
Interpretable Machine Learning

Tyler Martin

Supervisor: Dr. Adrian Weller

A dissertation presented for the degree of

Master of Philosophy in Machine Learning and Machine Intelligence

Department of Engineering

University of Cambridge

Darwin College August 2019





Declaration

I, Tyler Martin of Darwin College, being a candidate for the MPhil in Machine Learning and Machine

Intelligence, hereby declare that this report and the work described in it are my own work, unaided

except as may be specified below, and that the report does not contain material that has already

been used to any substantial extent for a comparable purpose.

This document contains 14,956 words. This word count excludes bibliography, photographs, dia-

grams and declarations, but includes tables, footnotes, figure captions, and appendices.

Signed

Date





Software Declaration

The follow pieces of software were used in their original form in all experiments:

• Python 3.6

• Pandas

• Numpy

• Matplotlib

• Scipy

• Keras

• Inception v3 pre-trained network from Keras - https://keras.io/applications/

• Tensorflow

• Scikit-learn

• Pillow

The follow pieces of software were modified for use in all experiments:

• TCAV - https://github.com/tensorflow/tcav

The follow pieces of software were modified for use in experiments in §3.2:

• DeepDream (Keras) - github.com/keras-team/keras/blob/master/examples/deep dream.py

• DeepDream (from Google) - github.com/google/deepdream

I created a public repository (github.com/tyler-martin-12/tcav on azure) that contains all code

written in the process of this project. It started from forking the TCAV GitHub repository and was

extensively modified.

Some of its main purposes are the following:

• Run all experiments

• Download image classes from ImageNet

• Create all plots (unless otherwise stated)

• Collect all data used in tables





Acknowledgements

First, I would like to acknowledge my supervisor, Dr. Adrian Weller, for his countless ideas, in-

sights, and guidance. I sincerely appreciate him introducing me to the field of interpretable machine

learning. Working with Adrian and discussing many ideas relating to this project was both highly

valuable and enjoyable.

Dr. Been Kim, who currently works for Google, has generously shared her insights on my project

and has helped guide this project in numerous ways. Her dedication to the field of interpretable

machine learning is remarkable and I am so pleased to have learned from her for a brief time.

Dr. Tameem Adel was also helpful throughout my project. I appreciated discussions and sug-

gestions from Tameem for the scope of my project.





Abstract

Interpretable machine learning has become a popular research direction as deep neural networks

(DNNs) have become more powerful and their applications more mainstream, yet DNNs remain

difficult to understand. Testing with Concept Activation Vectors, TCAV, (Kim et al. 2017) is

an approach to interpreting DNNs in a human-friendly way and has recently received significant

attention in the machine learning community. The TCAV algorithm achieves a degree of global

interpretability for DNNs through human-defined concepts as explanations. This project introduces

Robust TCAV, which builds on TCAV and experimentally determines best practices for this method.

The objectives for Robust TCAV are 1) Making TCAV more consistent by reducing variance in the

TCAV score distribution and 2) Increasing CAV and TCAV score resistance to perturbations. A

difference of means method for CAV generation was determined to be the best practice to achieve

both objectives. Many areas of the TCAV process are explored including CAV visualization in low

dimensions, negative class selection, and activation perturbation in the direction of a CAV. Finally,

a thresholding technique is considered to remove noise in TCAV scores. This project is a step in

the direction of making TCAV, an already impactful algorithm in interpretability, more reliable and

useful for practitioners.





Contents

1 Introduction 4

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Interpretable Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 When do we need interpretability? . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Explainablility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Constrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1.1 Inherently Interpretable Models . . . . . . . . . . . . . . . . . . . . 8

2.2.1.2 Interpretability Constraints in Training . . . . . . . . . . . . . . . . 9

2.2.2 Post-Hoc Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.1 Saliency Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2.2 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2.3 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Testing with Concept Activation Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 TCAV Applications and Extensions . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Image Classification Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Usefulness of Intermediate Layers . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Disentanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.5 Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Experiments on CAV Visualization 19

3.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 DeepDream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Activation Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 CAV Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Sorting Images with CAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



4 Experiments on Robust TCAV 30

4.1 Understanding TCAV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Comparison Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Reducing Variance in TCAV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 CAV Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 Consistent Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.3 Negative Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3.1 Difference of Means . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3.2 Increasing Size of Negative Class . . . . . . . . . . . . . . . . . . . . 39

4.5 Perturbing CAVs and TCAV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Removing a Single Training Point . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Removing n Training Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Adding n Noisy Training Points . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Exploring TCAV Modifications 48

5.1 Thresholding TCAV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Retraining CAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Discussion 52

6.1 TCAV Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Perspective on TCAV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Appendices 59

A TCAV Score Variance Detailed Results 60



Chapter 1

Introduction

1.1 Motivation

Interpretable Machine Learning has been an increasingly popular research direction in recent years1

with many open questions. Generally speaking, interpretable machine learning seeks to either 1)

build, then train, interpretable models or 2) discover how highly complex prediction models work

in a useful way. There are many motivations for interpretable machine learning, including safety,

ethical, and scientific concerns.

This project focuses on understanding and improving an existing algorithm that provides human-

friendly, model-agnostic interpretability. This algorithm, Testing with Concept Activation Vectors

(Kim et al. 2017), was mentioned by Google’s CEO, Sundar Pichai, in the 2019 I/O Keynote ad-

dress2 as a step towards interpretability in machine learning and, in particular, identifying biased

prediction systems. Since its publication in November 2017, TCAV has received attention3 in the

machine learning community and there are already extensions (Ghorbani, Wexler, and Kim 2019)

and applications (Cai et al. 2019) published based on the original paper. This project explores many

aspects of the algorithm, tests its limits, and proposes best practices for practitioners.

1.2 Contribution

The following are the key contributions from this project:

• Visualizing CAVs and concepts in low dimensions

• Evaluation of variance in TCAV score and suggested solutions

• Methodology for comparing CAV generation methods in a controlled fashion

• Study of CAV perturbation and TCAV score perturbation via adding or removing concept

examples

118,400 related publications since 2015 according to Google Scholar
2Google Keynote (Google I/O’19) www.youtube.com/watch?v=lyRPyRKHO8M
3www.kdnuggets.com/2019/07/google-technique-understand-neural-networks-thinking.html
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• Best practices for CAV generation for selecting the negative class, positive class, and linear

classifier

• Proposing a modified TCAV score calculation

1.3 Outline

In this project, Chapter 2 introduces the field of interpretable machine learning and recent work

related to TCAV and the experiments considered. Chapter 3 details experiments and results related

to CAV visualization and understanding. Chapter 4 describes experiments and results on quantifying

uncertainty in TCAV scores, perturbing CAVs, and introduces the idea of Robust TCAV. Chapter 5

presents two TCAV extension ideas, including a modified TCAV score calculation using a threshold.

Chapter 6 provides a final discussion of results, lists many ideas for future work, and presents a best

practices for this method.



Chapter 2

Background

2.1 Interpretable Machine Learning

Neural networks have accomplished a variety of impressive feats in fields including computer vision,

speech recognition, and machine translation amongst many others. Deep neural networks (DNNs)

contain hidden layers with many units, which leads to many parameters. With this form of model

architecture, it can be difficult for an analyst (someone trying to understand a model) to understand

the importance of a single parameter or hidden unit in the model’s decision. DNNs, therefore, fall

under a category of “black-box” models because of this opaque quality.

