
Natural Language to Neural Programs

Daniel Simig

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning, Speech and Language

Technology

Homerton College August 2017

Declaration

I, Daniel Simig of Homerton College, being a candidate for the M.Phil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose.

Signed:

Date:

Word count: 11677

Daniel Simig
August 2017

Acknowledgements

I would like to thank my industrial supervisor, Nate Kushman from Microsoft Research
Cambridge for his extremely valuable advice on this research. I would also like to thank Prof.
Bill Byrne for his guidance throughout this project. I am grateful to Microsoft Research
for providing me with computational resources which were essential to this work. Lastly, I
am grateful to my parents for their unconditional support throughout my university years.
Without them this work would not have been possible.

Abstract

Recent advances in neural program models allow us to build purely neural network based
architectures that learn to execute complex, algorithmic tasks. However, these models require
formal, structured specifications of the task. This thesis explores how well-known natural
language processing techniques such as attention and word embeddings can be adopted in
order to allow Neural Programmer-Interpreters (NPI-s) to take natural language instructions
directly as their input. We propose two novel, attention-based architectures that extend the
NPI model: The first model computes attention over the input word sequence and thus finds
the key bits of informations required to make the right decisions when executing the task.
With the second model we show the feasibility of using the attention mechanism over the
world state in order to interpret references to the observed world in the instructions. Our
models outperform our baseline, a trivial modification of original NPI model by up to 65%
accuracy in particular experiments.

Table of contents

1 Introduction 1
1.1 Existing work . 1
1.2 Research aims and results . 2
1.3 Organization of the chapters . 3

2 Background 5
2.1 Sequence processing . 5

2.1.1 Recurrent Neural Networks . 5
2.1.2 Multi-layer RNN-s . 6
2.1.3 Bi-directional RNN-s . 6
2.1.4 Encoder - decoder models . 7
2.1.5 Long-Short Term Memory Networks 7

2.2 Natural Language Processing . 8
2.2.1 Attention . 8
2.2.2 Word embeddings . 10

2.3 Neural Programs . 11
2.3.1 Neural Turing Machines . 11
2.3.2 Neural Programmer-Interpreters 12

3 Task Specification 17
3.1 The Nanocraft Task . 17
3.2 NPI Implementation details . 19
3.3 Natural Language Instructions . 20

3.3.1 Sentence Generation . 20
3.3.2 Some analysis . 21

3.4 Different shapes . 22
3.5 World references . 23

x Table of contents

4 Models 25
4.1 Simple encoder . 25
4.2 Attention . 26

4.2.1 Computing the context vector . 26
4.2.2 Integrating the context vector . 28

4.3 Word Embeddings . 28
4.4 World references . 29

5 Results 31
5.1 Attention over the instructions . 31

5.1.1 Performance . 31
5.1.2 Some analysis . 32

5.2 Extension to multiple shapes . 37
5.3 World references . 38

6 Related Work 41
6.1 Following Natural Language Instructions 41

6.1.1 Some history . 41
6.1.2 Moving away from parsers: Seq2Seq 42
6.1.3 More realistic environments . 42

6.2 Neural Program Lattices . 43

7 Conclusion 45

References 47

Appendix A Evaluation metric 51

Chapter 1

Introduction

One of the most recognised machine learning (ML) experts of our time, Andrew Ng defines
ML as "the science of getting computers to act without being explicitly programmed". [1]
While this is clearly an overly condensed description of what machine learning truly is, it
conveys well a general expectation we have towards ML. In this work we take this definition
in the most literal sense and attempt to build models that understand instructions formed in
natural language and produce a sequence of actions in order to execute them.

1.1 Existing work

Understanding and executing instructions given in natural language has been a major research
area in the past 10 years. Particular applications include navigation [2], manipulation of
spreadsheets [3], or instructing robots to execute everyday tasks [4].

Traditionally these problems were solved by first parsing the input sentences into some
logical structures, then mapping those to action sequences ([5], [6], [7]). These forms
typically need a set of hand-crafted terms, inherently limiting the generalisation ability of
these techniques. Some attempts have been made to eliminate the need for prior linguistic
knowledge ([8], [9]), but the ability of these models to produce a complex sequence of actions
is still limited.

A more recent idea is to represent programs in a purely neural network based way, without
incorporating expert knowledge about what the role of particular program is (starting with
[10]) These models can learn to execute rather abstract and complex algorithms such as
sorting numbers or carrying out arithmetic on a scratch-pad even from relatively little training
data. Due to the fact that they were largely inspired by the way computers execute commands,
they expect very precise and low level inputs just as a computer would do.

2 Introduction

To summarise, there has been a large amount of work on understanding instructions
in natural language and there are some exciting new models able to execute complex,
algorithmic tasks. However, the author is not aware of any work that connects two classes of
solutions in order to execute natural language instructions that require a complex sequence
of actions.

1.2 Research aims and results

In this work we attempt to bridge the gap between the above mentioned two types of solutions.
By using abstractions in the neural representation that handle the complexity of the execution,
we are able to use a number of simple Natural Language Processing (NLP) techniques to
extract the information from the natural language required to carry out a rather complex task.
In our case this task is to construct different shapes on a 2D grid from simple building blocks,
similar to the one described in [11].

The key idea in our approach was motivated by how humans would execute these tasks:
When presented with the instruction, one would naturally look for key bits of information,
such as what colour or material we have to use, or where do we need to put the objects. At
the same time, we would likely not focus on parts of the instructions that do not carry useful
information. The same idea can be applied to observing the world around us: at any moment
we tend to focus on objects that are relevant to our current activity.

In the NLP literature this idea is called the "attention mechanism" [12]. Our work largely
consisted of adapting this idea of attention to help neural program architectures understand
natural language. In particular, we aimed to answer the following questions:

• Is the current NPI model able to deal with natural language input with minimal
modifications?

• Can standard NLP techniques such as attention be used to improve on the performance
of the original NPI model?

• Furthermore, can we introduce an attention mechanism over world observations in
order to help understand references to the world in the instructions (often called
language grounding)?

First we established that with only little modification the existing NPI model was able
to significantly outperform a baseline sequence to sequence model [9]. We have then
successfully introduced a number of changes (based on a modified version of the attention
model) to the original architecture that in combination made our model perform even better,

1.3 Organization of the chapters 3

increasing accuracy by up to 55% in certain settings. Finally, we have constructed a new task
and further modified the model in order to show the feasibility of using world references
in the input sentences. Adding this new type of attention resulted in up to 58% increase in
accuracy in the new task.

1.3 Organization of the chapters

In Chapter 2 we describe a number of architectures and concepts our work builds on. This
chapter introduces all the information and notation that is required to understand later parts
of this work. Chapter 3 and Chapter 4 precisely describe the tasks we were trying to solve
and the models we used to achieve this. Chapter 5 summarises our results, provides some
analysis of how the models learned to execute the tasks and compares the findings to our
expectations. Chapter 6 showcases works that succeeded in solving problems similar to ours.
Finally, chapter 7 summarises the main achievements of this work and describes a number of
possible extensions to it.

Chapter 2

Background

This chapter is structured into three main parts: In the first part we introduce some basic
concepts that appear frequently in various sections of this report. In the second and the third
part of this chapter we present existing work in the two areas we try to connect in our work:
natural language processing and neural programs.

2.1 Sequence processing

Dealing well with sequences is a key component to solving the kind of tasks we are interested
in, as either the input (natural language), the output (actions, program calls) or both are
sequences. More importantly, these sequences can have variable length, thus traditional
Neural Networks are not able to deal with them efficiently. Recurrent Neural Networks, or
their more advanced variants, Long-Short Term Memory (LSTM) networks are a lot better
in handling this kind of problem. In this section we formally describe these models, as
majority of the works described in the following chapters make extensive use of these type
of architectures.

2.1.1 Recurrent Neural Networks

In order to deal with sequential input, RNN-s process one input at a time, but maintain a
so called hidden state that contains information about all the previously processed inputs.
Optionally, at each timestep an output vector is also emitted. There are a number of variants
of this model, but in this work we define and use the Elman-type [13] architecture for a
sequence of inputs xt over time t = 1..T :

6 Background

ht = σh(Wxhxt +Whhht−1) (2.1)

yt = σy(Whyht) (2.2)

Note that h0 is not defined - this can be a constant initialisation, some random noise, but
also some vector that carries information about the task to be solved - as we can see in later
sections. W.. are weight matrices of the appropriate dimensions 1 and σ. are some nonlinear
activation functions similarly to traditional NN-s. These architectures are "rolled out" to fit
the maximum length input.

Typically there are two outputs of this network that we are interested in. yt over time
t = 1..T can represent some transformation of the time series. Additionally, one might only
be interested in the last hidden state, hT, as this single, fixed length vector can encode all
important information from the variable-length input.

