) = 𝑝(𝑦𝑘|𝜃)𝑞−𝑘(𝜃) 

 Update site approximation : 𝑡𝑘
𝑛𝑒𝑤(𝜃) is obtained such that 𝑡𝑘

𝑛𝑒𝑤(𝜃)𝑞−𝑘(𝜃) 
approximates well 𝑞/𝑘(𝜃) 

 For serial models we update 𝑡𝑘(𝜃) =  𝑡𝑘
𝑛𝑒𝑤(𝜃) after each inner loop 

 For parallel models, we update the approximate posterior after the end of all K inner 
loop iterations 
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 Convergence : we repeat the previous step until convergence of 𝑞(𝜃) = 𝑝(𝜃) ∏ 𝑡𝑘(𝜃)𝐾
𝑘=1    

 
 

5.3 Expectation Propagation for Deep Gaussian Processes 

 
The approximate posterior for our inducing points function values are defined as  

𝑞(𝑢) ~ 𝑝(𝑢) ∏ 𝑡𝑛(𝑢)

𝑛

 

Where the set 𝑡𝑛(𝑢) represents the approximate data factors, each individual data factor encoding 
the contribution of the n-th data point to the posterior distribution. 
 
The EP-like iteration in our case becomes: 
 

 Cavity distribution : 𝑞−𝑘(𝜃) = 𝑞(𝜃)/𝑡𝑛(𝜃) 
 Minimize (𝑞−𝑘(𝜃)𝑝(𝑦𝑘|𝑢, 𝑥𝑛) |𝑞/𝑘(𝜃)) , where 𝑞/𝑘(𝜃) represents the titled distribution as 

previously defined in the EP theoretical review.  
 Obtain new 𝑡𝑛(𝜃) estimate and multiply with cavity distribution to obtain new approximate 

posterior distribution 
 
The EP produces an approximation to the marginal likelihood: 
 

log 𝑝(𝑦|𝛼) =  𝛷(𝜃) −  𝛷(𝜃𝑝𝑟𝑖𝑜𝑟) +  ∑ 𝑙𝑜𝑔𝑍𝑛̃

𝑁

𝑛=1

 

where 𝑔𝑍𝑛̃ = 𝑙𝑜𝑔 ∫ 𝑞−𝑛(𝜃)𝑝(𝑦𝑛|𝑢, 𝑥𝑛)𝑑𝑢 +  𝛷(𝜃−𝑛) −  𝛷(𝜃) , 𝛷(𝜃) is the log normalizer of q(u), 

𝛷(𝜃−𝑛) is the log normalized of the cavity distribution and 𝛷(𝜃𝑝𝑟𝑖𝑜𝑟) is the log normalized of the 

prior, p(u). 
 
A disadvantage of this methods is that the approximate data factors have to be stored in memory, 
which leads to a cost of 𝑂(𝑁𝐿𝑀2), as the mean and covariance matrix for each factor has to be 
stored. An alternative method which reduces the computational load is the Stochastic Expectation 
Propagation [Li et al.,2015], which ties the data factors. A simple case is when all approximate data 
factors are tied, resulting in an average data factor entitled  𝑔(𝑢). 
 
The new iterative procedure is the following: 

 Cavity distribution: 𝑞−1(𝑢) ~ 𝑞(𝑢)/𝑔(𝑢) 
 Minimize 𝐾𝐿(𝑞−1(𝑢)𝑝(𝑦𝑛|𝑢, 𝑥𝑛)| 𝑞(𝑢)) 
 New approximate average factor 𝑔(𝑢)𝑛𝑒𝑤 is multiplied with cavity to update the posterior 

approximation 

 Explicitly update average factor : g(u) = 𝑔(𝑢)1−𝛽𝑔(𝑢)𝑛𝑒𝑤𝛽, where β is a small learning rate 
 