As DNNs have grown in popularity and usefulness, so has the demand to understand black-box

models. This project is about interpretability in machine learning, which here is taken to mean

presenting a rationale behind an algorithm’s decision in terms understandable by humans (Doshi-

Velez and Kim 2017). Amongst a variety of approaches to interpretability, the focus of this project

is on interpretability methods that incorporate human input.

Formally, a dataset D = (X ,Y) contains instances of features X producing observations Y. A

prediction algorithm b : X → Y learns this mapping. For an instance x ∈ X , the prediction is

b(x) = ŷ. With this definition, interpretability can be viewed both locally and globally.

Local interpretability aims to provide the user (human) with the reasons b made its prediction

at particular instance x, which is b(x) = ŷ. Global interpretability seeks to give the user a general

understanding of how the algorithm makes decisions, that is, how the algorithm b behaves for all

of the feature space by understanding the mapping b : X → Y (Weller 2017). A locally important

feature may not have the same importance or effect globally (Laugel et al. 2018). For some models,

local explanations can also give a globally faithful explanation. Linear models have this quality.

Global interpretability seems desirable, but this task is difficult for highly complex models like

DNNs, which use complex interactions between feature variables and can use millions of parameters

to make a prediction. Some research has turned to higher level evidence to overcome this difficulty.

Instead of attributing importance to input features, these methods use human-level concepts (Kim
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et al. 2017) or training prototypes (Chen et al. 2018) to achieve a degree of global interpretability.

2.1.1 When do we need interpretability?

There are many motivations for interpretability. Some are out of necessity, like safety, ethical, and

legal concerns. Others motivations are merely beneficial to someone involved in either developing

(engineers, researchers), deploying (companies), or using (consumers, analysts) prediction algorithms

(Weller 2017).

Blind faith in black box algorithms can be problematic, including safety-critical applications like

autonomous vehicles, control systems, and medicine in which human lives could depend on machine

learning (Guidotti, Monreale, Ruggieri, Turini, et al. 2018). When these systems go wrong, engi-

neers must be able to debug systems and understand the reasons behind decisions. Additionally,

something like safety can be hard to quantify, so if a model is interpretable, the reasons for its

decisions can be compared to an auxiliary criteria like safety (Doshi-Velez and Kim 2017).

Beyond safety, the ability to explain an algorithm’s decisions has ethical and accountability benefits

(Doshi-Velez, Kortz, et al. 2017). Under the General Data Protection Regulation (GDPR) in the

EU, users have the right to meaningful information regarding algorithmic decisions (Goodman and

Flaxman 2017). GDPR is in law as of May 2018, although there is some debate over the rights

a user actually has under GDPR (Wachter, Mittelstadt, and Floridi 2017). For algorithms in the

justice system, interpretability could be an ethical requirement to help ensure algorithms are fair

to all groups of society (Rudin 2018). The issue of fairness is exacerbated by historical datasets

containing some bias or prejudice (Pedreshi, Ruggieri, and Turini 2008). Online text corpora have

been shown to be biased in many ways, but specifically sexist and racially prejudiced (Caliskan,

Bryson, and Narayanan 2017). Ultimately, biased datasets are a reflection of biased humans at

some point in time but these biases need not be perpetuated through algorithms trained on this

data. Interpretability in this scenario could help identify when sensitive input variables are being

used for a prediction or be used in the training process to eliminate, rather than identify biases.

In other situations, interpretability is not mandated, but still beneficial to some party. First,

interpretability methods can help the developers of algorithms debug their systems. Often, ma-

chine learning algorithms can exploit correlations in data to make classifications in a way beyond

the intentions of the developer (Ribeiro, Singh, and Guestrin 2016). Developers might also want

to understand how their algorithm may behave when exposed to adversarial examples (see §2.4.3),

which are inputs to a model cleverly designed to elicit some unusual model performance (Goodfellow,

Shlens, and Szegedy 2014) (Szegedy, Zaremba, et al. 2013). Even deep text classifiers are susceptible

to adversarial examples (Liang et al. 2017). Additionally, the deployer of an algorithm could give

its users an explanation for a particular decision, leading users to increase trust in the algorithm

(Yin, Vaughan, and Wallach 2019). An example that would be beneficial for a user: being denied

a loan and being given an actionable and faithful explanation as to why the loan application was

denied. In contrast, one can imagine a scenario in which the deployer can choose from a set of

many possible explanations and gives the user one that most satisfies some hidden goal and is not

necessarily faithful to the algorithm (Weller 2017).



Some use-cases of machine learning do not require an explanation. These include tasks for

which the problem and solution are well-understood or there is a relatively low penalty for a mis-

classification (Doshi-Velez and Kim 2017).

2.1.2 Explainablility

In the realm of machine learning, interpretability and explainablility are often used interchangeably

but should be considered as two distinct but related ideas. Gilpin et al. 2018 gives the following

framework: an explanation has two components: 1) interpretability and 2) completeness. Inter-

pretability strives to give human-understandable insight into the internal decision process of an

algorithm whereas an explanation has completeness if it is faithful to the original algorithm. In fact,

the authors champion interpretability methods in which these two components can be “traded-off”,

thereby allowing for simple yet incomplete explanations in one setting and for complex and more

complete explanations in another.

Consider an overly simply (very interpretable) explanation for a complex algorithm, which lacks

completeness. Gilpin et al. argue that is type of explanation is unethical if used to build a user’s

trust of an algorithm. Rudin 2018 points out that many “explanations” given by algorithms are

essentially model summaries and therefore lack completeness.

Many frameworks and categorizations exist to help contextualize research in interpretable machine

learning (Gilpin et al. 2018) (Doshi-Velez and Kim 2017) (Guidotti, Monreale, Ruggieri, Turini,

et al. 2018). There has been a recent push in interpretable machine learning for common metrics

and datasets on which to evaluate interpretability methods. Benchmark Interpretability Methods

(BIM) (Yang and Kim 2019) is one such example.

2.2 Approaches

Approaches to interpretability for prediction models can be roughly categorized into two classes.

Constrained models, include models constrained to a limit list of architectures, which are chosen

to be inherently interpretable or transparent box designs (Guidotti, Monreale, Ruggieri, Turini,

et al. 2018). Also in this category are models that make use of constraints in training to achieve

interpretability. The next set of approaches is post-hoc methods in which a second algorithm is

used to provide interpretability for a prediction algorithm that has already been trained.

2.2.1 Constrained Models

2.2.1.1 Inherently Interpretable Models

Inherently interpretable models have a constrained architecture that results in an analyst being able

to always interpret the model. Such architectures include short decision trees, rule lists (fig. 2.1),

and linear models (Angelino et al. 2017). A common perception in machine learning is that there

is a fundamental trade-off between model interpretability and accuracy. The validity of this

perception is highly dependent on the task. Letham et al. 2015 provide a use-case in which Bayesian



Rule Lists proved to be competitive in accuracy with black-box models while remaining completely

interpretable.

Figure 2.1: From (Angelino et al. 2017), a rule list for predicting recidivism

In response to this perception, Rudin 2018 lays out an argument for the Rashomon set. This is

the set of models that can achieve high predictive accuracy on a finite dataset. The argument is

as follows: if the Rashomon set is sufficiently large and contains many diverse forms of models,

then it is bound to contain a model that achieves both high accuracy and is interpretable. Rudin

gives weight to this theory as a possible technical reason to believe that many interpretable models

may exist but does not fully endorse the argument. While simple and elegant, this argument is not

useful beyond suggesting that there is a large set of models that would be appropriate for a single

prediction task. While it is possible this theory is true, it seems irrelevant at the moment. First,

interpretability needs to be defined in a domain-specific method before the Rashomon set can be

searched for an interpretable model.

