

Motivation

Why policy optimization?

- Greater efficiency and better convergence guarantees
- Able to learn stochastic policies
- Easy to use, value function might complicated

Why structured priors?

- We hope to achieve better sample efficiency by explicitly structuring policy search as a hierarchical problem with options.
- Hierarchically structured policies are suitable for many problems of interest, e.g. dialogue, robotics

Gradient-based Optimization

Policy function $\pi(a|s;\theta)$ is a mapping from $S \times A \to [0,1]$.

• Objective function, expected return of π : We can estimate η from sampled data

$$\eta(\pi) = \eta(\pi_{old}) + \mathbb{E}_{s \sim \pi, a \sim \pi} [A_{\pi_{old}}(s, a)]$$
$$= \eta(\pi_{old}) + \mathbb{E}_{s \sim \pi, a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} A_{\pi_{old}}(s, a) \right]$$

However the state depends on the new policy parameter which makes it difficult to optimize.

2 Local approximation, $L(\pi)$:

$$L_{\pi_{old}}(\pi) = \eta(\pi_{old}) + \mathbb{E}_{s,a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} A_{\pi_{old}}(s,a) \right]$$

L matches η to first order

$$\nabla_{\theta} L_{\pi_{\theta_{old}}}(\pi_{\theta})|_{\theta=\theta_{old}} = \nabla_{\theta} \eta(\pi_{\theta})|_{\theta=\theta_{old}}$$

 \odot Monotonic improvement by updating surrogate function M[1]: $\eta(\pi) \ge L_{\pi_{old}}(\pi) - CD_{KL}^{max}(\pi_{old},\pi) = M_{\pi_{old}}(\pi)$

where
$$C = \frac{2\epsilon\gamma}{(1-\gamma)^2}$$
, $\epsilon = \max_s |\mathbb{E}_{a \sim \pi(a|s)}[A_{\pi_{old}}(s,a)]|$

Minorization-Maximazation algorithm:

 $\eta(\pi) - \eta(\pi_{old}) \ge M_{\pi_{old}}(\pi) - M_{\pi_{old}}(\pi_{old})$

• Reinforcement learning problem to optimization problem: $\max_{\theta} \left[L_{\theta_{old}}(\theta) - CD_{KL}^{max}(\theta_{old}, \theta) \right]$

Practical Approximation: TRPO

• Use a hard constrain on KL divergence to allow large update $\max_{\theta} L_{\theta_{old}}(\theta)$ subject to $D_{KL}^{max}(\theta_{old}, \theta) \leq \delta$

Structured Priors for Policy Optimisation Sihui Wang, Bill Byrne, Tom Gunter

June 19, 2017

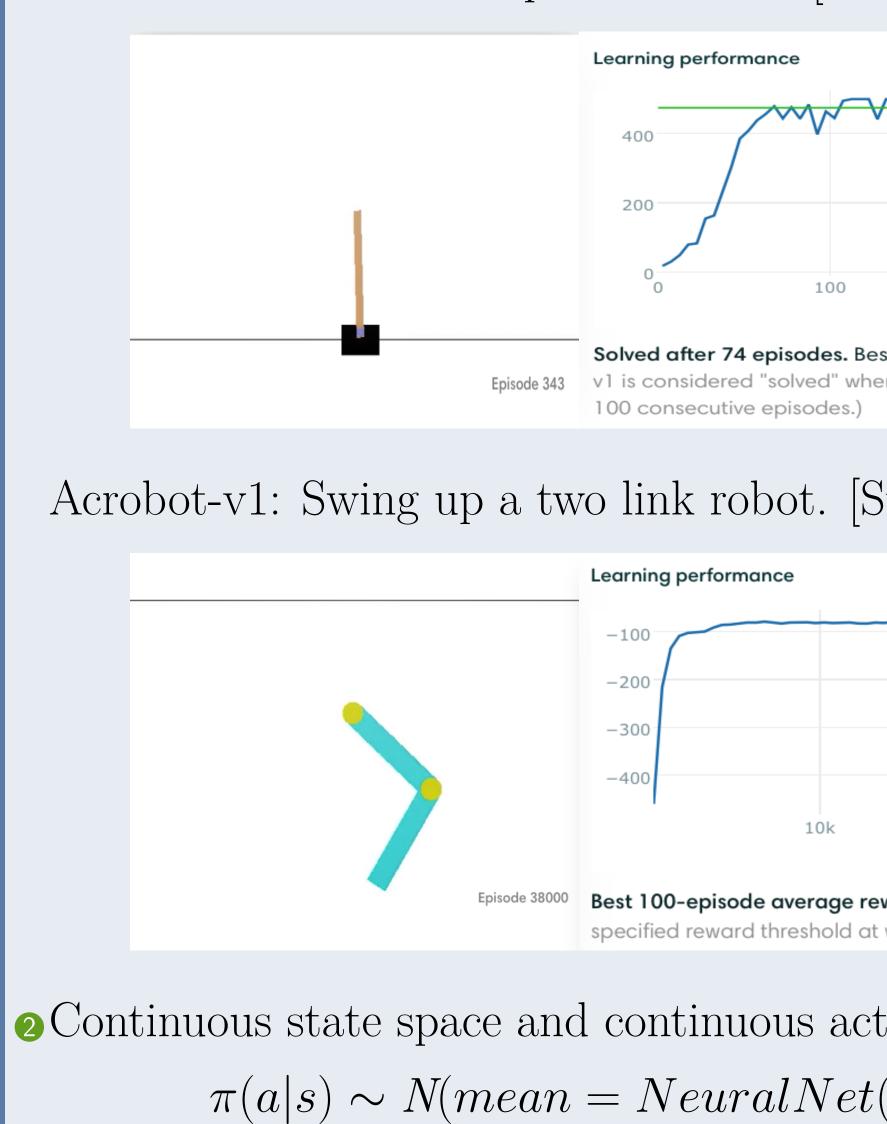
• Impractical due to large number of constraint, use average KL instead.

