Structured Priors for Policy Optimisation

Motivation

Why policy optimization?

« Greater efficiency and better convergence guarantees

« Able to learn stochastic policies

« Basy to use, value function might complicated
Why structured priors?
« We hope to achieve better sample efficiency by explicitly

structuring policy search as a hierarchical problem with options.

« Hierarchically structured policies are suitable for many
problems of interest, e.g. dialogue, robotics

Gradient-based Optimization

Policy function m(al|s; 8) is a mapping from S x A — [0, 1].

o Objective function, expected return of m : We can estimate n
from sampled data
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However the state depends on the new policy parameter which
makes it difficult to optimize.
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® Monotonic improvement by updating surrogate function M|1]:
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Minorization-Maximazation algorithm:
() = 0(mora) = Mz, (7) — Mz, (Tora)

o Reinforcement learning problem to optimization problem:

mHaX[LQOM(H) — CDIT?%x(QOZda ‘9)]

Practical Approximation: TRPO

« Use a hard constrain on KL divergence to allow large update

maxy Lg () subject to D (0p1q,0) < 90
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« Impractical due to large number of constraint, use average KL instead.
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Solving the new approximated problem

@ Linear approximation to L
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and quadratic approximation to average KL divergence.
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Search direction = A~ g, where A is the Hessian matrix of average KL and g is the gradient of L.
® Use conjugate gradient method to calculate search direction
©® Perform line search to ensure objective improves

Results from OpenAl Gym

o Continuous state space and discrete action: 7(+|s) = softmaz(w!s + b)
CartPole-v1: Balance a pole on a cart [State dim: 4, No. of actions: 2|

Learning performance
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- Solved after 74 episodes. Best 100-episode average reward was 500.00 £ 0.00. (CartPole-

average reward of at least 475.0 over

Acrobot-v1: Swing up a two link robot. |State dim: 6, No. of actions: 3|

Learning performance
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Episode 38000 Best 100-episode average reward was -72.50 * 0.88. (Acrobot-v] does not have o

specified reward threshold at which it's considered solved.)

o Continuous state space and continuous action space:
m(a|s) ~ N(mean = NeuralNet(s;{W,b}), std = exp(wsq))

Swimmer: swim forward as fast as possible. |State dim: 8, action dim: 2]
Half-cheetah: Make a 2D cheetah robot run. [State dim: 17, action dim: 6]

Learning Curve for Swimmer
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Structured TRPO

The idea of hierarchical policy is introduced in [2]. A hierarchical
policy m(a|s) consists of a set of several sub-policies and a gating
network m(ols).

m(als) = ) m(o]s)m(als, o) (2)

Algorithm 1 Vanilla Hierarchical TRPO

1: Initialize both gating network and sub-policy parameters

2 fori=1: N do

3: Reset the environment and sample 0 ~ 7(0|s)

4. for 9 =1: M do

5. Follow a ~ 7(als, o)

6: |f done: reset environment and start a new episode

7. end for

8: Using TRPO to update parameters of a particular sub-policy
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o: end for
10. Using TRPO to update gating network parameters
m(os) ]
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11: Go back to step 2

Future Work

« Learn to use different option within a single episode.

» Reduce the variance in policy gradient method.

« Consider using boosting methods to include multiple
sub-policies.
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