Rudin makes in excellent point in that the belief that there is an inherent trade-off between accuracy

and interpretability likely causes many developers to not attempt to create an interpretable model

under the (possibly) false pretense that any such model would always be less accurate. As inter-

pretability becomes more demanded, hopefully the developers of prediction algorithms will question

this belief more and examine the possibility of an inherently interpretable model performing well for

their task.

As a final consideration, the complexity of inherently interpretable models must be limited (Guidotti,

Monreale, Ruggieri, Turini, et al. 2018). For example, humans would have much difficulty making

sense of a linear model with 100 input features or a decision tree with many branches and nodes.

Therefore, inherently interpretable architectures are only really interpretable if sensibly constrained

in size.

2.2.1.2 Interpretability Constraints in Training

Another related approach is to force some constraint on a model during training, which will make

it more interpretable. While similar to inherently interpretable models in that this decision is made

before training, this approach is generally more flexible in architecture.

One such example is training with a layer that predicts prototypes for certain features in addi-

tion to its class prediction (Chen et al. 2018). While this model is more difficult to train, it achieves

comparable accuracy with similar, non-interpretable models for the same tasks considered.



In another example, local constraints for interpretability in training are enforced. An increase

accuracy against an unconstrained model for a few examples is observed using Teaching Explana-

tions for Decisions (TED) (Hind et al. 2019). TED requires each training point to be labeled with

an explanation, which is used in the training process.

These algorithms highlight the fact that post-hoc methods are not the only solution when a more

complex model architecture is desired. However, retraining a model is not always a viable option. In

addition, labeling training data with explanations or some other supplemental information is would

not always be realistic given limited human resources and huge amounts of training data used by

some algorithms.

2.2.2 Post-Hoc Methods

Post-hoc methods are typically model-agnostic, meaning the prediction algorithm can be arbi-

trarily complex, or a black box, although some post-hoc methods require knowledge of gradients

and activations. An existing (trained) prediction algorithm can be used, so this approach is also

dubbed post-hoc1 as the explanation comes after the prediction process (Laugel et al. 2018). A

common issue in this branch of interpretability is ensuring that the explanation provided is faithful

to the prediction model. Some degree of local and global interpretability is possible with a post-hoc

approach.

2.2.2.1 Saliency Maps

For computer vision tasks, saliency maps or sensitivity maps are used to visualize a explanations

for the classification b(x) of an image x (Dabkowski and Gal 2017) (Simonyan, Vedaldi, and Zisser-

man 2013). In these maps, the pixels in the image that most influence the algorithm’s classification

are highlighted, giving a local explanation for image x.

In gradient-based approaches, the gradient of the classification of a target class with respect to

each dimension of the input is found. The dimensions of input, in this case, pixels, that have the

highest absolute value of gradient (eq. (2.1)) are highlighted to construct the saliency map. For a

class of interest, k, the logit for input x for class k is hk(x). The gradient of hk(x) with respect to

input x is:
∂hk(x)

∂x
(2.1)

Many approaches (Selvaraju et al. 2017) seek improve upon simply using raw gradient values.

Smoothgrad (Smilkov et al. 2017) adds noise to the input image and averages over maps for many

samples to reduce noise in saliency maps.

Alternatively, reference-based approaches assess the sensitivity of the classification on the replace-

ment of a group of pixels with some low-information substitute. The choice of the replacement pixels

is non-trivial and three possibilities are constant, noise, and blur (R. C. Fong and Vedaldi 2017)

without inferring the data-generating latent space. Chang et al. 2018 propose a generative approach

1Latin for after the event



to filling this removed space, rather than some uniform reference. The generative approach fills the

space with the most likely pixels given the rest of the image.

Figure 2.2: From (R. C. Fong and Vedaldi 2017), an image with the flute label (left), result of
finding smallest blurring area that causes p(flute) to maximally decrease (middle), and learned

mask (right).

Despite many recent advances, saliency maps have several shortcomings. First, common saliency

map techniques have been shown to be unreliable when a constant vector shift is applied to the input

(Kindermans et al. 2017) and some gradient-based approaches are invariant to model randomization

and label randomization (Adebayo et al. 2018). Next, descriptions about saliency maps tend to

only include examples for images that were classified correctly, giving a false sense of security in this

explanation method (Rudin 2018). Also, saliency maps lack in completeness in explanation; while

it tells an analyst where an image classifier is looking, it does not explain what is happening with

with the salient features.

Figure 2.3: From (Adebayo et al. 2018), an image of a “junco bird” and saliency maps from several
popular techniques compared to an edge detector. Inception v3 trained for ImageNet was used.

Finally, saliency maps are susceptible to human confirmation bias. If we notice something in a

saliency map that agrees with our intuition about what features the algorithm should be looking

for, we tend to assume the model is performing in accordance with our intuition. As a concrete

example, Adebayo et al. 2018 used an edge detector as a substitute for a real saliency map (fig. 2.3).

The edge detector highlights features that appear to be relevant to the given class even though the

edge detector has no knowledge of the model or gradients. This shows that just because a saliency

maps follows our intuition, does not mean that the explanation given is faithful to the features used

for class prediction.

2.2.2.2 Surrogate models

Some post-hoc methods seek to emulate part or all of the black box model in an interpretable way

(Hara and Hayashi 2016). A local surrogate approach approximately recreates only part of a black



box model b(x), typically around an instance x by sampling new instances in close proximity to x.

Figure 2.4: From (Ribeiro, Singh, and Guestrin 2016), a toy example showing the decision
boundary of a function f , instance of interest, x, and perturbed samples z′. z′ samples are

weighted by their proximity to x, which is shown as marker size.

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh, and Guestrin 2016) is an

example of this. A set of perturbed samples z′ are generated close to the original input x. The

classification f(z′) is found and these decisions are weighted according to their proximity to x. This

sampling process is used to train a linear classifier to generate a local explanation of f(x), as shown

in fig. 2.4. Thus, the explanation found is the local decision boundary of a more complex prediction

algorithm.

There are drawbacks of the LIME approach and local surrogate models in general. The neigh-

borhood of the input x and perturbed samples z′ can have a significant impact on the explanation

given by the linear classifier (Laugel et al. 2018). Furthermore, local surrogate models are only faith-

ful to b in the neighborhood of the input x and the features of x could have a much different impact

globally. This leads to a lack of completeness (§2.1.2) in the given explanation. The explanation

is highly interpretable as the surrogate is linear but is likely a gross oversimplification of b if b is

complex and non-linear.

Local rule-based explanations (LORE) (Guidotti, Monreale, Ruggieri, Pedreschi, et al. 2018) is

a local surrogate model that can provide more useful information to an analyst. Instead of training

a linear classifier in a local neighborhood, LORE trains a decision rule, which is highly interpretable.

In addition, a set of counterfactual rules is given, which give features that, had they been some other

value, the decision would have been different. These counterfactual explanations would be useful in

deployments in which users want an actionable explanation for why they were classified in a certain

way.

2.2.2.3 Visualizations

Some interpretability techniques aim to give qualitative explanations. These are more focused on

model-inspection rather than explaining a particular decision. Activation Maximization can be

used in understanding the role of a particular neuron by somehow maximizing it activations.