The new approximation to the log marginal likelihood is: 

log 𝑝(𝑦|𝛼) =  𝛷(𝜃) −  𝛷(𝜃𝑝𝑟𝑖𝑜𝑟) + ∑ 𝑙𝑜𝑔𝑍𝑛

𝑁

𝑛=1

+  𝛷(𝜃−1) −  𝛷(𝜃𝑝𝑟𝑖𝑜𝑟) 

5.4 Probabilistic Backpropagation for Deep Gaussian Processes 

 
Computing 𝑙𝑜𝑔𝑍𝑛 is analytically intractable for deep hierarchical structures as the likelihood given 
the inducing outputs u is nonlinear.  
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One of the advantages of this algorithm over the variational free energy method of Damianou and 
Lawrence [2013] is that the hidden variables are integrated out, hence we reduce the need to 
optimize over them. We now show a one hidden layer example: 
 

𝑍 =  ∫ 𝑝(𝑦|𝑥, 𝑢)𝑞(𝑢)−1𝑑𝑢 

= ∫ 𝑝(𝑦|ℎ1, 𝑢2) 𝑞(𝑢2)−1𝑑ℎ1
𝑑𝑢2

∫ 𝑝(ℎ1|𝑥, 𝑢1)𝑞(𝑢2)−1𝑑𝑢1
 

We proceed by marginalizing the inducing outputs leading us to: 

𝑍 =  ∫ 𝑝(𝑦|ℎ1)𝑞(ℎ1)𝑑ℎ1
 

Where the above distributions in the integral have the following form: 
 

𝑞(ℎ1) = 𝑁(ℎ1; 𝑚1, 𝑣1)  with:  

𝑞(𝑢1)−1~ 𝑁(𝑚1
\1

, 𝑉1
\1

)  

𝑚1 =  𝐾ℎ1,𝑢1
𝐾𝑢1,𝑢1

−1 𝑚1
\1

 

𝑣1 =  𝜎1
2 + 𝐾ℎ1,ℎ1

− 𝐾ℎ1,𝑢1
𝐾𝑢1,𝑢1

−1 𝐾𝑢1,ℎ1
+ 𝐾ℎ1,𝑢1

𝐾𝑢1,𝑢1
−1 𝑉1

\1
𝐾𝑢1,𝑢1

−1 𝐾𝑢1,ℎ1
 

 
and 

 
𝑝(𝑦|ℎ1) = 𝑁(𝑦; 𝑚2|ℎ1

, 𝑣2|ℎ1
) with: 

𝑞(𝑢2)−1~ 𝑁(𝑚2
\1

, 𝑉2
\1

) 

𝑚2|ℎ1
=  𝐾ℎ2,𝑢2

𝐾𝑢2,𝑢2
−1 𝑚2

\1
 

𝑣2 =  𝜎2
2 + 𝐾ℎ2,ℎ2

− 𝐾ℎ2,𝑢2
𝐾𝑢2,𝑢2

−1 𝐾𝑢2,ℎ2
+ 𝐾ℎ2,𝑢2

𝐾𝑢2,𝑢2
−1 𝑉2

\1
𝐾𝑢2,𝑢2

−1 𝐾𝑢2,ℎ2
 

 
 

The law of iterated conditions is used to approximate the above integral, hence arriving at a 
Gaussian approximation of the form: 

𝑍~𝑁(𝑦|𝑚2, 𝑣2)  

𝑚2 =  𝐸𝑞(ℎ1)𝐾ℎ2,𝑢2
𝐾𝑢2,𝑢2

−1 𝑚2
\1

 

𝑣2 = 𝜎2
2 + 𝐸𝑞(ℎ1)[𝐾ℎ2,ℎ2

] + 𝑡𝑟(𝐵𝐸𝑞(ℎ1)[𝐾𝑢2,ℎ2
𝐾ℎ2,𝑢2

]) − 𝑚2
2  

 

𝐵 = 𝐾𝑢2,𝑢2
−1 (𝑉2

\1
+ 𝑚2

\1
∗ 𝑇(𝑚2

\1
)) 𝐾𝑢2,𝑢2

−1 − 𝐾𝑢2,𝑢2
−1  
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6 Parse Tree Features 
 
Extracting features from text is a fundamental research problem in fields such as information 
retrieval or text categorization just to name a few. However, there is no standard method for text 
representation as different tasks require different features, such as in the case of functional words 
which are not particularly relevant for topic categorization, but useful for author classification 
(Massung, 2013). 
 

