Sequential Neural Models with Stochastic Layers

Replication of: Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, Ole Winther Presenters: Paula Wesselmann, Yeziwei Wang, Áine Cahill

Introduction

This paper models polyphonic music sequence data using a Stochastic Recurrent Neural Network (SRNN). SRNN combines deterministic history representation of RNNs and stochastic latent variables of SSMs. This gives the SRNN architecture the ability to model multi-modal uncertainty and long-term temporal dependency of sequence data.

Generative Model

$$p_{\theta}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{d} | \boldsymbol{u}) = p_{\theta_{x}}(\boldsymbol{x} | \boldsymbol{z}, \boldsymbol{d}) p_{\theta_{z}}(\boldsymbol{z} | \boldsymbol{d}, \boldsymbol{z}_{0}) p_{\theta_{d}}(\boldsymbol{d} | \boldsymbol{u}, \boldsymbol{d}_{0})$$

$$= \prod_{t=1}^{T} p_{\theta_{x}}(\boldsymbol{x}_{t} | \boldsymbol{z}_{t}, \boldsymbol{d}_{t}) p_{\theta_{z}}(\boldsymbol{z}_{t} | \boldsymbol{z}_{t-1}, \boldsymbol{d}_{t}) p_{\theta_{d}}(\boldsymbol{d}_{t} | \boldsymbol{d}_{t-1}, \boldsymbol{u}_{t})$$

 $p_{\theta_{x}}$ and $p_{\theta_{z}}$ are parameterised by NNs. Hidden layer $d_t = f_{\theta_d}(d_{t-1}, u_t)$ is deterministically implemented using GRU with distribution $p_{\theta_d}(d_t|d_{t-1}, u_t) =$ $\delta(d_t - \tilde{d}_t).$

SSM layer models uncertainty in latent states

RNN layer captures long-term dependencies

ELBO Training

Parameter learning: max. log-likelihood of training set $\mathcal{L}(\theta) = \max_{\rho} \left[\sum_{sequences} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{u}) \right]$ where

$$p_{\theta}(\boldsymbol{x}|\boldsymbol{u}) = \iint p_{\theta}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{d}|\boldsymbol{u}) d\boldsymbol{z}, d\boldsymbol{d}$$
$$= \iint p_{\theta_{x}}(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{d}) p_{\theta_{z}}(\boldsymbol{z}|\boldsymbol{d}) p_{\theta_{d}}(\boldsymbol{d}|\boldsymbol{u}) d\boldsymbol{z}, d\boldsymbol{d}$$

Because of the intractability of maximising loglikelihood, we instead maximise the variational evidence lower bound (ELBO) of the log-likelihood:

$$\mathcal{F}(\theta, \phi) = \mathrm{E}_{q_{\phi}(\boldsymbol{z}, \boldsymbol{d} | \boldsymbol{x}, \boldsymbol{u})} [\log p_{\theta}(\boldsymbol{x} | \boldsymbol{z}, \boldsymbol{d})] - KL(q_{\phi}(\boldsymbol{z}, \boldsymbol{d} | \boldsymbol{x}, \boldsymbol{u}) || p_{\theta}(\boldsymbol{z}, \boldsymbol{d} | \boldsymbol{u}))$$

Variational Inference

Approximate inference of the model is possible using a network that tracks the factorisation of the model's posterior distribution for training the SRNN,

 $p_{\theta}(\mathbf{z}, \mathbf{a})$

Variational approximation of the posterior is,

As both the generative model and inference network factorise over time steps, the ELBO separates as a sum over time steps:

$$\mathcal{F}(\theta, \phi) = \sum_{t} \mathrm{E}_{q_{\phi}^{*}(z_{t-1})} [\mathrm{E}_{q_{\theta}(z|z_{t-1})} [\log p_{\theta}(x_{t}|z_{t}, \tilde{d}_{t})]$$

 $-KL(q_{\phi}(z_{t}|z_{t-1},d_{t})||p_{\theta}(z_{t}|z_{t-1},d_{t}))]$ Approximate dependency of z_t on $d_{t:T}$ and $x_{t:T}$ by introducing auxiliary deterministic states a_t from an RNN running backwards in time.

$$d|x, u) = p_{\theta}(d|u)p_{\theta}(z|d, x) = p_{\theta}(d|u)\prod_{t} p_{\theta}(z_{t}|z_{t-1}, d_{t:T}, x_{t:T})$$
 like
1.

 \mathbf{x}_t

$$q_{\phi}(\boldsymbol{z}, \boldsymbol{d} | \boldsymbol{x}, \boldsymbol{u}) = p_{\theta}(\boldsymbol{d} | \boldsymbol{u}) \prod_{t=1}^{n} q_{\phi}(\boldsymbol{z}_{t} | \boldsymbol{z}_{t-1}, \boldsymbol{a}_{t})$$

Results				
	Nottingham	JSB chorales	MuseData	piano-midi.de
eplication)	-3.18	-5.37	-7.43	-7.57
(original)	-2.94	-4.74	-6.28	-8.20
IN [1]	-4.46	-8.71	-8.13	-8.37
3N [2]	-3.67	-7.48	-6.81	-7.98
RNN all dim)	-3.31	-5.04	-7.56	-7.46
erged data)	-3.27	-5.64	-7.64	-8.03

Train SRNN on 4 polyphonic MIDI music datasets of varying tempo and complexity. Approximate logelihood using ELBO.

} auxiliary deterministic states

 $a_t = g_{\phi}(a_{t+1}, [d_t, x_t])$

Experiment

- Paper replication experiment: 50 training epochs. SRNN: {s=100, a=300, d=300, z=100}. (s: sequence length)
- Alternative SRNN architectures: 20 training epochs; combinations of s, a, d, z.
- 3. Investigate over-complexity of model: 20 training epochs on small dimension SRNN {s=100, a=30, d=30, z=10}.
- 4. 50 training epochs on combined datasets.

Discussion

- SRNNs achieve state-of-the-art for speech.
- Music data requires simpler SRNN architecture. Achieved 2% better than original Piano ELBO using small SRNN.
- Replication results for Muse, Nottingham and JSB Chorales are within 18% of ELBO for original results. Replication achieved 8% improvement for Piano data.
- Decreasing z increases ELBO. Negligible effect on ELBO by changing a, d and s.
- Small dimensional SRNN achieves similar ELBO to replication. Improved performance for Piano and JSB Chorales.
- Combining datasets for training and validation achieved 2% improvement of ELBO on Piano dataset compared to the paper's results.

Future Work

- Use augmented music data to provide more data for training.
- Investigate the optimal architecture for music data of different complexities.
- Investigate evolution of KL-divergence during training. Ensure it does not vanish, meaning the effects of latent variables are not ignored.
- Compare to other latent variable RNN models, including the state-of-the-art on music data, RNN-NADE [1].

References:

^[1] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in highdimensional sequences: Application to polyphonic music generation and transcription. *arXiv:1206.6392*, 2012. [2] Z. Gan, C. Li, R. Henao, D. E. Carlson, and L. Carin. Deep temporal sigmoid belief networks for sequence modeling. In *NIPS*, pages 2458–2466, 2015.