DeepDream (Mordvintsev, Olah, and Tyka 2015) has been used to create mesmerizing art using



this approach. An optimization process is used to alter an input image to directly maximize the

activations for a particular neuron or layer. Popular DeepDream implementations typically use a

image classification network such as GoogLeNet (Szegedy, Liu, et al. 2014), Inception v3 (Szegedy,

Vanhoucke, et al. 2015), or VGG (Simonyan and Zisserman 2014) pre-trained for the ImageNet

classes. Of the 1000 image classes in ImageNet, animals, in particular, dogs, dominate. Animal

faces commonly appear in DeepDream images perhaps due to this fact.

Figure 2.5: From (Nguyen et al. 2016), visualizations of pool table (left), broom (middle), and
cell phone (right) using their corresponding neurons and activation maximization.

A Deep Generator Network (DGN) is used along with activation maximization by Nguyen et al. 2016

to create more realistic visualization with a learned prior (fig. 2.5). A DGN is trained to reconstruct

realistic images from intermediate features in a network. These visualization techniques provide

useful and interesting insight into neural networks, but are less quantitative than other methods.

2.3 Testing with Concept Activation Vectors

Another post-hoc method that achieves a more global explanation is TCAV (Testing with Concept

Activation Vectors) (Kim et al. 2017). Two important ideas for this algorithm are class and con-

cept. A class, k is a labeled prediction category represented by a single neuron in the logit layer of

the network. Examples are labeled by class for training a DNN. A concept, c is a human-defined

set of examples that all have a common attribute. The set of concept examples does not need to

be from the training set. In fact, these concept examples can come from anywhere and it is the

analyst’s job to define a concept of interest using examples.

This approach makes use of these human-defined concepts to quantify an a class’s sensitivity to

a concept. For example, an analyst with access to an image classification algorithm may ask the

question, “Is the zebra class sensitive to the striped concept?”. With TCAV, any such class/concept

pairing can be used to answer this type of question in a quantitative way, thereby giving global

explanations.

TCAV will be considered for an images classification task. With TCAV, the first step in answering

these questions is computing a Concept Activation Vector (CAV) using the concept images supplied

by the analyst. This collection of images with a unifying concept c are in the positive class, Pc.

A negative class N is some collection of images that do not contain this concept. As originally



proposed, N is a set of random images (Kim et al. 2017). Although it is possible that a random

image x ∈ N could contain concept c, this is not critically important.

Using these sets of images, Pc and N , the activations are computed a layer of the analyst’s choosing.

With the Inception v3 (Szegedy, Vanhoucke, et al. 2015) architecture, the concatenative layers can

be used as a bottleneck from which to analyze the activations as shown in Figure 2.6.

Figure 2.6: From Google2, Inception v3 (Szegedy, Vanhoucke, et al. 2015) architecture. The activa-
tions at “Concat” layers are used for the TCAV process.

For an input image x, the activations at layer l are fl(x). These activations have high dimensionality

(d > 106). Thinking about these activations in a lower dimension, like R2, can give an intuition for

the process, as in fig. 2.7. A linear classification is trained between activations from images both

classes {fl(x) : x ∈ Pc} and {fl(x) : x ∈ N}. The CAV is normal to the hyperplane generated from

the classifier and therefore points in the direction of Pc. As originally proposed, the linear classi-

fication method is a Support Vector Machine or, alternatively, a Logistic classifier (TCAV Github

repository 2019).

Figure 2.7: Visualizing the CAV generation process in R2

Now, a CAV vlC for concept c in layer l has been trained. Next, the class of interest, k is introduced

with the probability of input x belong to class k being hk(x). Rather than using an input image, the

2cloud.google.com/tpu/docs/inception-v3-advanced



prediction input will begin with activations at layer l, so hl,k(fl(x)) is used. Using the activations at

layer l, the directional derivative with respect to the probability of class k is computed. The result

of this is dotted with the CAV to yield a sensitivity score, SC,k,l.

SC,k,l(x) = ∇hl,k (fl(x)) · vlC (2.2)

Testing with CAVs is now relevant in the next step as the sensitivity of each image x of class k, is

computed and the fraction that are sensitive in a positive direction is TCAVQC,k,l, or TCAV score.

TCAVQC,k,l =
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|
(2.3)

The TCAV score [0, 1] (eq. (2.3)) uses the sensitivity only in determining, in a binary fashion, if a

class images is sensitive to a concept. When SC,k,l > 0, perturbing the activations of an input x

at layer l in the direction of the CAV vlC results in an increase in the probability of class k. This

is similar to using the gradient for saliency maps §2.2.2.1, although here, a direction of interest is

compared with the gradient, rather than only considering the gradient values. By computing the

fraction of images that were sensitive to the concept, an overall score can be assigned for the sensi-

tivity of a class to a concept. The magnitude of SC,k,l is ultimately not used, but rather just the sign.

In summary, the TCAV process starts with a set of human-defined concepts, which is encoded

in a CAV. The sensitivity of a class to a concept can then be quantified using directional derivatives

and is succinctly given by the TCAV score.

2.3.1 TCAV Applications and Extensions

Although TCAV is a recent publication, some work has already been done building on it. Ghorbani,

Wexler, and Kim 2019 propose the Automated Concept-based Explanation (ACE) algorithm. For

an image x ∈ Xk ACE uses object segmentation to divide x into sub-images. Sub-images are clus-

tered in network layer l and each cluster is treated as a concept. The TCAV score is found for each

concept and by sorting by the highest TCAV score, the most important concepts for classifcation

can be found. One advantage of ACE is that the concepts are collected automatically using object

segmentation. ACE relies on TCAV process, so work presented in this project could strengthen the

ACE in practice.

A few published applications of TCAV are in medicine. Kim et al. 2017 used TCAV on a model

that predicts diabetic retinopathy using a domain expert to define concepts for interpretability. Cai

et al. 2019 have also used TCAV in medicine. With the main goal being a allowing doctors to search

for similar medical images from a database, TCAV was used to quantify how much a certain concept

was present in an image. Users could then refine their search by adjusting how much of each concept

the searched images would contain.

Another application could be detecting and mitigating biases in classification systems (§1.1). For

example, for the apron was found to be more sensitive to the woman than the man concept based

on TCAV scores (Kim et al. 2017). A developer might be interested in eliminating this bias



in the system. In training (or retraining), a constraint or loss term could be added to enforce

TCAVQ,apron,man,l ≈ TCAVQ,apron,woman,l.

2.4 Related Work

2.4.1 Image Classification Networks

Convolutional Neural Networks (CNNs) have been the dominant choice of neural network architec-

ture for computer vision tasks in recent years. They make use of convolving an input image with

many learned filters to make a prediction.

AlexNet (Krizhevsky, Sutskever, and G. E. Hinton 2012), introduced in 2012, used an 8 layer

CNN trained on GPUs, to achieve a remarkable state-of-the-art result at the time. The ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015) has been used as

a benchmark for computer vision performance, specifically image recognition and object detection.

Advances in network architecture and computation power led to a rapid improvement in performance

(Simonyan and Zisserman 2014). GoogLeNet (Szegedy, Liu, et al. 2014) introduced the Inception

module and achieved the state of the art result in 2014. Later, Inception v2 and v3 were introduced

(Szegedy, Vanhoucke, et al. 2015). This project uses the Inception v3 model, trained for ImageNet,

for experiments.