2.1.2 Multi-layer RNN-s

Similarly to hidden layers of NN-s, RNN-s can be stacked on top of each other. Consider the
n-th layer of a multi-layer RNN with layers n ∈ 1..N:

hn
t = σh(Wxhyn−1

t +Whhhn
t−1) (2.3)

yn
t = σy(Whyhn

t) (2.4)

The intuition is that the stacked layers can potentially learn more and more abstract
features. The final output of the network is yN

t . The set of hidden states in the last timestep
{hn

T}n∈1..N is again a fixed size representation of the variable length input.

2.1.3 Bi-directional RNN-s

The RNN architectures are inherently asymmetrical, as inputs at the beginning of the sequence
have to go through many more transformations as the one towards the end. To address
this issue, one might build a "backwards" network with identical architecture but input
x′t = xT−t+1. Hidden states and outputs of this network can be defined as the concatenations
of hidden states and outputs of the forward and backward networks.

1In order to make equations more readable throughout this report, we do not write out the bias terms
separately.

2.1 Sequence processing 7

2.1.4 Encoder - decoder models

In cases where both the input and the output are sequences, a commonly used method
is the following two-step process: First the input sentence is encoded into some hidden
representation using an encoder RNN. In the second step, the hidden state of a decoder
RNN is initialised with this hidden representation, and produces the output sequence. [14]
introduced this type of models using it for translation tasks. This encoder-decoder model
(often referred to as Neural Machine Translation, NMT in translation literature) was able to
outperform previous Statistical Machine Translation (SMT) systems despite not making any
assumptions about the data [14].

2.1.5 Long-Short Term Memory Networks

The update of the hidden state in a traditional RNN is a rather simple operation with limited
expressive power. [15] define a number of gates to control the value of a so called LSTM-cell.
This cell is persistent over time and carries information from all earlier inputs similarly to
the hidden state of a traditional RNN. The gates at time t are defined as follows:

• Input gate: it = σg(Wxixt +Whiht−1)

• Forget gate: ft = σg(Wx f xt +Wh f ht−1)

• Output gate: ot = σg(Wxoxt +Whoht−1)

Where the activation function σg is typically the Sigmoid function. The cell and the
hidden states are updated based on the values of the gates above:

ct =ft ◦ ct−1 + it ◦σc(Wxcxt +Whcht−1) (2.5)

ht =ot ◦σ(ct) (2.6)

An LSTM cell is illustrated on Figure 2.1. Note that LSTM-s can be stacked just like
RNN-s. In order to do this, just use the hidden units in layer n at time t as the input to
layer n+1 at time t: xn+1

t = hn
t . The bi-directional extension in Section 2.1.3 also applies to

LSTM-s. In this document the notation for LSTM-s will be ht = flstm(ht−1,xt), where ht

encapsulates all hidden and cell states. LSTM-s are a special type of RNNs, and the terms
LSTM and RNN are often interchangeably used as LSTM-s can be applied in virtually any
scenario where traditional simple RNN-s are used.

LSTM-s have been shown to perform better than traditional RNN-s in various tasks. In
the original work [15] it’s power was demonstrated by learning the well-defined grammar in

8 Background

Fig. 2.1 An LSTM cell. Source: [9]

text inputs. LSTM-s are particularly important for our work as these networks provided the
basis for most of the neural program architectures.

2.2 Natural Language Processing

2.2.1 Attention

Although applying the encoder-decoder model for machine translation was a tremendous
success (see [14]), the architecture has a major limitation. The model is forced to encode the
whole (variable-length) input sequence into a relatively small, fixed size vector, at the risk of
losing critical information about the input data. In order to overcome this issue, [12] uses all
the hidden states {ht

in}t∈1..T of the encoder RNN in order to help the decoding process in a
very specific way mimicking the way humans can focus on parts of a sentence.

At each time step j of the decoding, an alignment vector αj is computed that describes a
distribution over the elements of the input sequence. The intuition behind this is that a given
element in the output sequence might only be related to a well-defined region of the input
sequence - the alignment vector will try to capture this. Using this distribution a weighted
average is taken over the hidden states of the encoder LSTM (called the context, cj) which
is then used as an input to the decoding RNN. As the concept of attention is central to our
work, we now formally define it:

Consider time step j in the decoding process. Let the hidden state at this timestep be hj
out.

The relevance ei j of position i in the input sequence to position j in the output sequence is
defined as

ei j = a(hi
in,h

j
out)

2.2 Natural Language Processing 9

where a()̇ is the aligner model. In the original paper this is a feedforward neural network
that is trained simultaneously with other parts of the model. Another popular (and simpler)
option is to use the cosine distance of the two vectors.

The alignment vector is created by taking a softmax over the appropriate relevances, and
then used to create the context vector:

αi j =
exp(ei j)

∑
T
k=1 exp(ek j)

(2.7)

cj =
T

∑
i=1

αi jhi
in (2.8)

Note that the hidden state ht
in of an RNN can be interpreted in various ways. [12] uses a

bi-directional network and a concatenation of forward and backward hidden states to compute
the alignment. A diagram illustrating this architecture is shown on Figure 2.2 (in the notation
of the diagram sj = hj

out). [9] additionally concatenates the current input at time t, xt
in to the

hidden state ht
in and uses the resulting vector as the basis for computing the alignment. This

allows to directly choose words in the input that we want to pay attention to. This model is
called a multi-level aligner.

Fig. 2.2 A simplified representation of the attention architecture from [12]

10 Background

2.2.2 Word embeddings

The simplest way to mathematically represent a word is to use a one-hot representation. For a
vocabulary size of N, we need a vector of size N consisting of 0-s except for one location set
to 1. The limitations of this representation have been known for a long time. Firstly, it is hard
to scale this model as the size of the vector and hence the number of parameters required to
process this vector grows linearly with the vocabulary size, making training harder and more
vulnerable to overfitting.

Secondly, this primitive approach does not allow for representing similarities and relations
between different words, that is, does not convey the meaning of the word. By only looking
at these vectors there is no way of telling whether "apple" and "pear" are more similar to
each other than let’s say "apple" and "guitar".

These problems were encountered in the case of Neural Network Language Models
(NNLM-s) [16] and solved by a better approach, word embeddings (called Distributed
Representations at the time). The idea behind word embeddings is to represent each word as
a point in a relatively low (typically not larger than a few hundred) dimensional, continuous
space. In this space similar words are forced to be close to each other, hence the "meaning of
the word" becomes present in some sense in this representation. An additional benefit is of
course the significantly reduced number of parameters. Dimensionality reduction techniques
such as PCA [17] or t-SNE [18] are often used to map embeddings into 2 or 3 dimensional
spaces allowing them to be visualised. An example of this is shown later in this report on
Figure 5.5

These vector representations are learned jointly with the model they are part of. In
the case of [16] the model is a neural network that represents a language model. A crucial
property of this concept, however, is is that after learning these representations for a particular
task the vector representations can potentially be reused in a different task without further
modifications. Many alternative approaches have been proposed to train these embeddings,
for example Word2Vec [19], GloVe [20] or fastText [21]. We briefly describe the first one as
it is used in this work.

Word2Vec

The model called Word2Vec was invented by researchers at Google [19]. It simultaneously
uses word embeddings to complete two tasks. The first is called Continuous Bag of Words
(CBOW) - this is an N-gram model where a NN-based classifier is trained to predict the next
word based on the average of the embeddings of n consequent words. The second task is the
so-called skip-gram model where the embedding the ith single word is used to predict the (i +

2.3 Neural Programs 11

d)th word, where d is a randomly chosen number between 1 and some maximum distance.
This model was used to train 300-dimensional word embeddings based on 100B words [22].

2.3 Neural Programs

2.3.1 Neural Turing Machines

RNN-s (and thus LSTM-s) have been shown to be Turing-complete for a long time [23],
however methods for teaching such networks to carry out algorithmic tasks have only recently
been discovered. Neural Turing Machines (NTM) are one of the first architectures to achieve
this goal [10], and as such they introduce a number of key concepts also used in later works.
Since it is not directly related to our work we only briefly describe it’s architecture, focusing
on the ideas that are relevant to later sections.

Outline of the architecture

NTM-s are an extension of recurrent neural networks with a memory unit and the ability to
write to and read from locations in the memory using heads (following the nomenclature of
regular Turing Machines). This memory-handling mechanism is facilitated by the so called
controller network, which can be built using any of the recurrent architectures (RNN, LSTM)
described in Section 2.1.

First the hidden state of the controller network is initialised with some (learned) hidden
state bias vector. Then in each time step, this network takes some external input (world
observations typically), and produces an output vector. From this output vector, a number of
mappings with specific purposes create a number of output variables that control memory
I/O. These variables are responsible for:

• Addressing the memory by defining a continuous distribution over locations to be
written to / read from. This is done by both content-based methods (finding matching
patterns) and location-based methods (defining shifts).