6.1 Syntactic Features 

 
Perhaps the most fundamental feature extractable from statistical parse trees are Part-of-Speech 
tags. Their small number has led them to be easily implemented in classifiers. Their small number 
has also led to the development of n-gram models. Part-of-Speech tags are present in the vast 
majority of research being done in Natural Language Processing as they are they capture grammar 
usage at its most basic level. These features have been successfully implemented in scoring non-
native speech, deception detection or authorship attribution. Rashid [2015] has used these features 
on data belonging to the same project, leading to an increase in correlation with expert graders. 
 
 In addition, we are to also use features pertaining based on dependency grammar, such as the 
Grammatical Relations between heads and modifiers as they would provide a more accurate 
depictions of the complexity of sentence building.  
 

6.2 Skeletons 

 
Unlike the previously proposed methods which include syntactic categories to capture linguistic 
properties of the text, the next set of features diverges radically by eliminating all additional 
information from parse trees. Skeletons (Massung, 2013) throw away all syntactic information 
attached to parse tree, keeping just its structure. Jiang and Zhai (2007) have explore different parse 
tree features for the task of authorship detection, ranging from word sequence n-grams , grammar 
productions and dependency paths extracted from dependency parse trees. However, when using 
all of the above specified features in conjunction as opposed to separately, the researchers observe 
minor improvements in accuracy, Massung (2013) argues that this is due to the fact that structural 
properties of text are ignored, hence using this argument as motivation for the application of 
skeletons. 
 

6.3 Annotated Skeletons and “1-layer deep” Annotated Skeletons 

 
In this report we are also to explore different configurations of Annotated Skeletons, which are a 
compromise between obtaining pure structural features and incorporating a small set of 
dependency-grammar information. More specifically, using Grammatical Relation Centered Trees as 
our default parse tree, we also attach Grammatical Relation information to the root node of the 
skeleton. This is an extension of the Annotated Skeleton, more specifically also including the 
Grammatical Relation tags of the children of the root node. 
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7 Experiments Details 
7.1 Data Used 
 
The experiments pursued in this project are using speech data provided by Cambridge English, 
containing audio recordings of the speaking part of BULTAS alongside their corresponding grades per 
section. The data is summarized in the following tables: 
 

Dataset Name Speaker Native Language No. Speakers 

BLXXXgrd00 Gujarati 2013 

BLXXXgrd01 Latin American Spanish 925 

BLXXXgrd02 Polish,Vietnamese,Arabic,Dutch,French,Thai 994 

Table 2: Training data 
 

Dataset Name Speaker Native Language No. Speakers 

BLXXXeval1 Gujarati 223 

BLXXXeval2 Latin American Spanish 220 

BLXXXeval3 Polish,Vietnamese,Arabic,Dutch,French,Thai 226 

Table 3: Testing data 
 

Proficiency Level BLXXXeval1 BLXXXeval2 BLXXXeval3 

C2 1 5 2 

C1 44 39 42 

B2 44 44 48 

B1 45 44 48 

A2 44 44 48 

A1 33 44 38 

 12 - - 

Table 4: Distribution of Proficiency Levels per testing sets 
 
Besides these data sets, we also have gold-standard grades for BLXXXeval1 and BLXXXeval3, which 
have been marked by experienced human graders being of higher quality in comparison to the ones 
mentioned before. 
 
