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Motivation

Why policy optimization?
•Greater efficiency and better convergence guarantees
•Able to learn stochastic policies
•Easy to use, value function might complicated
Why structured priors?
•We hope to achieve better sample efficiency by explicitly
structuring policy search as a hierarchical problem with options.

•Hierarchically structured policies are suitable for many
problems of interest, e.g. dialogue, robotics

Gradient-based Optimization

Policy function π(a|s; θ) is a mapping from S × A→ [0, 1].
1 Objective function, expected return of π : We can estimate η
from sampled data

η(π) = η(πold) + Es∼π,a∼π[Aπold(s, a)]

= η(πold) + Es∼π,a∼πold
[ π(a|s)
πold(a|s)

Aπold(s, a)
]

However the state depends on the new policy parameter which
makes it difficult to optimize.

2 Local approximation, L(π):

Lπold(π) = η(πold) + Es,a∼πold
[ π(a|s)
πold(a|s)

Aπold(s, a)
]

L matches η to first order
∇θLπθold(πθ)|θ=θold = ∇θη(πθ)|θ=θold

3 Monotonic improvement by updating surrogate function M[1]:
η(π) ≥ Lπold(π)− CDmax

KL (πold, π) = Mπold(π)
where C = 2εγ

(1−γ)2, ε = maxs |Ea∼π(a|s)[Aπold(s, a)]|
Minorization-Maximazation algorithm:

η(π)− η(πold) ≥Mπold(π)−Mπold(πold)
4 Reinforcement learning problem to optimization problem:

max
θ

[Lθold(θ)− CDmax
KL (θold, θ)]

Practical Approximation: TRPO

•Use a hard constrain on KL divergence to allow large update
maxθLθold(θ) subject to Dmax

KL (θold, θ) ≤ δ

• Impractical due to large number of constraint, use average KL instead.

max
θ

Es,a∼πold
[ π(a|s)
πold(a|s)

Aπold(s, a)
]

subject to Es∼πold[DKL(πθold(·|s)||πθ(·|s))] ≤ δ

(1)
Solving the new approximated problem
1 Linear approximation to Lπold and quadratic approximation to average KL divergence.
Search direction = A−1g, where A is the Hessian matrix of average KL and g is the gradient of L.

2 Use conjugate gradient method to calculate search direction
3 Perform line search to ensure objective improves

Results from OpenAI Gym

1 Continuous state space and discrete action: π(·|s) = softmax(wTs + b)
CartPole-v1: Balance a pole on a cart [State dim: 4, No. of actions: 2]

Acrobot-v1: Swing up a two link robot. [State dim: 6, No. of actions: 3]

2 Continuous state space and continuous action space:
π(a|s) ∼ N(mean = NeuralNet(s; {W,b}), std = exp(wstd))

Swimmer: swim forward as fast as possible. [State dim: 8, action dim: 2]
Half-cheetah: Make a 2D cheetah robot run. [State dim: 17, action dim: 6]
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Learning Curve for Swimmer

Structured TRPO

The idea of hierarchical policy is introduced in [2]. A hierarchical
policy π(a|s) consists of a set of several sub-policies and a gating
network π(o|s).

π(a|s) =
∑
o

π(o|s)π(a|s, o) (2)

Algorithm 1 Vanilla Hierarchical TRPO
1: Initialize both gating network and sub-policy parameters
2: for i = 1 : N do
3: Reset the environment and sample o ∼ π(o|s)
4: for j = 1 : M do
5: Follow a ∼ π(a|s, o)
6: If done: reset environment and start a new episode
7: end for
8: Using TRPO to update parameters of a particular sub-policy

max
θ

Es,a∼πold
[ π(a|o, s)
πold(a|o, s)

Aπold(s, a)
]

(3)

subject to DKL(πθold(·|o, s)||πθ(·|o, s)) ≤ δsub−policy
9: end for

10: Using TRPO to update gating network parameters

max
φ

Es,a∼πold
[ π(o|s)
πold(o|s)

Aπold(s, a)
]

(4)

subject to DKL(πφold(·|s)||πφ(·|s)) ≤ δoption
11: Go back to step 2

Future Work

•Learn to use different option within a single episode.
•Reduce the variance in policy gradient method.
•Consider using boosting methods to include multiple
sub-policies.
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