• Determining the content to be written. This is done by erase and add vectors, similarly
to the gates of LSTM networks

• Determining the "sharpness" of the continuous distributions over states for reads /
writes.

Upon execution of memory operations the state of the memory is updated and some final
output (required by the task) is produced.

12 Background

Results and main achievements

NTM-s have been tested on a number of algorithmic tasks, including copying long sequences,
repeated copies (involving loops), associative recall and sorting. All of the listed tasks were
completed nearly perfectly. The key advantage of NTM-s seemed to be that they were able
to generalise to much larger datasets than the ones seen at training times. This was achieved
by learning algorithms that behave very similarly to human-constructed algorithms despite
being encoded as a set of continuous weights in a fully differentiable network (thanks to the
soft addressing mechanisms).

2.3.2 Neural Programmer-Interpreters

Neural Programmer-Interpreter (NPI) [24] is an architecture that learns to represent and
execute programs. Similarly to the previously described architecture, it has an LSTM-based
controller mechanism that in each time step decides about some operation to take. In contrast
to the previous approaches, instead of memory read/write operations the LSTM outputs
determine program calls and arguments to those calls, or the opposite, they instruct to return
from a subprogram. The model is trained from full execution traces (calls to subprograms
and elementary operations with arguments) of solving a task. Our work is based on this
architecture, more precisely on an implementation of this model by the authors of [11],
described in Section 6.2. For this reason, we present NPI in a mindset similar to how [11]
describes and uses NPI.

Stack-based program execution

Analogously to traditional program executions, NPI-s operate a stack of LSTM instances
(and parallel to this a stack of the program calls with corresponding arguments). In the first
timestep the LSTM for the top-level program is initialised and pushed on top of the stack.
From this point, at every timestep an input-output pair is added to the sequence of inputs /
outputs for the LSTM instance on the top of the stack. Here the input is an ensemble of a
number of different things: (1) a learnable embedding of the program currently executed,
(2) arguments for this program call, and (3) an embedding of the current world state. The
output is the entry in the execution trace for this timestep. The precise format of the output is
defined later in this section.

After the input and output is added to the current LSTM instance, one of the following
three events happen based on the current operation in the execution trace:

2.3 Neural Programs 13

• If a subprogram is called (PUSH), a new instance of the interpreter LSTM is initialised
with new hidden and cell states. This is pushed onto the top of the stack, moving the
old LSTM down the stack.

• On a return (POP) event the exact opposite happens: the current LSTM instance is
discarded and popped from the stack, bringing the previous LSTM (the caller) to the
top of the stack.

• On a call to an elementary program (OP), the stack of LSTM-s remains unchanged.

It has to be emphasized that throughout this process only a single set of weights is used
for all LSMT-s. Thus, a single execution trace can be considered as a set of training examples
(one for each (sub)program call) for training a generic interpreter LSTM. Since the currently
called (sub)program and the arguments are included in the input at a given time step, this
generic interpreter LSTM learns to understand what program is currently called and act
correspondingly.

The main contribution of this thesis is extending the architecture of this interpreter LSTM
in a way that it can handle Natural Language inputs instead of a precisely defined top-level
program call with a set arguments. In the following we formally define the architecture used
for this interpreter LSTM and introduce the notation that will also be used to describe our
contribution.

The interpreter LSTM

Consider a (potentially multi-layer) LSTM with input ut and hidden states in its final layer
ht

out as described in Section 2.1.:

ht
out = flstm(ht−1

out ,u
t) (2.9)

ut = fenc(wt,gt
in) (2.10)

Here wt is a suitable representation of the world and gt
in is a task-specific joint encoding

of the currently executed program and arguements. fenc is a task-specific encoder of all this
information. Mover, from the final hidden state 4 different output variables are mapped:

• pt
a =Waht

out determines the action to be taken (PUSH, POP, or OP).

• pt
g =Wght

out determines the subprogram to call (if pt
a = PUSH)

• pt
o =Woht

out determines the elementary operation to perform (if pt
a = OP)

14 Background

• pt
r,i = Wr,iht

out determines the ith argument to the called subprogram or elementary
operation.

All of the above variables are represented as one-hot values over possible actions, programs,
elementary operations and possible (discrete) values of arguments respectively. gt+1

in is
constructed based on these output variables. This model together is the core interpreter
LSTM of NPI-s, shown on 2.3.

Fig. 2.3 A simplified representation of the NPI interpreter from [11]. Note that the argument
outputs pt

r,i are omitted for clarity.

Training and evaluation

Training data consists of pairs of top-level program arguments (defining the task to be
executed) and fully decorated execution traces providing ground truth values for all the
output variables described above. The network is trained to simply maximalise the joint
log-probability 2 of the execution trace given the top-level program arguments g1

in.
Note that two different ways of training this model correspond to two different aims of

NPI-s:

• Training a network with fixed weights for the interpreter LSTM can be considered as
programming: only the observation encoders and program embeddings are trained,
while the interpreter is unchanged.

2One can take the softmax of any of those output variables. As a result of this, the output variable can be
considered as a probability distribution, assigning a probability to the true value.

2.3 Neural Programs 15

• Training the network without fixing any weights is equivalent to building an interpreter.

At evaluation time, in each timestep, the argmax of the one-hot output vectors is used to
determine the next step to take. The interpreter LSTM is run until a POP action is taken in
the top-level program call, producing a full execution trace.

Results

The above described model was tested in a range of applications: number addition and
bubble-sorting on a scratch pad, rotating 3D models. For all of these tasks the model was
able to learn already from an extremely small amount of data (8 examples for sorting).
Furthermore, the model achieved previously unseen generalisation abilities by being able to
sort sequences 3 times as long as any provided training example.

On top of this, the proposed model generalises not only quantitatively but also quali-
tatively. In the 3D rotation experiment the input was an image represented as an array of
pixels (as opposed to the scratchpad in other experiments) and the actuator was moving the
camera around the model (as opposed to writing digits). The same core interpreter module
was successfully used to solve this task, demonstrating the versatility of NPI-s.

Finally, [11] builds on top of this work and evaluates it as a baseline for the Nanocraft
task as described in Section 6.2. The NPI model is able to perfectly learn to construct a
"house" from only 128 examples. We will use variants of this task in order to evaluate our
work.

Chapter 3

Task Specification

The task we are trying to solve in this work is based on the task called Nanocraft, which
appeared originally in [11]. The authors of this paper have created an implementation of
the NPI architecture suitable for this task, our work builds on top of that. In this chapter we
describe this dataset, explain how the NPI architecture in [11] was suited to this task, finally
we describe the modifications we made to this dataset.

3.1 The Nanocraft Task

The Nanocraft world consists of a d by d grid (16 X 16 in our experiments) and a robot.
This robot can freely move around the grid and place blocks at different positions of the
grid. Blocks have two attributes, color (reg, green, blue, orange or yellow) and material
(iron, steel, glass, wood or plastic). If these blocks are arranged into a rectangle shape, we
call those shapes houses. Houses can have different positions, widths and heights (each
attribute can take 5 different values). The robot is tasked to build a house by executing a
sequence of elementary operations. There are two elementary operations, ACT_Move and
ACT_PlaceBlock. On top of the elementary operations, there are higher level functions
(often referred to as subprograms) that the robot is using while executing the task, such as
MoveMany or BuildWall. Building a house consists of 2 MoveMany and 4 BuildWall calls,
as illustrated on Figure 3.1. Table 3.1 gives an overview of the functions used in Nanocraft.
Note that for easier implementation we use the maximum 4 arguments all the time, with
unused arguments are set to 0.

In order to force models to condition their decisions on the world observations, some
blocks are pre-built and already present on the grid - no PlaceBlock action is needed at those
positions even if building a house would involve a block at that position.

18 Task Specification

name arguments
MoveMany distance, direction
BuildWall distance, direction, color, material
ACT_Placeblock color, material
ACT_Move direction

Table 3.1 Subprograms and their required arguments for the Nanocraft task

The training data consists of tuples of house specifications, fully decorated execution
traces and world states at every step of execution: {(Hi,Ei,Wi)}N

i=1 where N is the number
of samples. A house specification is simply a tuple of six integers representing where the
house should be built, what dimensions it should have, what colour and material should be
used: Hi = (PosX ,PosY,SizeX ,SizeY,Col,Mat).

Execution traces contain the function calls at each time step (including higher-level
subprograms and elementary actions) along with the supplied arguments to those calls.
Formally we can define an execution trace analogously to the output of the NPI (refer to
Section 2.3.2):

An execution trace Ei is defined as

Ei = {At ,Gt ,Ot ,Rt}Ti
t=1

At and Gt are integers representing the elementary operation or subprogram calls respectively
at time step t. Ot ∈ {0,1,2} represents whether at a given timestep t a PUSH, POP, or
OP happened. Finally Rt = {rt

j}4
j=1 is the set of 4 arguments passed to the subprogram /

elementary operation. Note that depending on the value of Ot some of these variables are not
defined - we use a special integer for this that "pad" the sequence.