Lastly, we also have manual transcriptions of sections C,D and E for 16 candidates. Sections A and B 
were ignored as they comprise of short question-answers and read-aloud wordlists. We can 
summarize the DTAL dataset with the following table: 
 

Proficiency Level Candidates 

B1 5 

B2 6 

C1 5 

                                     Table 5: Proficiency distribution of DTAL speakers 
 
The intention of this study was to keep the manual transcriptions as faithful as possible to the true 
sounds in the recording, including transcriptions of disfluencies, actual pronunciation rather than the 
intended one and also incidental non-vocalised noises. The texts are segmented both manually, 
entitled “Syntactic” segmentation which tries to achieve optimal clause or phrase structure and 
automatically, entitled “Prosodic” segmentation which relies on silent pauses of length larger than 
0.3 seconds. 
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8 Results and Analysis 
In this section we are to discuss and analyse our findings. Firstly, we will commence by investigating 

what are the similarity scores pertaining from different parse tree structures between the manually 

transcribed data from the DTAL dataset and the ASR output. The second part will consist of 

showcasing the results for different configurations of features extracted from the parse trees using 

the standard Gaussian Process Grader from the „sklearn” package. Finally, we will discuss the 

advantages and shortcomings of using Deep Gaussian Processes for grading. 

8.1 Dependency-Grammar based Tree Kernel Similarity 

Using the various Dependency-Grammar derived parse tree structures defined in chapter 3 as inputs 

to the Smoothed Partial Tree Kernel algorithm, we obtain the following results: 

Parse Tree Structure DTAL „as-is” Similarity DTAL ‚cleaned-up” Similarity 

Grammatical Relation 79.4% 68.8% 

Compositional GR 74.2% 64.2% 

Lexical 75.7% 70.2% 

Compositional Lexical 76.2% 69.1% 

Table 6 : Pearson Correlation results between ASR and DTAL transcriptions using various Parse Tree 

Structures 

Taking into consideration that the ASR transcriptions come from an ASR system with high Word 

Error Rate (approximately 37%), we obtain results which negate our concers that the parse trees 

cannot be used for feature extraction due to erroneous data. Rashid [2015] has obtained correlation 

coefficients of 71.5% for DTAL „as-is”, respectively 70.9% for DTAL „cleaned-up” using the Syntactic 

Tree Kernel on the standard parse tree architecture obtained from RASP.Therefore, we obtain slighly 

higher similarity scores using our current models. This could potentially be caused by the fact that in 

the case of Syntactic Tree Kernels, just complete syntactic productions are taken into consideration 

for matching. With transciptions that have high WER, this leads a small error introduced by the ASR 

system to be given a higher weight in the overall similarity score. In the case of Smoothed Partial 

Tree Kernels any possible subsequence of varying lengths is considered for matching, hence 

providing higher flexibility, where in the case that one of the children of a particular node would be 

originating from a ASR error, it would be ignore in the computation while still allowing the other 

children present on the same layer to be used for matching. This is a desirable feature for a Tree 

Kernel applied on high WER data,as it is still able to gather some partial similairty from a path in the 

parse tree, one which would otherwise be ignored by Syntactic Tree Kernels. Besides the overall 

increase in similarity, we also observe larger gaps in the score using the Smoothed Partial Tree 

Kernel between the „as-is” and „cleaned-out” data sets. The „cleaned-up” data set has all difluencies 

removed and all identified errors corrected. For example, a possible error that is corrected in the 

„cleaned-up” version is the transformation of „you must to have a look” into „you must have a look”.  

We can argue that the Smoothed Partial Tree Kernel has a higher discriminative power, being able to 

show a clear difference between two different versions of transcriptions which have clear syntactical 

and sematical differences. 

Returning to our own results, we notice that the most similar structure for parse trees is the 

Grammatical Relation Centered Parse Tree. This result motivates the inclusion of Grammatical 

Relations tags obtained from the RASP output as features for our grader as a similarity of 79.4% 

could be deemed as satisfactory. With regards to the similarity score obtained by the Compositional 

Grammatical Relation Centered Trees, it is not surprising that it has achieved the lowest score as it 

involves a node similarity function that require complete matches of the Grammatical Relation and 
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the associated Part of Speech tags coming from both head and modifier. This stringent conditioning 

has lead to this slighly lower score. Nevertheless, 74.2% is a satisfactory score which motivates the 

usage of „1-layer deep” Annotated Skeletons as described in section 6.3. 