More recently, residual networks have become popular, which include skip connections between

layers. This architecture allows for easier optimization and deeper networks and achieved the state-

of-the-art result on ILSVRC in 2015 (He et al. 2016) and was incorporated into the inception

architecture (Szegedy, Ioffe, et al. 2016).

Image classification networks have dramatically increased in performance in the last decade and

with millions of parameters and many hidden layers and filters, some researchers have attempted to

look at internal network states to understand the process.

2.4.2 Usefulness of Intermediate Layers

The neural activations of intermediate layers in neural networks have been previously explored for

several uses. Alain and Bengio 2016 designed linear classifier probes with the goal of attaining a

better understanding of abstraction level throughout the network. In fig. 2.8, Alain et al. found

that probe accuracy increases monotonically along the depth of the network.

Additionally, Zeiler and Fergus 2014 provided a visualization method for CNN filters at different

depths in the network, providing insight into the functionality of each layer. Finally, R. Fong

and Vedaldi 2018 explored the hypothesis that semantic representations are distributed throughout

multiple layers and therefore these must be studied in conjunction.



Figure 2.8: From (Alain and Bengio 2016), the accuracy of linear probes at different points in the
Inception v3 network.

2.4.3 Adversarial Examples

Some image classification algorithms can be fooled. Adversarial examples can be generated using

gradient-based methods to add a slight perturbation to a normal image. The perturbed image is

indistinguishable from the original image to humans but can be classified with ≈ 100% accuracy

into any class of the the adversarial attacker’s choosing (Goodfellow, Shlens, and Szegedy 2014)

(Szegedy, Zaremba, et al. 2013). In fig. 2.9, J(θ,x, y) is the loss function used to train the model

with parameters θ, input x, and target class y. An adversarial example makes use of the gradient

of this loss function with respect to the input image, ∇xJ(θ,x, y). A perturbation is possible by

adding a small amount, ε, in this direction, after applying a sign operator.

Figure 2.9: From (Goodfellow, Shlens, and Szegedy 2014), an adversarial example using
GoogLeNet (Szegedy, Liu, et al. 2014) and the fast sign method.

TCAV presents a possible safeguard against these attacks by considering the TCAV score (Kim et al.

2017). For this example, the panda image, now in the gibbon class, could be checked against other

(real) gibbon images, which would share concepts that the adversarial example (presumably) would

not. Kim et al. perform this experiment with a different example.

2.4.4 Disentanglement

There has a been a recent rise in popularity of Variational Auto-Encoders (VAE) (Kingma and

Welling 2013) and subsequent modifications, such as β-VAE (Higgins, Matthey, et al. 2017). A

VAE encodes an input into a latent space (encoder) and reconstructs the latent representation with

a decoder. The reconstruction loss minimized in training, forcing the encoder network to learn a

compact representation of the input with minimal information loss as the latent space typical has

much fewer dimensions than the input.



Figure 2.10: From (Higgins, Matthey, et al. 2017), Traversing three latent dimensions learned by
β-VAE on the celebA dataset. They are deciphered to be encode skin color (left), age/gender

(middle), and image saturation (right).

β-VAE and other modifications enforce a constraint on the training process in an attempt to have

each dimension of the latent space represent an independent semantic dimension of the input space.

For example, for reconstructing faces from celebA, β-VAE learns a several interpretable latent di-

mensions independently (fig. 2.10). A latent representation with distinct meanings of each dimension

is said to be disentangled (Higgins, Amos, et al. 2018). Work on disentanglement is relevant to this

project because a lower dimension representation of network activations is used for visualization.

2.4.5 Style Transfer

Style transfer involves using an algorithm to apply the style of one image to transform another.

Gatys, Ecker, and Bethge 2016 propose neural style transfer in which a feature-space is created

dedicated to capturing image style. This feature-space uses the outputs from filters at each layer in

the network. Gradient descent is used to alter a new image to the the style of another image using

this feature-space.

Figure 2.11: From (Zhu et al. 2017), example transformation from a real zebra image (left) to the
same picture in the horse style.

CycleGAN (Zhu et al. 2017) focuses on mapping from one set of images to another set, rather than

from a single image to the style of another single image. CycleGAN is unique in that the sets of

images need not be paired, as is required with other style transfer algorithms. CycleGAN involves

two mapping functions G : X → Y and F : Y → X in which X and Y are sets of images of two

different styles. By optimizing for cycle consistency (x→ G(x)→ F (G(x)) ≈ x) and making use of

adversarial discriminators, the two mapping functions are trained. CycleGAN achieves impressive

results, as in fig. 2.11.



Chapter 3

Experiments on CAV Visualization

The first experiments building on TCAV involve visualizing the two classes of activations used to

generate CAVs and attempting to discover what CAVs have learned.

3.1 Dimensionality Reduction

Dimensionality reduction techniques are used to transform data in Rn to Rm where n > m and

m = 2 is typical for visualization purposes. For Inception v3 (Szegedy, Vanhoucke, et al. 2015),

table 3.1 gives the dimensions exist at each bottleneck layer.

Layer Name Shape Flat Shape

mixed0 35, 35, 256 313,600
mixed1 35, 35, 288 352,800
mixed2 35, 35, 288 352,800
mixed3 17, 17, 768 221,952
mixed4 17, 17, 768 221,952
mixed5 17, 17, 768 221,952
mixed6 17, 17, 768 221,952
mixed7 17, 17, 768 221,952
mixed8 8, 8, 1280 81,920
mixed9 8, 8, 2048 131,072
mixed10 8, 8, 2048 131,072

Table 3.1: Bottleneck names and activation shapes for Inception v3 (Szegedy, Vanhoucke, et al.
2015) architecture. The Flat Shape is used in the TCAV process.

Principal Component Analysis (PCA) is one such technique that attempts to explain variance of

data in Rn with an orthogonal transformation to Rm. Sparse PCA (Zou, Hastie, and Tibshirani

2006) is a modified version of PCA that includes a sparsity constrain on the input variables. Only

some of the m input features will have a non-zero transformation component.

For a demonstration, 50 striped images from a textures database (Cimpoi et al. 2014) were used to

created Pstriped, a class that contains the striped concept The negative class N was comprised of

50 random images from the 2012 ImageNet validation set (Russakovsky et al. 2015). Throughout
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this project, the 2012 ImageNet validation set, which contains 50,000 images, is used to generate

negative classes N by randomly selecting images from this set.

By decomposing the activations for both Pstriped and N from the mixed9 layer (fig. 3.1), it is

clear that the classes are distinct. The striped concept contains many zebra-like images of stripes,

which appear to cluster in the leftmost part of the PCA plot in fig. 3.1. Striped images that did

not have this specific type of stripiness were closer to the random class in the embedding. This idea

of transforming high-dimensional data into a lower-dimensional space and examining the meaning

of each dimension is loosely related to VAEs and VAE modifications optimized for disentanglement

(§2.4.4).

Figure 3.1: Acitvations of Pstriped and N at layer mixed9 decomposed using PCA (left). A few
training points and their input image (right).

t-SNE (Maaten and G. Hinton 2008) and UMAP (McInnes, Healy, and Melville 2018) are two

additional dimensionality reduction techniques. Several hyperparameters can be tuned with each of

these methods affect the resulting embedding.

Figure 3.2: Acitvations of various concepts at layer mixed9 decomposed using PCA (left), t-SNE
(middle), and UMAP (right)

Using these three dimensionality reduction methods, the activations of images of several concepts

(see fig. 3.10) were decomposed at different points in the architecture. At layer mixed9, which is one

of the deepest layers (close to logit), some concept classes are fairly clustered with all three methods.