An execution trace is illustrated on Figure 3.1, although note that the used set of functions
on the illustration is slightly different from the one described above.

The world is represented as a set of feature maps :

Wi = {Wj}n
j=1,Wj ∈ {1..d j}DXD

Each map has size D by D and has d j possible values in each position, we call this the depth
of the map. In the original implementation there are n = 3 maps: a one-hot map for showing
the position of the robot and two maps that represent the colors and materials of pre-built
blocks (locations without a block are represented as 0-s, built blocks are represented with
some non-zero code for their color and material).

3.2 NPI Implementation details 19

Fig. 3.1 An illustration of an execution trace from [11]. Every line represents 1 timestep.

The task is to exactly reproduce the execution trace provided in the data. The evaluation
metric is computed in the following way: execution traces are generated and scored for 500
test samples: 1 point if the produced sequence of function calls and arguments exactly match
the true execution trace (pt

o = Ot , and so on for actions, subprograms and arguments), and 0
otherwise. The scores are then averaged, producing the final metric called zero-one accuracy.

3.2 NPI Implementation details

Section 2.3.2 describes a the core module of the NPI architecture but does not go into detail
the task-specific parts of the model, the world and argument encoders. Here we briefly
explain the architecture that was used to encode the Nanocraft world observations in [11], as
our work is based on the very same architecture.

World encoder: Consider a single world observation with n D by D feature maps. For
a given position in the grid we have n features, each is embedded into a 32-dimensional
(learnable) embedding. We then concatenate these embeddings achieving 32n feature maps,
each being a D by D grid. This representation is then fed through 2 convolutional layer and 2
fully connected MLP layers with ReLU activation.

20 Task Specification

Program and elementary operation representation: Program ID-s are embedded into
a 32-dimensional vector.

Argument representation: There are a small amount of possible discrete arguments,
and as such the 4 arguments are represented as 4 one-hot vectors for the 4 arguments, then
concatenated together.

To jointly encode world observations , current program and arguments, the outputs of the
above three encoders are concatenated and fed through a 2 layer fully connected network
with ReLU units. For further parameters of the architecture, see the original paper ([11])

3.3 Natural Language Instructions

In order to study how the NPI model can be extended to natural language input, the original
dataset was modified by replacing the parameters of the houses to be built by a number of
english sentences specifying the properties of the house to be built. Due to the complexity of
collecting input from humans and the lack of time to do this, we decided to programatically
generate natural language like sentences based on the 6 parameters (positions, sizes, color,
material) of the houses.

3.3.1 Sentence Generation

Given a house specification Hi, we generate a sequence of integers representing words of
the instructions {xt

nl,i}
T
t=1 in the following way:

1. Each property in the specification is mapped to a string. Colors and Materials are
mapped to the appropriate single words. Positions are expressed as ((lower | upper)
(left | right)) | middle. The width of the house can be expressed using one of the
following terms: "very wide", "wide", "average width", "narrow", "very narrow".
Height is expressed in a similar manner.

2. For each property we randomly choose one from two substantially different ways
of expressing the given property. For example, we can add "red" in front of the
word "house" or "building", but alternatively we could also specify the color with an
additional sentence: "Paint it red".

3. For some words appearing in the sentence we randomly choose from synonyms - we
can use "construct" or "build" for example.

3.3 Natural Language Instructions 21

4. A template sentence is created based on the result of point 2. and is filled with the
appropriate words based on points 1. and 3. This results in a natural-language like
sequence of sentences.

5. Some sentences and adjectives are randomly shuffled so that the order in which different
types of information appear is random.

6. The resulting text is split by spaces and resulting list of words is mapped to a corre-
sponding sequence of integer codes. Shorter sequences are padded from the right such
that all sentences will have the same length T.

To create the new training data we simply replace each of the house specifications Hi

with its randomly generated natural language instruction set, {xt
nl,i}

T
t=1. A random sample of

sequences generated by this procedure is found below:

"Build a blue building from plastic. Make it very wide and short. It has to be
in the upper left."

"Construct a plastic very wide and short house in the upper left. Paint it
red."

"Build a glass blue building in the middle. Make it narrow and very tall."

The way we represent world states also had to be changed. We found that position,
material and color of pre-built blocks carry significant information about the house to be
built, and hence prevented us from accurately measuring the ability to understand natural
language. In the final version of our work, the world state has only 2 feature maps. The
one-hot player position map was unchanged, but instead of precisely representing the color
and material of built blocks, we only used a binary map expressing whether there is a block at
a given position or not. This map was initialised with equal amount of empty and non-empty
blocks randomly, thus avoiding the leakage of information about the position argument. To
summarise, the new world representation (as opposed to previous works) guarantees that the
only flow of information is via the natural language instructions.

3.3.2 Some analysis

Although the programmatically generated sentences are considerably more predictable and
less noisy than real life instructions, we believe they provide enough variety to test the
performance of our models. A number of properties make them similar to human-produced
instructions:

22 Task Specification

• Information can appear in different order and in different context.

• There are parts of the input where interpreting words in context is important, such as
"very wide". To get these cases right, the model has to learn the effect of "very" on
other words.

• There are distractive words that have no impact on the outcome of the task and the
model has to learn to ignore: "build", "a", "the", "." etc.

• There are non-trivial connections between words and meanings: different words can
refer to the same concept but in different context. For example "wide" and "tall" should
both eventually be used to infer that a particular wall should be long, but it also should
be learned that the two words refer to different walls.

We carried out a short experiment that counted how many ways a particular house
configuration can be expressed: There are 148 possible different instructions for a specific
set of parameters.

3.4 Different shapes

Note that in the above introduced dataset the parameters of the buildings only affected the
arguments passed to higher level functions. The sequence of high-level function calls were
identical for all samples: 2 calls to MoveMany, followed by 4 calls to BuildWall. A secondary
aim of this work was to investigate whether deciding between different sequences of higher
level function calls is possible using natural language instructions. In order to find this
out, we added an additional parameter to the house specification: the shape of the house,
which can be be one of rectangle, trapezoid or triangle. Parallel to this we changed the
data generation pipeline by adding an additional function called BuildDiagonalWall, which
takes the same parameters as BuildWall but builds walls diagonally. Using this function
we modified the top-level sequence of function calls: building the rectangle is exactly the
same process as previously but building a trapezoid involves alternating calls to BuildWall
and BuildDiagonalWall and building a triangle requires two diagonal walls followed by
two normal BuildWall-s. The grammar for natural language instructions was extended
accordingly by adding an extra adjective, the shape. We refer to this version of the Nanocraft
task as the multi-shape task.

3.5 World references 23

3.5 World references

The third aim of this thesis was to explore how instructions containing references to the
world state can be handled. Due to time constraints this idea was only briefly explored, using
a rather primitive task. This new task had only a simple template sentence, "Move to the
<color> <material> block". The initial world state included 5 pre-built blocks at different
locations, each with a different pair of color and material properties, one of which was the
one specified in the instruction. 1 The task was to move to the appropriate block by two calls
to the MoveMany function. We refer to this task as the move task.

1Since pre-built blocks have great importance here, the old type of world representation from Section 3.1 is
used again.

Chapter 4

Models

In this chapter we present and formalize the sequence of changes we made to the existing
model in order to solve the tasks described in the previous chapter.

4.1 Simple encoder

As mentioned in Chapter 2, the most obvious way to encode a variable-length sequence
of words (the instructions in natural language) is using some variant of recurrent neural
networks. In our case this an implementation of LSTM-s was already present in the codebase,
hance we started by testing a simple LSTM-based architecture. The main idea of this solution
is to encode the input with an LSTM into a fixed-size vector, then use this vector to initialise
the decoder LSTM instances of the NPI architecture - in a very similar mindset to what was
described in Section 2.1.4, but utilising the hierarchy provided by the full execution traces.

Let xt
nl for t ∈ 1..T be the input sequence of words (that is, the instructions) represented

as integers. We first construct a learnable embedding, fnl_emb()̇ that assigns a 32 dimensional
vector to each word. These embeddings are then fed into the encoder LSTM:

ht
in = fnl_lstm(ht−1

in , fnl_emb(xt
nl))

This encoder LSTM is identical in architecture to the decoder LSTM which was already
implemented: it has 2 layers and 128 units in both the cell and hidden states. Because of this,
we can directly use the hidden and cell states in all layers of the encoder to initialise their
counterparts in the decoder LSTM:

h0
out = hT

in

26 Models

4.2 Attention

Section 2.2.1 describes a traditional attention mechanism that is widely used in recent
literature. We adopted this approach for the NPI model in order to better predict which
function or elementary operation to call and the 4 corresponding arguments. Figure 4.1 shows
a diagram summarising how we extended the NPI model with a sequence of operations in
order to incorporate attention. In this section we provide the details for each of those steps
shown on the diagram and give a precise mathematical definition of our new model.