With regards to Lexical Centered Trees, it was surprising to notice that Compositional Lexical 

Centered Trees attain a slighly better similarity score than Lexical Centered Trees, even though in the 

case of CLCTs this involves a node similarity function which conditions on the Part of Speech tags 

from both head and mofifier to be identical as opposed to the sole condition imposed on Lexical 

Centered Trees. 

8.2 Syntactic Parse Tree Features 

In the section we are to present results gained by devising different configurations of features for 

the standard Gaussian Process grader on top of the standard F1 features. Following the 

epxerimental result of Rahsid (2015) we have opted to use the raw counts of either  Part of Speech 

tag or a Grammatical Relation as features, which we have entitled „PoS unigram”, respectively „GR 

unigram” . The other options included binary presence and Term Frequency Inverse Document 

Frequency as expressing the features but were found to give worse results. 

Our results are summarized in the following table: 

Feature 
[dimensionality] 

BLXXXgrd00 / BLXXXeval1 BLXXXgrd02/ BLXXXeval3 

Correlation(%) RMSE Correlation(%) RMSE 
F1 features [29] 82.67 5.047 82.37 3.564 

F1 + PoS unigram [158] 85.75 4.593 84.43 3.437 
PoS unigram [129] 85.19 4.638 83.55 3.525 
GR unigram [21] 82.74 4.797 78.50 3.802 

F1 +GR unigram [50] 83.65 4.793 74.69 6.151 
F1 + PoS + GR unigram [179] 85.27 4.622 84.18 3.442 

                             Table 7: Gaussian Process Regression results using Syntactic features 

In terms of performance of the pure syntactic features, both PoS unigram and GR unigram manage 

to obtain higher correlation and lower RMSE values that the set of standard features on the 

grd00/eval1 pair, whereas in the case of grd02/eval3 just PoS unigrams manage to obtain better 

scores. Nevertheless, these results show that Grammatical Relations tags can achieve comparable or 

near comparable performance in comparsion to the more widely used PoS tags. We notice that in 

the the first pair, the combiantion of F1 and Grammatical Relation unigrams has a positive effenct on 

the overall performance, whereas in the other pair it results in an almost double RMSE value. None 

of the above pairs achieves better results when combining both PoS tags and GR tags with the 

standard F1 feature set. 

8.3 Structural Parse Tree Features 

In this section we are present our findings regarding the feasability of using structural features such 

as Skeletons , Annotated Skeletons or  „1-layer deep” Annotated Skeletons. We start by investigating 

the performance of using structural parse tree features as sole inputs to our Gaussian Grader.For all 

the experiments involving strcutural aprse tree, we use the Grammatical Centered Tree as the 

default tree from which we derive the skeletons. The following table summarizes our findings: 
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Skeleton type 25 75 150 300 500 

Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE 

Skeletons 58.31% 5.966 62.34% 5.775 65.61% 5.655 65.43% 5.655 66.20% 5.677 

Annotated 
Skeletons 

68.27% 5.516 66.76% 5.649 68.64% 5.503 69.75 5.516 69.32% 5.513 

„1-layer deep” 
Annotated 
Skeleton 

68.30 5.466 68.55 5.554 66.78 5.635 68.38 5.532 70.87 5.456 

                      Table 8: Gaussian Process grader results depending using structural features 

While in the process of identiying and counting all the possible skeletons present in our data we 

have arrived at a number of approximately 14000 different skeletons. Hence, we investigate how 

performance varies as we change the number of top occuring skeletons in the pair 

BLXXXgrd00/BLXXXeval1. 