Figure 3.3: Acitvations of various concepts at layer mixed0 decomposed using PCA (left), t-SNE
(middle), and UMAP (right)

Figure 3.4: Acitvations of various concepts, grouped by category, at layer mixed0 (left) and mixed9
(right), decomposed using UMAP

At layer mixed0, which is the first bottleneck layer, concepts are generally less separated. This

agrees with literature that deeper layers have better representations of high-level concepts, while

lower layers detect edges and colors (Zeiler and Fergus 2014) (Alain and Bengio 2016). In fig. 3.4,

concepts of the same category tend to overlap in both mixed0 and mixed9 with UMAP.

Dimensionality reduction is a useful way to visualize high-dimensional spaces, like activations, and

can provide insight on how concepts and categories of concepts are represented in a given network

layer, and how this representation changes at different points in the network.

PCA and Sparse PCA are used to visualize CAVs in later experiments. Each embedding is trained

on the Pc and N training examples. This same embedding is used to transform CAVs and decision

boundaries.

3.2 DeepDream

The DeepDream algorithm (Mordvintsev, Olah, and Tyka 2015) can give an insight into the inner

workings of a neural network and generate fascinating patterns through activation maximization



(discussed in §2.2.2.3). Originally, the algorithm’s loss function was defined as the mean of the

activations from a given layer l starting with an input image x.

L(x) =

∑
fl(x)

|fl(x)|
(3.1)

Gradient ascent is used to maximize L(x) by altering the input image x through backpropagation of

the gradient. Therefore, DeepDream will perturb the input image to maximize the mean activations

of layer l. Alternatively, the activation of a particular neuron can be maximized.

Figure 3.5: DeepDream algorithm used to maximize the activations of a specified layer, using the
loss function in eq. (3.1) for three different layers.

While this process produces amazing patterns, I sought to visualize patterns from CAVs, as was

done in Kim et al. 2017. Instead of maximizing activations in a certain layer, the loss function was

altered to reflect the distance between fl(x) and a CAV at the same layer. As this loss function is

maximized, it forces fl(x) to be more similar to vlC .

L(x) = fl(x) · vlC (3.2)

Additionally, CAVs from multiple layers can be used in a collective loss function. The loss coefficient

for each layer is γl and it controls how much (if at all) the CAV and activations at layer l contribute

to L(x). γl could account for the shape of each l used (table 3.1), such that the losses from each

l are evenly weighted. CAV accuracies (§3.4) could be used to estimate where concept will be the

most pronounced and could be used to set γl. Selecting the optimal parameters to produce a desired

effect in the manipulated image requires trial and error.

L(x) =
n∑
l=1

γl ∗ fl(x) · vlC (3.3)

The DeepDream process uses image down-scaling to help the process produce patterns at different

scales and many parameters and be adjusted to alter the types of patterns that arise. Additional

terms to the loss function can be added including a term to prevent pixel values from reaching

extreme values (eq. (3.4)). Pixels are represented as [−1, 1], so a pixel value of 0 maximizes this



Figure 3.6: DeepDream algorithm with loss function altered to include CAVs at each layer for
several concepts

term, causing images to take a grey color.

L(x) =

n∑
l=1

γl ∗ fl(x) · vlC − η ∗
∑

x (3.4)

Figure 3.7: DeepDream algorithm applied to two original images. The loss function used the striped
CAV in several different layer combinations. For example, ”0, 1, 2” means the striped CAVs from
mixed0, mixed1, and mixed2 were used with equal weight to generate the loss term as in eq. (3.3).

Any image can be the start for the DeepDream algorithm. In fig. 3.7, a horse image is the original

image and is altered in the direction of striped CAVs. Based on the comparison to the white noise

original image, it seems that there is original image has little impact on patterns generated from the

CAV.

One pitfall of relying on DeepDream is our susceptibility to confirmation bias. We would like

to think that the striped CAV has learned this concept and are easily persuaded that it has when

something close to stripy is produced. Therefore, the inclusion of this visualization technique is only

a means to some insight into where in the model concepts are most articulated and some idea of

what a concept may look like.



3.3 Activation Perturbation

Rather than altering the input image in an algorithm like DeepDream §3.2, CAVs can be used to

perturb activations of intermediate layers in the direction of a concept without back-propagating

gradients to the input image.

Using this idea, the activations fl(x) from an image x can be perturbed to varying degrees in

the direction of a CAV vlC . The perturbation is simple addition in the CAV direction controlled the

coefficient α.

f ′l (x) = fl(x) + α ∗ vlC (3.5)

By altering the intermediate activations, the class predictions will change when the activations are

fed through the rest of the network.

hk(f ′l (x)) 6= hk(fl(x)) (3.6)

It is possible that one specific class k̂ dominates k̂ = argmaxk hk(f ′l (x)) for a sufficiently large α.

This can occur when a concept is a very strong signal for a certain class.

Figure 3.8: Parameter sweep of α using striped CAV at layer mixed9, and sky images (left).
Acitvations of sky images perturbed (α = 20) in the direction of the striped CAV decomposed

using PCA (right)

From fig. 3.8, the activations move from within the N cluster to the Pstriped region. In conjunction,

the probability of the perturbed activations being classified as a zebra increases steadily for each set

of activations. Even beyond α = 20, p(zebra) increases monotonically for nearly every example. In

fact, by observation:

lim
α→∞

p(zebra) ≈ 1 (3.7)

After a certain point, the activations are likely saturated, meaning that more change in the same

direction will have no impact on the resulting prediction. The same process is possible for CAVs

representing other concepts, yet this does not guarantee meaningful results. For example, the CAV

generated from sky images, vmixed9
sky results in k̂ = ear as α → ∞, starting with any image. Other

seemingly uncorrelated results exist for other CAVs.

By starting with images from an existing class, the transition from the original class to the class



associated with a CAV can be observed in the parameter sweep with α. This transition is shown

starting with 50 horse images in fig. 3.9.

Figure 3.9: Parameter sweep of α using striped CAV at layer mixed9, and horse images.

The probability of the zebra class increases at different rates for different activations from horse

images, as expected. Some activations are more easily influenced by perturbation in the direction

of the CAV.

In fig. 3.9, the starting class for the activations was k = horse and by increasing the perturba-

tion in the striped direction, k̂ = zebra for sufficiently large α. However, the horse and zebra classes

are semantically close. With concepts that are semantically further from the zebra class, this average

transition α is higher.

3.4 CAV Accuracy

From fig. 3.2 and fig. 3.3, it is clear that the same sets of input images can have much different

representations at different bottlenecks in the network. Of course, a decomposition into R2 loses

information. In which layers are the concepts so clearly articulated in the activations that a linear

classifier can make a high accuracy separation?

To assess the separability of concept examples Pc from a set of random counterexamples N at

different points in the network, several concepts were defined. The Color and Scene categories

shown in fig. 3.10 were collected from ImageNet. The Texture category was collected from the De-

scribable Textures Database (Cimpoi et al. 2014). 50 images for each concept were collected.

There are some important difference between categories. For example, in Color, only one object

in the image must contain the given color; the entire image need not be the same color. In contrast,

the Texture category contains images that are typically entirely occupied by the given texture. For

the Scene category, objects such as people and cars can be present in the images. Furthermore, the

Scene category is a higher-level concept because a collection of scene concept images need not have

the same color or texture. There is a vast array of images that could qualify as the road concept, for

example, and they may not share anything other than the presence of the human notion of a road



which may have highly variable low-level features.