Fig. 4.1 An overview of the operations required to compute an argument (or program) output
oj at decoding time-step j. Green color shows pieces of the new architecture, red is the
orignal NPI model

4.2.1 Computing the context vector

In our previous notation, ht
in represented the ensemble of hidden states and cell states of the

encoder LSTM in all 2 layers at time step t. To clarify notation, we will call this
−→
ht

in, and
−→
ht,2

in
represent the ensemble of the hidden state and the cell state of the final layer. In addition, we
construct a backward encoder as described in Section 2.1.3:

←−
ht

in = fnl_lstm_bw(
←−−
ht+1

in , fnl_emb(xt
nl))

4.2 Attention 27

Inspired by [9], the input to the alignment algorithm is the concatenation of the top layer
hidden and cell states of the forward and the backward encoder, moreover the embedding of
the natural language input. Lets denote this input at time t by ut:

ut =

fnl_emb(xt

nl)−→
ht,2

in←−
ht,2

in

For the purposes of this section assume that we want to compute some attention-based

context vector that is later going to be used to produce a particular argument to use with the
next function call or elementary operation at time j. For the sake of simplicity denote this by
cj. An identical attention mechanism is used to compute other outputs: other arguments and
the function/elementary operation to call.

At decoding time, in each time step t, a 32-dimensional "attention information" vector vt

is computed based on the current state of the decoder LSTM. The purpose of this vector is to
encode what kind of information we are looking for in the input text. It is computed very
similarly to other outputs:

vk =W in f o
r,1 hj

out

The alignment and the context vector is then computed analogously to what was described
in Section 2.2.1:

cj =
T

∑
i=1

αi jui (4.1)

αi j =
exp(ei j)

∑
T
k=1 exp(ek j)

(4.2)

ei j = a(uj,vj) (4.3)

As opposed to the simple cosine-distance based aligner presented earlier, the aligner
function a concatenates its two inputs and uses a two-layer fully connected neural network
to compute the relevance number. This network uses tanh activation function, has a single
hidden layer with 160 units (half as many as in the input layer), then a single output unit,
ei j The reason for choosing this type of aligner instead of the one using cosine-distance is
simply that it performs better.

Recall that this mechanism is used 5 times in parallel in order to compute the 5 outputs:
the function and the 4 argumens to use. For each of these 5 instances different weights

28 Models

W in f o are used to compute the "attention information", but the weights used in the aligner
network are shared. The intuition behind this is that we force the aligner network to gain a
general understanding of all the of information found in the instructions, which results in
more general, rich representations.

4.2.2 Integrating the context vector

The computed context vector cj is intended to carry information about the argument we
are about to produce. Hence the first step of integrating this context vector into the NPI
architecture is mapping it to an appropriate one-hot vector. This is done in the same fashion
as the outputs are computed in the orignial architecture (Section 2.3.2), that is, using a fully
connected layer with a softmax at the output. Naturally this function will be different for
each of the the 5 kinds of outputs (function and the 4 arguments), but let’s assume we want
to compute what the attention-based method tells us about the frist argument at time j, call
this qj

r,1:

qj
r,1 = So f tMax(W attn

r,1 cj)

A last, crucial observation is that attention can not always be used to calculate the outputs.
As an example, the directions in which we move are not dependent on the instructions but
the internal state of the interpreter LSTM. Motivated by this, we added a gating mechanism
to combine outputs computed in the original NPI architecture and by the new attention-based
mechanism. The gate is dentoed as g j

r,1 and is a scalar number taking values between 0 and 1.
It is computed using a fully connected layer with a sigmoid activation σgate from the hidden
state of the decoder. Let’s denote the final output as ot

r,i. The gating mechanism is defined as
follows:

g j
r,1 = σgate(W

gate
r,1 hj

out) (4.4)

ot
r,i = g j

r,1 ∗qj
r,1 +(1−g j

r,1)p
t
r,i (4.5)

The changes described above maintain the differentiability of the network, that is, gradi-
ents can be propagated through all the bits of architecture we added to the original model.

4.3 Word Embeddings

In our experiments we use a very small training set, typically between 64 and 512 samples.
This is a reasonable requirement for our model, as detailed data about execution of tasks

4.4 World references 29

is very hard to find. However, when it comes to language modeling, there is an enormous
corpus of text available. Justified by this, we decided to experiment with using the pre-trained
word embeddings mentioned in Section 2.2.2 to initialise the word embeddings in the NPI
model, fnl_emb()̇. In this section we provide the details of how we implemented this.

A possible option would have been to directly use the pre-trained embeddings from [22]
in place of fnl_emb()̇. However, experimental results showed that this significantly reduce
performance. Our hypothesis was that this was due to the largely increased number of
parameters - the original embeddings are 300 dimensional as opposed to our earlier 32
dimensional embeddings.

To overcome this potential issue, we applied the following method. We first collect the
set of words appearing in our training data, then map this set of words to its embeddings,
resulting in a small set of 300-dimensional vectors. We train a version of Principal Component
Analysis (PCA) model [17] on this set of vectors and use it to extract 32-dimensional vectors
for each word. The embeddings in this 32 dimensional space will capture most of the variation
in the higher dimensional space but allow us to keep the original number of parameters.

In our final model, fnl_emb()̇ is initialised to the 32-dimensional embeddings. As opposed
to the original model, we do not change these embeddings at training time, they remain at
their original values throughout. We also experimented with allowing these embeddings to
be finetuned, but this resulted in less stable models.

4.4 World references

The purpose of this last extension was to help the NPI model to understand references in the
instructions to objects in the world. The architecture we used for this can be considered a
special kind of attention mechanism that compares information from the encoded instructions
with each position in the world to compute an "attention map". This map can be embedded
and used as an input to the NPI decoding stage. In the following we formalise our final
model.

Recall that the final hidden state of the top layer of our input encoder LSTM is denoted
as hT,2

in . This can be considered as a fixed-length encoding of the instructions. Following
the idea of "attention information" from the previous section, the encoded instruction is
mapped to a vector v that is meant to represent information about references to the world in
the instructions:

v =W w.attnhT,2
in

Recall that the world is represented as n pieces of d by d feature maps. Hence at any time
t, a particular location with coordinates i, j has n features associated with it. We represent

30 Models

these features as one-hot vectors and concatenate them, let’s denote the resulting vector by
wt

i,j. Computing the alignment matrix is analogous to the computation of alignment vectors.

α
t
i j =

exp(et
i j)

∑
d
k=1 ∑

d
l=1 exp(et

kl)
(4.6)

et
i j = a(wt

i,j,v) (4.7)

We used the cosine distance for the aligner function a(). 1. The final context vector ct is
computed as follows:

ct =
d

∑
i=1

d

∑
j=1

Ci, jα
t
i j (4.8)

where C is a learnable 3D weight tensor over the positions of the world grid, with shape
d by d by 32. 2 Finally, the context vector is appended to the encoded world state ut (see
Section 2.3.2) at each time step and fed into the decoder LSTM.

1Note that this requires the length of v to be the sum of the depths of the world feature maps
2Since the last dimension is 32, all Ci, j and the final context vector ct are 32-dimensional - this optimal

value was empirically determined.

Chapter 5

Results

5.1 Attention over the instructions

5.1.1 Performance

This section describes our main results on the basic Nanocraft task with natural language
(described in Section 3.3). As a baseline, we used an implementation of the Sequence-to-
Sequence model [9] to NPI (Section 6.1.2) that uses an encoder-decoder model (Section
2.1.4) to translate between the input sequence of words and the output sequence of program
calls. As this model does not make use of the information about higher-level subprograms, we
expected it to do poorly. We then tested and compared 3 different types of models: We first
took the Encoder-only model described in Section 4.1, then added the attention mechanism
on top of this (Section 4.2). Finally, we tested the same setup but with the word embeddings
fixed to the pre-trained ones (Section 4.3). This last model is our full, final model. Figure 5.1
summarises the performance of the above listed 4 models on the basic Nanocraft task 1

The baseline Seq2Seq model does extremely poorly, it learns close to nothing on this
range of sample sizes. We note that the same model with a simple template instruction "Build
a <sizeX> by <sizeY> <color> house from <material> in the <position>" learns perfectly for
512 samples - this demonstrates the challenge presented by the programmatically generated
NL instructions.

The basic encoder-only model does reasonably well and learns perfectly given enough
data. As the encoder of this architecture is identical to the encoder of the Seq2Seq model, the
difference in performance proves that the abstractions provided by the high-level functions
in the execution trace make learning the language a lot easier.