By looking at the results for each different type of structural parse tree architecture, we notice a 

steady increase in the correlation with the expert grades as we increase the number of skeletons 

which we include in the feature space. This is due to the fact that skeletons which are at the top in 

terms of appearences,such as the ones in top 25, tend to encode fairly simple syntactical and 

semantical information since they appear very often. As we progressively include more less occuring 

skeletons in the feature space, we thus manage to encode syntactic information of higher 

complexity which would be a sign of spoken language proficiency. 

Another immediate observation which we can draw from the above table is the general increase in 

correlation with the expert grades as we increase the complexity of the information encoded in aut 

structural parse tree features, respectively transitioning from „blank” parse trees such as the 

Skeletons to ones which encode just the Grammatical Relation tag of the root node and finally 

transitioning to ones which also encode the Grammatical Relation tag of the children of the root 

node. Perhaps surprising is the relative small difference in performance between Annotated Trees 

and „1-layer deep” Annotated Trees. 

We are to also investigate the results of using structural features with audio and fluency features, as 

they should complement each other. We use the top-500 skeletons in each case. 

Features Correlation (%) RMSE 

F1 + Skeletons 77.30 5.284 

F1 + Annotated Skeletons 78.36 5.184 

F1 + „1-layer deep” Annotated 
Skeletons 

80.43 5.066 

 

 

None of the structural features have been able to outperform the standard feature set baseline. 

8.4 Deep Gaussian Process Regression 

In the original paper showcasing the applications of Deep Gaussian Process using Expectation 

Propagation to real-life datasets [ Bui et al., 2016] they investigate different DGP arhitectures with 

one hidden layer with a number of hidden units ranging from 1 to 3. Their experiments involve 

several large scale datasets from the UCI repository, such as the „year” dataset which comprises of 

50,000 samples with a dimensionality of 90. The best results that they have obtained were using a 

Deep Gaussian Process with one hidden layer of size 3. Therefore, we are to start our experiments 

with similar configurations of the toolkit „deepGP_approxEP” which is used in this project,by using 

Table 9: Gaussian Process grader using standard feature set and structural 

features onBLXXXgrd00/BLXXXeval1 using the HC3 system 
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ADAM with the default learning rate of 0.001,iterating for 4000 times and using Stochastic 

Expectation Propagation. However, we start our prelimiary experiments by using a slighly larger 

arhitecture with 6 hidden units. 

8.5 Sparse Gaussian Process Regression using „1-layer” DGP-SEP 

We start by obtaining baseline scores for our model by using it with one GP layer and no hidden 

layers, effectively acting as a sparse Gaussian Process. The following results were obtained: 

Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 83.13 4.867 0.396 0.725 0.546 

100 81.05 4.671 0.461 0.752 0.612 

200 79.36 5.095 0.484 0.743 0.650 

Table 10: Sparse DGP-SEP using 1 layer results trained and evaluated on BLXXXgrd00/BLXXXeval1 

using the F1 features set on the HC3 decoder data. 

 

Table 11: Sparse DGP-SEP using 1 layer results trained and evaluated on BLXXXgrd02/BLXXXeval3 

using the F1 features set on the HC3 decoder data. 

Looking at the table 10, we notice that using the DGP-SEP model with 50 inducing points as a simple 

Sparse Gaussian Process results in Pearson correlation scores which are above the 82.67% obtained 

in the case of using a full Gaussian Process. In terms of RMSE scores,our baseline model from the full 

Gaussian Process model has a RMSE value of 5.047,which is surpassed by our DGP-SEP models with 

50 and 100 inducing points by quite a considerable proportion. It is surprising that better results can 

be achieved with such high sparsification. 