Figure 3.10: Example concepts and images listed under category

For these concepts, a linear classifier (SVM, in this case) was trained using a set of concept images

Pc and N negative images. To account for variability in the train/test split and the images used

in N , 5 classifiers were trained for each concept. For c = green, the CAVs were N0 → Pgreen, . . . ,

N4 → Pgreen. The mean and standard distribution of the accuracies of this set of linear classifiers,

now referred to as “CAV Accuracy” were found for each bottleneck layer as shown in fig. 3.11.

Figure 3.11: Means and standard deviations of CAV accuracy for 4 concepts in each of 3 categories
at each bottleneck in the network

Insights into the representations of each concept at different points in the network and the CAV



generation process are possible using fig. 3.11. For example, for all Color category concepts, the

mean CAV accuracy rarely exceeded 0.9, possibly because images from N could contain the color

of interest and therefore the two classes would be less separable. For Textures, very high accuracies

were achieved by the mixed4 layer and remained high in later layers. CAVs generated from con-

cepts in the Scene category, which contains highest-level concepts, achieve a much lower accuracy

in the beginning layers of the network, although gradually increase throughout the network. These

observations are consistent with the CAV accuracies found by Kim et al. 2017 and work from Zeiler

and Fergus 2014 that early layers detect low-level features like edges while high-level features are

detected in deeper layers using combinations of low-level features.

Figure 3.12: Means and standard deviations of CAV accuracy for 4 concepts at each bottleneck in
the network. Error bars represent one standard deviation.

Finally, the CAV accuracies were evaluated with Pc being a negative class itself. For example, for

using N5 as Pc, the 5 CAVs used to generate the means and standard deviations in fig. 3.12 were

N0 → N5, . . . , N4 → N5. Using negative classes as concepts behaves exactly as one would hope;

nothing of meaning is learned because the two classes are drawn from the same distribution. This

experiment confirms that CAVs with meaningful concepts are did not happen by chance.

3.5 Sorting Images with CAVs

CAVs exist in Rd, along with the activations from the same bottleneck. Therefore, vector comparison

calculations can be done to assess how similar a set of activations fl(x) at bottleneck l are to a CAV,

vlC . Sorting a set of activations by a distance metric like cosine similarity yields insight into how the

concept is manifested in the class and can be impressive if the CAV learns something meaningful.

Kim et al. 2017 use cosine similarity eq. (3.8) to sort images although using other metrics are also

possible such as the magnitude of their directional derivative.

cosine similarity(u, v) =
u · v

‖u‖ × ‖v‖
(3.8)

The Euclidean distance eq. (3.9) to the mean of Pc could also be used to sort images. For example,

with dist(µPc
, fl(x)).

dist(u, v) =

√√√√ n∑
i=1

(ui − vi)2
(3.9)



Figure 3.13: Top and bottom 3 class images sorted according to the cosine similarity with the
corresponding CAV in the mixed9 layer.

So far, the sorting tasks have been limited to cases in which the TCAV Score and the CAV accu-

racy are high. If the metrics available suggest the CAV is learning a meaningful concept and that

concept is important to the prediction of the class of interest, then it follows that images that are

most similar to the CAV agree with our human-defined notion of a concept. Now, sorting tasks will

be considered in which either the CAV accuracy is low or the TCAV score is low.

Figure 3.14: Top and bottom 3 zebra images sorted according to the banded and grassland CAV in
the mixed9 layer using cosine similarity.

The banded concept (fig. 3.10) was used in lieu of the striped concept as it relates to zebras. The

banded concept actually falls under a broad semantic notion of striped but is a much different mani-

festation of this broad concept than the striped concept, which focuses on organic stripes. However,

the banded CAV in the mixed9 layer achieve a TCAV score of 0, so it appears to be minimally pre-

dictive for the zebra class. Sorting with the banded CAV using cosine similarity (fig. 3.14) performs

remarkably well. Based on fig. 3.14, I hypothesize that CAVs can still learn meaningful information

despite a TCAV score.

The last demonstration with sorting sought another way to visualize what a CAV has learned by

finding prototypical examples. In fig. 3.15, 500 grassland images are sorted according to grassland

CAV. Prototypical examples are the images the produced the closest activations to the CAV. This

could be a useful approach for an analyst dealing with a large concept class and trying to understand

what the CAV has learned.



Figure 3.15: Top and bottom 3 grassland images sorted according to the grassland CAV in the
mixed9 layer using cosine similarity.

As with DeepDream §3.2, the sorting process is subject to our own confirmation bias. Along with

other visualization techniques, sorting, can provide useful insight into CAVs.



Chapter 4

Experiments on Robust TCAV

This chapter focuses on clarifying the need for Robust TCAV and lists objectives for this idea.

Experimental results and discussion are provided for TCAV score uncertainty and CAV perturbation.

4.1 Understanding TCAV Score

The TCAV score (eq. (2.3)) is used to measure sensitivity of class k to concept c. To gain a sense of

the uncertainty in the TCAV score, several class/concept pairs were tested. From fig. 4.1, testing at

bottlenecks deeper in the network (mixed6, mixed8, mixed10 ), generally results in a higher TCAV

score in accordance with the observation from fig. 3.11 that CAV accuracy increases with depth in

the network.

Figure 4.1: TCAV Score at different network bottlenecks for several class/concept pairings.

Is the reported TCAV score trustworthy? Ideally, the TCAV score would be the same for tests

under very similar conditions. For example, if using the same Pc examples1, same network layer,

and same class of interest k, one would expect that the TCAV scores would be very similar. To test

this hypothesis, the TCAV score was found for several class/concept pairings over 5 runs using the

original TCAV implementation (TCAV Github repository 2019). Each run had a unique train/test

split and unique N negative examples.

1The same 50 Pc images are used for each concept. In CAV generation, a random subset of 34 Pc images is selected
for training.
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Figure 4.2: TCAV Score distribution at different network bottlenecks for several class/concept
pairings. The error bars represent one standard deviation. Each distribution is over 5 observations.

From fig. 4.2, it is clear that the TCAV scores from a single run (fig. 4.1) actually come from a wide

range of possible values under very similar conditions.

Going deeper into the TCAV score, directional derivatives are now further investigated. The

TCAV score eq. (2.3) is computed as the fraction of input images that have a positive directional

derivative ∇hl,k (fl(x)) · vlC for class k and CAV concept C at bottleneck l.

For a differentiable function, f(x), the dot product between the gradient of f(x) and the direc-

tion of interest v is the directional derivative.

∇vf(x) = ∇f(x) · v (4.1)

The definition of the directional derivative can also be used, which is the instantaneous change of

f(x) when a small perturbation in the direction of v is added to x.

∇vf(x) = lim
α→0

f(x + αv)− f(x)

α
(4.2)

The activation perturbation process shown in (fig. 3.8) is similar to eq. (4.2) although the pertur-

bation coefficient α� 0. Instead of finding the gradient then taking the dot product with the CAV

direction, the activation perturbation method traverses the direction of the CAV and records the

response in the probability of the class of interest hk(fl(x)). The next experiment will investigate

how hk(fl(x)) behaves for x ∈ Xk as α→ 0 to understand the meaning of the directional derivative.