1Note that the performance of some models is extremely sensitive to the random seed used for training.
Appendix A describes the method we use to deal with this problem.

32 Results

Fig. 5.1 Zero-one accuracies of the 4 main types of models on varying data sizes

Using attention brings further clear improvements in a specific range of sample sizes.
At 128 samples, attention improves on the bootstrapped zero-one loss by 29%, and the
non-overlapping confidence intervals provide clear statistical evidence that attention makes
the model better. Further analysis on why this is the case is found in the next section.

Measuring the effect of the pre-trained Word2Vec embeddings is less obvious. While it
is true that the mean bootstrapped zero-one loss is higher for the W2V version for all sample
sizes, the error bars significantly overlap. This means that there is a weak indication that
the pre-trained embeddings might potentially be useful, but the combination of extremely
unstable training the limited amount of times we can train a model prevents us from drawing
clear conclusions. We analyse the embeddings in more detail in the next section.

5.1.2 Some analysis

The architectures described in Section 4 were designed with particular intuitions in mind:
With attention we hope that the model can locate relevant information in the instructions or
in the world. Word embeddings were added with the expectation that they would inform our
model about the "meaning" of particular words. In the previous section we gave quantitative

5.1 Attention over the instructions 33

evidence for the usefulness of these extended models, this section is concerned with giving
more of a qualitative analysis. By interpreting what is happening inside those models, we
want to check whether our intuition about the roles of the added pieces of architectures was
correct or not.

Alignment

To observe how the attention mechanism works, we inspected values of the alignment vector
α for particular arguments of particular kind of function calls. This attention vector could
be compared to the ground truth, that is, what a human would pay attention to in order to
determine the argument needed for this particular argument.

To illustrate this, we evaluated a well-performing attention-based model on the instruc-
tions "Construct a green steel building in the lower right. make it narrow and very tall". The
execution trace was correct, and contained 4 calls to the BuildWall function as expected -
corresponding to the 4 walls of the building. Each time this function was called, we recorded
the alignment vector used for the third argument and then plotted the values of attention over
the input sequence on Figure 5.2.

Note that the third argument is for the length of the wall. Thus two times we expect the
attention to look at the part of instructions specifying the height of the building, and two
times to look at the width. We can confirm that this is indeed the case.

We chose this particular argument as it involves learning a more complex relationship
than simply mapping single words to arguments such as in the case of colour or material.
Note how the attention only points at a single position within "very tall". A likely explanation
is that the backwards encoder LSTM remembers the necessary information from the word
"tall", and hence its hidden state at word "very" has all the necessary information to infer the
appropriate argument.

Attention gates

A core idea in the adaptation of attention to NPI-s is the gating mechanism that allows the
model to learn distinguishing between outputs that benefit from attention and ones that do
not. Staying with the example using BuildWall, we evaluated the same model on a large
number of instructions, and noted down the values of the attention gates for the 4 arguments.
The averages of these values for each of the arguments are shown in Table 5.1

The color, material and length arguments can all be directly inferred from text, but the last
argument, direction depends on which stage of the execution we are at - hence this argument
should intuitively be inferred from the state of the LSTM in the original way, and not using

34 Results

Fig. 5.2 Alignment vectors for the third argument of BuildWall. Each subplot represents one
time the function was called)

attention. A clear contrast can be seen between the first 3 and the last argument, but it is not
perfectly what we expect. The average for the third argument is slightly different from what
we expect, but this is reasonable as this argument is particularly hard to learn (as described
earlier). The last argument is, however, very far from the true value. To understand why this
is the case, we plotted alignment vectors for this argument as well (using the same method as
previously) for a single execution trace, this is shown on figure 5.3. In this plot the alpha
(transparency) values of the lines represent the value of the attention-gate. These 4 values are
shown in the legend.

We first note that in 2 cases the lines are absolutely not shown, the attention gates judged
well that this argument does not need attention mechanism. In the other two cases, however,
the value of the gate is close to 1 and the lines show reveal a clear pattern that explains this
unexpected behaviour: They tend to point to locations in the text that are independent of
the parameters of the house: dots, padding, words like "to". We observed similar behaviour

5.1 Attention over the instructions 35

Position Role Expected Measured
1 colour 1 1.000
2 material 1 1.000
3 length 1 0.885
4 direction 0 0.482

Table 5.1 Averaged activations of the attention gate for the four arguments of BuildWall

Fig. 5.3 Alignment vectors for the fourth argument of BuildWall

in many different cases: the blue line pointed at paddings and the yellow on dots and some
other words. An interpretation of this phenomenon is that the model might be using these
states as a constant value, and learns to pick the correct value for the argument based on these
different constants.

We can conclude that our model learns to reproduce data perfectly, and most often it does
it in a way we would expect it to do. However, in some cases the model learns an overly
complicated, less intuitive, but correct way of deciding about the output.

Word embeddings

We experimented with 2 kinds of embeddings. The first approach was to let them be trained
from a random initialisation along with the rest of the network, the second to use a fixed,

36 Results

pre-trained Word2Vec embedding. Using the latter approach showed seemingly better but
not statistically significant improvements. In order to better understand the differences
between the two approach, we used PCA to map the embeddings into 3 dimensional spaces,
then plotted the low-dimensional embeddings. Figure 5.4 visualises the result of training
embeddings from scratch as part of our model, and Figure 5.5 shows a visualisation of the
pre-trained Word2Vec model. Note that the most important 2 dimensions are represented by
the x and y axis, and the 3rd dimension is represented by colouring the points based on some
color-map.

Fig. 5.4 Low-dimensional visualisation of the embeddings learned by an NPI model with
attention on 512 samples

The difference between the two embeddings is remarkable. While the first approach
results in a seemingly random cloud of words, the World2Vec embeddings clearly help to

5.2 Extension to multiple shapes 37

Fig. 5.5 Low-dimensional visualisation of the pre-trained Word2Vec embeddings

cluster and identify different kind of parameters such as colour, material, or shape. While
it is not impossible that the embeddings from the first approach also have some hidden
structure that this simple visualisation can not show, it is reasonable to say that the pre-trained
Word2Vec model indeed conveys additional, useful information about the meaning of words,
and has the potential to improve the overall performance.

5.2 Extension to multiple shapes

For the multi-shape task we evaluated two NPI models: the basic encoder-only and the
attention-based one (without Word2Vec). The results are shown on Figure 5.6

38 Results

Fig. 5.6 Zero-one accuracies on the multi-shape task for the two major models

For smaller training sets (64, 128 samples) both models struggle to learn anything at all.
This is not surprising as there are 3 different function sequences that the NPI model needs
to learn instead of one. The real power of attention is demonstrated at 256 samples: The
performance of the attention-extended NPI does not drop at all compared to the single-shape
task (see Figure 5.1), however, the performance of the encoder-only NPI drops by almost
30% compared to the single-shape task. The gap between the two models is 56% for this
sample size.

5.3 World references

In this experiment, we compared two models. The first model - used as a baseline - is the
NPI model extended with the attention mechanism over the instructions (see Section 4.2).
Note that we did not use the Word2Vec embeddings as we wanted to use models with less
variation in the performance, such that the effect of world attention could be measured. The
second model is the same architecture but further extended with the attention mechanism
over the world grid (see Section 4.4). The task was the move task defined in Section 3.5. The
results are shown on Figure 5.7.

5.3 World references 39

Fig. 5.7 Zero-one accuracies on the move task for the two main models

We conclude that adding attention over the world state allows the model to learn from
the data a lot more efficiently - the slope of the blue line on the diagram is significantly
higher. With 512 samples the difference significant, the bootstrapped accuracy of the world-
attention model is 59% higher. A downside of the additional attention mechanism is that the
final performance of a model becomes a lot more dependent on the random seed, and thus
potentially many seeds have to be used to produce the best results.

Chapter 6

Related Work

6.1 Following Natural Language Instructions

6.1.1 Some history

[25] describes a navigational instructions dataset containing 768 pairs of free-form natural
language instructions and corresponding sequences of actions. Both the instructions and
executions were created by human participants of a navigational study. The environment is a
simulated network of intersecting corridors where each corridor has a particular flooring and
images of objects are hung on the walls. The instructions describe how to get from point A
to point B and contain references to the environment. The task is to generate a sequence of
actions given the natural language instructions.

The original work solves this problem using a complicated system that consists of six
different modules out of which three are responsible for parsing the instructions linguistically
and the other three interpret references to the spatial environment. There have been a large
number of attempts to solve this navigational task, gradually improving the state-of-the-art
performance on this task.