By looking at table 11, we notice that our sparse DGP-SEP model has not managed to obtain the 

same performance as the full Gaussian Process applied on BLXXXgrd02/BLXXXeval3, in all three cases 

underperforming both in terms of correlation and RMSE since our baseline has a correlation of 

82.37% and a RMSE of 3.564 

In terms of pure predictive power, our sparse DGP-SEP model has peformed well on the 

BLXXXgrd00/BLXXXeval1 pair, we notice an extremely poor performance in terms of the rejection 

scheme based on predictive variance(Van Dalen et al., 2015).On the other hand, our model exhibits 

a reverse behaviour on the pair BLXXXgrd02/BLXXXeval3. The following plots are taken for the case 

Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 78.07 3.864 0.589 0.812 0.725 

100 78.42 3.744 0.6136 0.8161 0.7519 

200 78.93 3.792 0.563 0.811 0.693 
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of 50 inducing points for each of the trening/testing pairs and are illustrative of the other cases as 

well: 

 

Figure 7: Left – AUC Rejection plot and variance density for BLXXXgrd00/BLXXXeval1; 

                   Right – AUC rejection plot and variance density for BLXXXgrd02/BLXXXeval3; 

From the above figure which depict cases representative also for 100 and 200 inducing points, we 

notice that the predictive variance in the case of BLXXXgrd00/BLXXXeval1 is far greater that the one 

for BLXXXgrd02/BLXXXeval3, resulting in erroneous behaviour of the rejection scheme which 

achieves score lower than 0.5 in all cases. 

We are now to examine what are the effects of extending our DGP-SEP model with one hidden layer 

with 6 hidden units. The results are summarized in the following table: 

Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 83.37 5.132 0.364 0.719 0.507 

100 82.97 4.914 0.417 0.727 0.574 

200 83.07 5.143 0.358 0.7123 0.502 

Table 12: Sparse DGP-SEP using 1 hidden layer with 6 units results trained and evaluated on 

BLXXXgrd00/BLXXXeval1 using the F1 features set on the HC3 decoder data 
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Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 78.71 3.7226 0.5897 0.8072 0.7306 

100 79.43 3.8329 0.5652 0.8003 0.7062 

200 79.02 3.902 0.5594 0.8033 0.6964 

Table 13: Sparse DGP-SEP using 1 hidden layer with 6 units results trained and evaluated on 

BLXXXgrd02/BLXXXeval3 using the F1 features set on the HC3 decoder data 

For the BLXXXgrd00/BLXXXeval1 pair, we notice an unilateral increase in correlation compared to the 

previous case without any hidden layers. However, we did not observe an improvement in terms of 

RMSE scores or in the ration of areas under the curve. This comes as a surprise as the hidden layer 

should have added more flexibility in modelling and more well-calibrated uncertainty. 

For the other pair, the results more or less stay the same which motivated us to increase the number 

of hidden units to 25. The results are summarized in the following two tables: 

 

Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 83.33 5.125 0.3213 0.7176 0.4477 

100 82.31 4.853 0.4322 0.7378 0.5858 

200 82.60 5.154 0.3399 0.7079 0.4801 

Table 14: Sparse DGP-SEP using 1 hidden layer with 25 units results trained and evaluated on 

BLXXXgrd00/BLXXXeval1 using the F1 features set on the HC3 decoder data 

Table 15: Sparse DGP-SEP using 1 hidden layer with 25 units results trained and evaluated on 

BLXXXgrd02/BLXXXeval3 using the F1 features set on the HC3 decoder data 

Even upon expanding the hidden layer dimensionality to 25, in the case of BLXXXgrd00/BLXXXeval1 

we still do not observe a noticeable enhancement of the variance associated to its predictions, 

whereas in the other case we do not manage to improve the results in neither correlation, nor RMSE 

value. Further experiments were conducted on the BLXXXgrd00/BLXXXeval1 pair with up to 3 hidden 

layers but no significant improvement was noticed. One possibility was that given the small scale 

dataset and the low dimensionality fo just 29, the model reached its limit even from the case with no 

hidden layers. This plausible explanation motivated us to try the DGP-SEP model on data sets with 

larger dimensionality. 