$$\max_{\theta} \mathbb{E}_{s,a \sim \pi_{old}} \left[\frac{\pi(a|s)}{\pi_{old}(a|s)} A_{\pi_{old}}(s,a) \right] \quad subject \ to \ \mathbb{E}_{s \sim \pi_{old}} \left[D_{KL}(\pi_{\theta_{old}}(\cdot|s)||\pi_{\theta}(\cdot|s)) \right] \le \delta$$
(1)

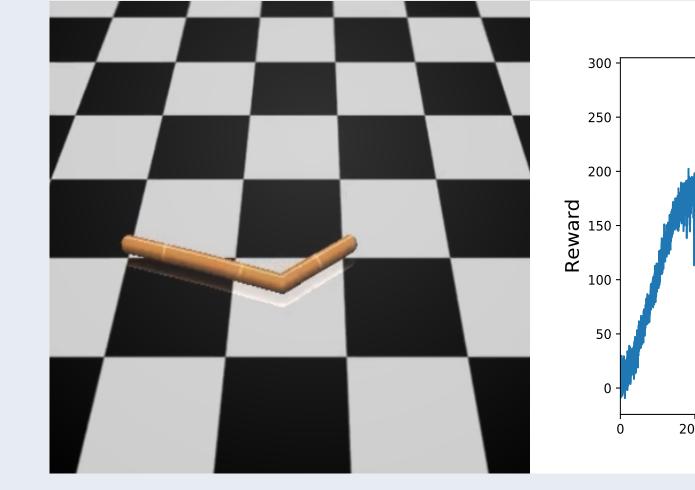
Solving the new approximated problem • Linear approximation to $L_{\pi_{old}}$ and quadratic approximation to average KL divergence. Search direction $= A^{-1}g$, where A is the Hessian matrix of average KL and g is the gradient of L. 2 Use conjugate gradient method to calculate search direction **3** Perform line search to ensure objective improves

Results from O

• Continuous state space and discrete action CartPole-v1: Balance a pole on a cart [Sta



Swimmer: swim forward as fast as possible Half-cheetah: Make a 2D cheetah robot ru



 $\mathcal{I})$

penAI Gym				
n: $\pi(\cdot s) = softmax(w^Ts + b)$ ate dim: 4, No. of actions: 2]				
Episode Total Reward 🖨 Episode 🖨				
200 300 400				
est 100-episode average reward was 500.00 ± 0.00. (CartPole- nen the agent obtains an average reward of at least 475.0 over				
State dim: 6, No. of actions: 3]				
Episode Total Reward 🖨 Episode 🜲				
20k 30k 40k				
reward was -72.50 ± 0.88. (Acrobot-v1 does not have a at which it's considered solved.)				
etion space:				
$t(s; \{\mathbf{W}, \mathbf{b}\}), std = exp(w_{std}))$				
le. [State dim: 8, action dim: 2] un. [State dim: 17, action dim: 6]				
Learning Curve for Swimmer				
2000 4000 6000 8000 10000 12000 14000 Number of Episodes				

network $\pi(o|s)$.

- 2: for i = 1 : N do
- 4: for j = 1 : M do
- 5: Follow $a \sim \pi(a|s, o)$
- 7: **end for**

	subj	ect t	o 1
9:	end	for	
		-TD	

	subject to	\overline{D}
1:	Go back to	D S

- sub-policies.
- arXiv:1502.05477, (2015)

Structured TRPO

The idea of hierarchical policy is introduced in [2]. A hierarchical policy $\pi(a|s)$ consists of a set of several sub-policies and a gating

$$\pi(a|s) = \sum_{o} \pi(o|s)\pi(a|s, o)$$
(2)

Algorithm 1 Vanilla Hierarchical TRPO

Initialize both gating network and sub-policy parameters

3: Reset the environment and sample $o \sim \pi(o|s)$

6: If done: reset environment and start a new episode

8: Using TRPO to update parameters of a particular sub-policy

$$\max_{\theta} \mathbb{E}_{s,a \sim \pi_{old}} \left[\frac{\pi(a|o,s)}{\pi_{old}(a|o,s)} A_{\pi_{old}}(s,a) \right]$$
(3)

 $\overline{D_{KL}}(\pi_{\theta_{old}}(\cdot|o,s)||\pi_{\theta}(\cdot|o,s)) \leq \delta_{sub-policy}$

10: Using TRPO to update gating network parameters

$$\max_{\phi} \mathbb{E}_{s,a \sim \pi_{old}} \left[\frac{\pi(o|s)}{\pi_{old}(o|s)} A_{\pi_{old}}(s,a) \right]$$

$$\overline{P_{KL}}(\pi_{\phi_{old}}(\cdot|s) || \pi_{\phi}(\cdot|s)) \leq \delta_{option}$$
(4)
$$\operatorname{Step} 2$$

Future Work

• Learn to use different option within a single episode. • Reduce the variance in policy gradient method.

• Consider using boosting methods to include multiple

References

[1] Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael I, and Abbeel, Pieter. Trust region policy optimization. arXiv preprint

[2] Daniel, Christian, Neumann, Gerhard, Kroemer, Oliver, Peters, Jan. Hierarchical Relative Entropy Policy Search. Journal of Machine Learning Research, pp.1-50 (2016)