Earlier works relied explicitly on parsers that extracted the some sort of intermediate
form from the instructions, and then learned to execute those forms. For example [26] infers
a so-called navigation plan from the action sequence, including checks based on landmarks.
Then it uses pairs of NL instructions and navigation plans to learn a semantic parser for the
instruction sentences. [27] also considers this task as a parsing problem: the instructions are
parsed into lambda calculus expressions which are then deterministically executed.

42 Related Work

6.1.2 Moving away from parsers: Seq2Seq

[28] create a framework in which (for the first time) sequence-to-sequence models play a
crucial role. Their model assumes structure in both the input sentences and the output action
sequences, as well as access to different parsers that map the input and output into graphs that
express their semantics. Their model learns to align and translate the structures in the input
and output and hence is able to translate between natural language and action sequences.
This model outperformed all the previously mentioned models.

The currently state-of-the art model ([9]) does not use any linguistic expert knowledge
nor trains an explicit parser. Instead it uses a plain encoder-decoder model which encodes
the input sentences into a fixed-length with a simple encoder LSTM. Then with the help of a
multi-lever aligner (see Section 2.2.1) it uses a decoder LSTM that takes the world state and
produces an action at each time step. This model, called the sequence-to-sequence, or shortly
Seq2Seq model outperforms all previous models despite its relative simplicity compared to
the previous works. This model was used as a baseline in our work.

6.1.3 More realistic environments

The environment in the corridor navigation problem is a rather simple model of real world
scenarios. There has also been work ([29], [30]) on trying to interpret natural language
instructions given some vision-like observations of geometrically complex 2D maps.

[8] uses a similar task where the world observations are 3D rendered images of objects,
provided to the model in raw pixel form. Their proposed solution - a purely neural architecture
- is notable because it is not making use of any prior linguistic or perceptual knowledge. This
makes is similar to the methods described in the previous section and also our current work.
The input sentences are encoded with a Gated Recurrent Unit (GRU) network [31], a gated
RRN somewhat similar to LSTM-s. The world observations are encoded using Convolutional
Neural Nets (CNN-s) [32].

The two kinds of inputs are fused into a single state which is then used by a reinforcement
learning algorithm. In order to get this single state, first a d-long attention vector is formed
from the final hidden state of the input language encoder, where d is the depth of the output
of the world-encoder CNN. Using this attention vector over different feature maps of the
encoded world as described in 2.2.1, they essentially gate different features of the world
based on the instructions - hence the name Gated-Attention.

An exciting and relatively new task is proposed and solved in [4]. The dataset is called
verb-environment-instruction-library (VEIL) and consists of pairs of natural language instruc-
tions for tasks in a kitchen and corresponding action sequences that could be performed by a

6.2 Neural Program Lattices 43

robot in order to execute the instructions. Instructions can come with various level of detail -
there might be an instruction just saying "heat water in the pot", or an other one detailing the
steps of this :"take the pot, fill it with water, ...". Furthermore, the action sequence is largely
dependent on the observed world state. Along with the position of an object, the state of an
object also plays a crucial role: is the stove on? Is there already water in the pot?. While
somewhat more complex, this task is definitely the most similar one to the task we are trying
to solve in this work.

In order to solve this problem they parse the input sentences into so-called verb-clauses:
tuples of verbs, objects on which they act and relationship matrices. Similarly the world is
represented in a semantically rich form, graphs. They use Conditional Random Fields in
order to find the most probable action in each time step of the execution.

6.2 Neural Program Lattices

While the NPI model has performed well in a number of different algorithmic tasks, it
was based on a kind of training data which might be very hard to get hold of. Having full
execution traces is not very realistic in real-life scenarios as often only the sequence of
elementary operations can be observed, while the structure is hidden. As an example, we can
observe the movement of a human body (elementary operations), but might not be able to
tell what the person was thinking (hidden structure) at the same time.

This problem was addressed by Neural Program Lattices or NPL-s [11]. By incorporating
some novel ideas into the NPI model, NPL-s are able to consider a variety of possible
latent call-structures corresponding to the observed sequence of elementary operations, and
compute the marginal probability of the elementary operation sequence in the training data.
The training of this model consists of two stages. In the first stage a small number of full
execution traces are provided and the training procedure is effectively the same as for NPI-s.
However, in the second stage data is provided without the call-structure - the NPL model is
able to significantly improve using only this semi-supervised data.

While our work was based on the NPI architecture, it can be trivially extended to NPL-s
as well. Doing so would take the current work a step closer to a model that translates natural
language instructions into elementary sequence operations. This ability would be desirable
as it would allow us to directly compete with the Seq2Seq model without the addition of the
program call hierarchy.

Chapter 7

Conclusion

This work has explored the idea of extending the Neural Programmer-Interpreter model with
modified versions of well-known NLP techniques. The resulting, novel class of models was
evaluated on tasks where instructions given in natural language had to be carried out. Our
contributions can be summarised in the following points:

• We created a new version of the Nanocraft task where instructions consist of pro-
grammatically generated English sentences. We extended this task by adding different
possible shapes and finally created a new task to examine instructions with references
to the world state.

• We proposed two novel attention-based architectures for these tasks that outperformed
the best two currently available baseline models:

– Attention over the instructions

– Attention over the world observations

• Finally we carried out some experiments that provided insight into the inner workings
of the models.

While this work has demonstrated the feasibility of combining the NLP methods with
the NPI architecture, the journey is far from over. We propose extensions to our work in
two categories. The first type of future work involves evaluating and possibly adopting our
models to more realistic and thus harder tasks. This would be particularly useful as our
current work only confirmed the ability of our models to learn particular tasks, but have not
explored the limits of our models. In particular, we suggest evaluating our models in the
following ways:

46 Conclusion

• The programmatically generated natural language should be replaced with instructions
collected from real human users. As a first step it would be interesting to see how the
currently trained models generalise to real NL, but ultimately the aim should be to
train and evaluate the current models on real, human generated data .

• Inspired by real-world applications, noise (incorrect execution steps) could also be
added to the output in the training data. It would be interesting to see if the model
could still learn to carry out instructions correctly.

• The original Nanocraft task could be combined with world references, resulting in
complex instructions like "Build a red house below the plastic block". A purely neural
network based model able to understand these complex sentences would be an exciting
competitor to the parser-based models

Finally, we suggest a number of ways in which the models developed in this work could
be further improved:

• The current architecture could be easily adopted to NPL instead of NPI, thus allowing
the model to learn from pure action sequences, making it a closer competitor to the
Seq2Seq model.

• Different word embeddings could be used and evaluated instead of the current pre-
trained Word2Vec. This could potentially seriously effect the performance on noisy,
human-generated instructions.

• The attention mechanism used for world-references is rather just a prototype than a
well thought out model - we believe that further improvements to this architecture can
be made that would improve its ability to handle complex instructions.

References

[1] Andrew Ng, “Machine Learning | Coursera.” [Online]. Available: https:
//www.coursera.org/learn/machine-learning

[2] M. Macmahon, M. Macmahon, B. Stankiewicz, and B. Kuipers, “Walk the Talk:
Connecting Language, Knowledge, Action in Route Instructions,” IN PROC. OF THE
NAT. CONF. ON ARTIFICIAL INTELLIGENCE (AAAI, pp. 1475–1482, 2006. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9798

[3] S. Gulwani and M. Marron, “NLyze: Interactive Programming by Natural Language
for SpreadSheet Data Analysis and Manipulation,” 2014. [Online]. Available:
http://dx.doi.org/10.1145/2588555.2612177.

[4] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me Dave: Context-sensitive
grounding of natural language to manipulation instructions,” The International Journal
of Robotics Research, vol. 35, no. 1-3, pp. 281–300, 1 2016. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364915602060

[5] L. Dong and M. Lapata, “Language to Logical Form with Neural Attention,” 1 2016.
[Online]. Available: http://arxiv.org/abs/1601.01280

[6] Y. Artzi and L. Zettlemoyer, “Weakly Supervised Learning of Semantic Parsers
for Mapping Instructions to Actions,” Transactions of the Association for
Computational Linguistics, vol. 1, no. 0, pp. 49–62, 3 2013. [Online]. Available:
https://transacl.org/ojs/index.php/tacl/article/view/27

[7] C. Quirk, R. Mooney, and M. Galley, “Language to Code: Learning Semantic Parsers
for If-This-Then-That Recipes,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA:
Association for Computational Linguistics, 2015, pp. 878–888. [Online]. Available:
http://aclweb.org/anthology/P15-1085

[8] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and R. Salakhutdinov,
“Gated-Attention Architectures for Task-Oriented Language Grounding,” 6 2017.
[Online]. Available: http://arxiv.org/abs/1706.07230

[9] H. Mei, M. Bansal, and M. R. Walter, “Listen, Attend, and Walk: Neural Mapping
of Navigational Instructions to Action Sequences,” 6 2015. [Online]. Available:
http://arxiv.org/abs/1506.04089

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9798
http://dx.doi.org/10.1145/2588555.2612177.
http://journals.sagepub.com/doi/10.1177/0278364915602060
http://arxiv.org/abs/1601.01280
https://transacl.org/ojs/index.php/tacl/article/view/27
http://aclweb.org/anthology/P15-1085
http://arxiv.org/abs/1706.07230
http://arxiv.org/abs/1506.04089

48 References

[10] A. Graves, “Neural Turing Machines arXiv : 1410 . 5401v2 [cs . NE] 10 Dec 2014,”
pp. 1–26.