 

 

 

Number 
inducing 
points 

Correlation(%) RMSE 𝐴𝑈𝐶𝜎 𝐴𝑈𝐶𝑀𝐴𝑋 𝐴𝑈𝐶𝜎

𝐴𝑈𝐶𝑀𝐴𝑋
 

50 79.67 3.730 0.5700 0.8038 0.7091 

100 80.58 3.609 0.5681 0.8035 0.7070 

200 80.19 3.740 0.5600 0.7968 0.7033 
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We now move on to apply the DGP-SEP model on the F1 features plus the PoS unigrams data sets. 

All of the results that are shown are produced with 50 inducing points. The following table highlights 

our findings: 

Data Pair Hidden 
Layers 

Hidden 
Units 

Corr. RMSE 

BLXXXgrd00 
- 
BLXXXeval1 

0 - 82.83% 4.7990 

1 6 88.56% 4.5193 

1 25 88.75% 4.4465 

1 50 88.66% 4.4650 

BLXXXgrd02 
- 
BLXXXeval3 

0 - 85.12% 3.3205 

1 6 84.87% 3.3921 

1 25 85.00% 3.3520 

1 50 85.08% 3.4102 

                               Table 16: DGP-SEP results applied on the F1 + PoS unigram data sets 

In the case of pair BLXXXgrd02/BLXXXeval3, the DGP-SEP model outperforms the standard GP 

regression baseline of 84.43% and RMSE score of 3.437 even without a hidden layer. Adding a 

hidden layer does not help in improving significantly the performance. 

In terms of the pair BLXXXgrd00/BLXXXeval1, the DGP-SEP model without any hidden layers does not 

manage to reproduce the scores obtained by the standard GP model, but as we increase to one 

hidden layer of a relatively small dimensionality, respectively 6, we already obtain a correlation on 

88.56%, which represents an almost 3% increase.  
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9 Conclusions 
We can organise the contributions of this project in three different parts. 

Firstly, by choosing the Smoothed Partial Tree Kernel we have added flexibility to the process of 

detecting similairty between ASR output and manual transcriptions of the same speech recordings. 

As we have seen in the difference in scores between the „as-is” and „cleaned-up” sets of 

transcriptions, Smoothed Partial Tree Kernels are able to discriminate better when the syntactic and 

semantic elements of sentences subly change. On top of this, due to the fact that it is not operating 

in the sub-tree domain, but in the partial tree domain, meaning that exact matches of all children of 

a node are not imposed,  it becomes more suitable for ASR transcriptions with high Word Error Rate. 

Besides these, by introducing the Grammatical Centered Tree and the Lexical Centered Tree 

alongisde the fact that they obtain scores of over 75% in similairty with manual transcriptions, we 

have proven empirically the feasability of suing PoS or GR tags in a grader system. In addition, the 

good similarity scores obtained by the Compositional Grammatical and Lexical Centered Trees, have 

also proven empirically the feasability of using n-grams based on PoS or GR tags. Nevertheless, 

further in-depth study must be done on exploring at what depth in the parse trees the similarity is 

more pronounced for different parse tree structures. This could be done by varying the horizontal 

and vertical decay factors in the theoretical construction of the Smoothed Partial Tree Kernel. 

Secondly, in our work we have proven that Grammatical Relation tags work when introduced even 

as sole inputs in a standard Gaussian Process grader.However, they do not provide the same 

accuracy as PoS tags. A promising research direction for future work is the development of the 

structural parse trees and extending them to incorporate more information. Feasbile designs might 

include mixing PoS tags and GR tags in a mixed Annotated Skeleton. 

Lastly, in our work we have implemented Deep Gaussian Process graders which increased the 

accuray by a significant percentage, such as in the case of the F1 feature set combined with the Part 

of Speech unigram feature set, increasing from approximately 85% to almost 89%. However, in some 

cases we have not been able to train the Deep Gaussian Process grader to give satisfactory results. 

Future projects with Deep Gaussian Process graders should attempt an exhaustive experimentation 

of more complex and deep architectures for more input features. In addition, another interesting 

research direction might be to incorporate in any Gaussian Process based grade, an uncertainty in 

the inputs, which might better reflect the reality of features stemming from statistical parse trees. 
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