[11] D. Tarlow, A. L. Gaunt, M. Brockschmidt, and N. Kushman, “Nerural Program Lattices,”
pp. 1–17, 2017.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning
to Align and Translate,” 9 2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[13] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 6
1990. [Online]. Available: http://doi.wiley.com/10.1016/0364-0213(90)90002-E

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” 9 2014. [Online]. Available: http://arxiv.org/abs/1409.3215

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online]. Available:
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735

[16] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language
Model,” Journal of Machine Learning Research, vol. 3, no. Feb, pp. 1137–1155, 2003.
[Online]. Available: http://www.jmlr.org/papers/v3/bengio03a.html

[17] M. E. Tipping and C. M. Bishop, “Mixtures of Probabilistic Principal Component
Analysers,” Neural Computation, vol. 11, no. 2, pp. 443–482. [Online]. Available:
http://www.miketipping.com/papers.htm

[18] L. v. d. Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008. [Online]. Available:
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” 1 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

[20] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word
representation.” EMNLP, 2014. [Online]. Available: http://llcao.net/cu-deeplearning15/
presentation/nn-pres.pdf

[21] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with
Subword Information,” 7 2016. [Online]. Available: http://arxiv.org/abs/1607.04606

[22] “Google Code Archive - Long-term storage for Google Code Project Hosting.”
[Online]. Available: https://code.google.com/archive/p/word2vec/

[23] H. Siegelmann and E. Sontag, “On the Computational Power of Neural Nets,” Journal
of Computer and System Sciences, vol. 50, no. 1, pp. 132–150, 2 1995. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0022000085710136

[24] S. Reed and N. de Freitas, “Neural Programmer-Interpreters,” 11 2015. [Online].
Available: http://arxiv.org/abs/1511.06279

http://arxiv.org/abs/1409.0473
http://doi.wiley.com/10.1016/0364-0213(90)90002-E
http://arxiv.org/abs/1409.3215
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.jmlr.org/papers/v3/bengio03a.html
http://www.miketipping.com/papers.htm
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1301.3781
http://llcao.net/cu-deeplearning15/presentation/nn-pres.pdf
http://llcao.net/cu-deeplearning15/presentation/nn-pres.pdf
http://arxiv.org/abs/1607.04606
https://code.google.com/archive/p/word2vec/
http://linkinghub.elsevier.com/retrieve/pii/S0022000085710136
http://arxiv.org/abs/1511.06279

References 49

[25] M. Macmahon, M. Macmahon, B. Stankiewicz, and B. Kuipers, “Walk the Talk:
Connecting Language, Knowledge, Action in Route Instructions,” IN PROC. OF THE
NAT. CONF. ON ARTIFICIAL INTELLIGENCE (AAAI, pp. 1475–1482, 2006. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9798

[26] D. L. Chen and R. J. Mooney, “Learning to interpret natural language
navigation instructions from observations,” pp. 859–865, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2900560

[27] Y. Artzi, D. Das, and S. Petrov, “Learning Compact Lexicons for CCG Semantic
Parsing.” EMNLP, 2014. [Online]. Available: https://pdfs.semanticscholar.org/5521/
093f13fd041277705f52b34434237a1e7263.pdf

[28] J. Andreas and D. Klein, “Alignment-based compositional semantics for instruction
following,” 8 2015. [Online]. Available: http://arxiv.org/abs/1508.06491

[29] C. Matuszek, D. Fox, and K. Koscher, “Following directions using statistical
machine translation,” in 2010 5th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE, 3 2010, pp. 251–258. [Online]. Available:
http://ieeexplore.ieee.org/document/5453189/

[30] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding natural
language directions,” in 2010 5th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE, 3 2010, pp. 259–266. [Online]. Available:
http://ieeexplore.ieee.org/document/5453186/

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling,” 12 2014. [Online]. Available:
http://arxiv.org/abs/1412.3555

[32] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,”
The handbook of brain theory and neural, 1995. [Online]. Available: https://www.
researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_
for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf

[33] B. Efron and R. Tibshirani, An introduction to the bootstrap, 1994. [Online]. Avail-
able: https://books.google.co.uk/books?hl=en&lr=&id=gLlpIUxRntoC&oi=fnd&pg=
PR14&dq=bootstrap&ots=A9utS6NcG8&sig=C51qeLkePbs9yS7Nv0EQt89Xe4g

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9798
http://dl.acm.org/citation.cfm?id=2900560
https://pdfs.semanticscholar.org/5521/093f13fd041277705f52b34434237a1e7263.pdf
https://pdfs.semanticscholar.org/5521/093f13fd041277705f52b34434237a1e7263.pdf
http://arxiv.org/abs/1508.06491
http://ieeexplore.ieee.org/document/5453189/
http://ieeexplore.ieee.org/document/5453186/
http://arxiv.org/abs/1412.3555
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
https://books.google.co.uk/books?hl=en&lr=&id=gLlpIUxRntoC&oi=fnd&pg=PR14&dq=bootstrap&ots=A9utS6NcG8&sig=C51qeLkePbs9yS7Nv0EQt89Xe4g
https://books.google.co.uk/books?hl=en&lr=&id=gLlpIUxRntoC&oi=fnd&pg=PR14&dq=bootstrap&ots=A9utS6NcG8&sig=C51qeLkePbs9yS7Nv0EQt89Xe4g

Appendix A

Evaluation metric

Recall that the metric we use to measure performance of our models is the zero-one loss (see
Section 3.1). Due to the rather complicated architecture of our model, the zero-one loss of a
particular model depends largely on the random seed used for training. A sensible way of
evaluating these unstable models is to train many models with different seeds, pick the one
with the minimum validation error and report the error of this model on the test set.

A second problem is that these models take a relatively long time (approx. 20 hours) to
train, even when using 5 CPU-s of a machine. Given our limited resources this means that
we can not train models with different seeds more than a few times - to generate our results,
we used 12 different seeds for each data point. Due to the some models being rather unstable,
choosing the minimum over 12 attempts still can’t be considered to be robust metric. To have
a better understanding of the relative performance of our models, we used a method called
bootstrapping [33], which we briefly describe in the following.

Suppose we have n samples from some distribution and a test statistic (test error on min.
validation error model in our case) on these samples. We randomly sample n times from
the n samples with replacement, and compute the given statistic on that sample. We repeat
this experiment k times, and note down the result every time. As a result of this we get k
numbers: we can take the mean of this to get a relatively robust estimate of our statistic (we
call this the bootstrapped zero-one loss), moreover we can take percentiles of this data to
get confidence intervals. For our plots we used n = 12, k = 10000 and took the 5% and 95%
percentiles of the k numbers, giving us 90% confidence intervals (Intuitively, 90 out of 100
times our results were between those two numbers)

	Table of contents
	1 Introduction
	1.1 Existing work
	1.2 Research aims and results
	1.3 Organization of the chapters

	2 Background
	2.1 Sequence processing
	2.1.1 Recurrent Neural Networks
	2.1.2 Multi-layer RNN-s
	2.1.3 Bi-directional RNN-s
	2.1.4 Encoder - decoder models
	2.1.5 Long-Short Term Memory Networks

	2.2 Natural Language Processing
	2.2.1 Attention
	2.2.2 Word embeddings

	2.3 Neural Programs
	2.3.1 Neural Turing Machines
	2.3.2 Neural Programmer-Interpreters

	3 Task Specification
	3.1 The Nanocraft Task
	3.2 NPI Implementation details
	3.3 Natural Language Instructions
	3.3.1 Sentence Generation
	3.3.2 Some analysis

	3.4 Different shapes
	3.5 World references

	4 Models
	4.1 Simple encoder
	4.2 Attention
	4.2.1 Computing the context vector
	4.2.2 Integrating the context vector

	4.3 Word Embeddings
	4.4 World references

	5 Results
	5.1 Attention over the instructions
	5.1.1 Performance
	5.1.2 Some analysis

	5.2 Extension to multiple shapes
	5.3 World references

	6 Related Work
	6.1 Following Natural Language Instructions
	6.1.1 Some history
	6.1.2 Moving away from parsers: Seq2Seq
	6.1.3 More realistic environments

	6.2 Neural Program Lattices

	7 Conclusion
	References
	Appendix A Evaluation metric