For 150 zebra images from ImageNet, most begin with p(zebra) > 0.9 from fig. 4.3. As the ac-

tivations are perturbed in the striped CAV direction, it appears that most probabilities increase

(although some briefly decrease) and limα→∞ p(zebra) ≈ 1. This trend is examined more closely as

0 < α < 1. The limit as α→ 0 is found, which is the directional derivative computed using eq. (4.2),

Sc,k,l. In fig. 4.3, most Sc,k,l > 0 and the resulting TCAV score is 146/150 = 0.98. Computing the

TCAV score using the gradient and dot product method eq. (4.1) yields the same result. For the

purposes of computing the TCAV score, only the sign of the Sc,k,l is important2.

2Using the magnitude is considered in §5.1.



Figure 4.3: Zebra image activations (mixed9 ) perturbed by α in the striped CAV direction (left).
α approaching 0 (middle). Limit as α→ 0 with only the change from the original class probability

shown, which is also Sstriped,zebra,mixed9 (right).

With this knowledge of the TCAV Score uncertainty and directional derivative process, criteria

for a robust version of this process can be discussed.

4.2 Criteria

What would make the TCAV process robust? From the observations in §4.1, there is some degree

of uncertainty in the TCAV score generated under very similar conditions. The following criteria

are the first steps towards a robust TCAV process:

• Consistent: only a small change in TCAV score for CAVs generated from the same concept

using different training examples (either Pc or N)

• Resistant to perturbations: only a small change in TCAV score when the CAV is perturbed

by adding or removing concept examples in Pc

First, experiments will focus on identifying sources of variance in the TCAV score with the aim

of making the TCAV process more consistent. Later experiments will involve perturbing concept

examples to find ways in which the TCAV process can be resistant to perturbations.

A list of best practices in §6.1 addresses these concerns based on experimental observations.

This list is meant to be useful for future analysts leveraging the power of TCAV to understand their

models.

4.3 Comparison Methodology

To understand how a CAV behaves under sets of similar conditions, two variables were carefully

controlled.

1. The points from Pc used for training, which will be controlled through the random seed for

the train/test split3

2. The selection of the negative class, N

3train/test split fraction of 0.33 is used for all experiments



As mentioned in §2.3.1, random images from the ImageNet validation set are used for N , concept

counterexamples. Sets of 50 of these images were collected and numbered starting with N50
0 , N50

1 , . . . .

For example, N50
0 contains 50 random images from the validation set and N50

1 contains a different

50 random images. Changing which N to use in the CAV generation process will affect the resulting

CAV.

Figure 4.4: Four directional derivative distributions for different negative classes N , and train/test
split seeds for the striped CAV in layer mixed9 for the zebra class.

Considering these two variables, directional derivative distributions for one example were found to

get a bearing on the effect of each. From fig. 4.4, it appears that varying the train/test split seed

had a small effect on the TCAV score and directional derivative distribution. When N was varied,

the TCAV score changed dramatically, as did the directional derivative distribution. This means

that even with the Pc training examples held constant, the directional derivative distribution was

wildly different, suggesting that the selection of N is the main source of variance in this case, which

is explored more in §4.4.3.2.

The proposed methodology will be used for experiments in both reducing the variance in TCAV

score §4.4 and observing the effects of perturbing CAVs §4.5

4.4 Reducing Variance in TCAV Score

4.4.1 CAV Generation

In this section, fabricated data is used to examine the properties of several linear classifiers, which

will be used to generate CAVs. The implementation details for each CAV generation method con-

sidered are given in table A.1.

With a parameter-based model, training data determines the parameters and not all training exam-

ples have equal influence on the parameters. The importance of outliers and influential obser-

vations on several linear classifiers used to generate CAVs are considered in this section.

For a linear binary classification problem, the predicted class ŷ is found by adding a bias term

b to the dot product of the weights w the model features x. The sign of the result indicates the



predicted class: either −1 or 1. Classifiers are trained by solving for the optimal weights and bias.

ŷ = sign
(
w>x + b

)
(4.3)

A metric such as Cook’s distance (Cook 1977) could be used for detecting influential observations.

However, because a CAV is the ultimate result of the linear classification process, I chose to quantify

the change in the direction of the CAV. Cosine similarity [−1, 1] (eq. (3.8)) can be used to quantify

the similarity in direction of two vectors.

Therefore, the most influential observation, iinfl, is the point that, when removed, maximally changes

the cosine similarity between the perturbed and original CAV. By iteratively discarding a single data

point i from a class of interest, the maximum possible perturbation can be found with eq. (4.4).

iinfl = argmin
i

[
cosine similarity

(
vlC ,v

l
C(−i))

)]
(4.4)

Support Vector Machines (SVM) can be used for linear classification tasks and work by finding a

hyperplane that maximizes the margin between the hyperplane and closest data point of either class.

SVMs are particularly susceptible to influential observations because the rely on only a few points

to generate a decision boundary. These points form support vectors.

In this toy example, an SVM is trained to separate two normally distributed classes (red and blue)

in R2 from fabricated data. All data shown in fig. 4.5 was used for training. The resulting CAV is

significantly affected by removing the most influential observation iinfl of the red class as this point

was used as a support vector. This effect is well known and modified SVMs including Weighted

SVMs (Xulei Yang, Qing Song, and Cao 2005) were designed in response.

Figure 4.5: SVM: Original training data and decision boundary (left), support vector points
highlighted (middle), and maximum perturbation by removing a point x from red class (right).

Normalized CAVs shown in top left of each image.

The linear classifier originally proposed in TCAV (TCAV Github repository 2019) is an SVM trained

using Stochastic Gradient Descent (SGD)4. A linear logistic classifier is suggested as an alternative

to this. Because SGD is non-deterministic, different CAVs are produced from different random

4scikit-learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html



seeds. A random seed is used to control the generation of random variables. In this context, the

random seed controls how SGD initializes and yields reproducible results for non-deterministic pro-

cesses5. Surprisingly different CAVs can be produced using the same classifier and training data

but different random seeds. This is because the SVM is approximated via a SGD optimization and

runs under a default number of maximum iterations and tolerance for convergence. According to

documentation6, the SGD method should be considered for large datasets as the SVM method could

have a significant computation cost. In practice, I found that training CAVs in high dimensions with

a deterministic SVM implementation was not a computational bottleneck. However, increasing the

maximum number of iteration using the SGD approach significantly increased training time.

Figure 4.6: SVM via SGD: Original training data and decision boundary (left), maximum
perturbation by removing a point x from red class (right). Normalized CAVs shown in top left of

each image.

As with the deterministic SVM, SVM via SGD was highly influenced by the removal of iinfl. The

variance in CAVs generated from the SGD process can be overcome by averaging over many random

seeds, as shown in fig. 4.7.

Figure 4.7: Average over SGD SVMs: Original training data and decision boundaries for 100
SGD SVMs and the average (left), training data and decision boundary for the average (middle),
maximum perturbation by removing a point x from red class (right). Normalized CAVs shown in

top left of each image.

5Random seeds can also be used to control a train/test split.
6scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html



Many linear classifiers exist outside of SVMs. When considering the goal of this experiment is to

make the TCAV process more consistent, a simple way to increase consistency in CAVs and is to

select a linear classifier that is deterministic in training, or at least very consistent.

A group of concept examples given by an analyst should have something in common and the idea

of a CAV is to learn this commonality and encode it in a vector. Two disjointed sets of concept

examples could be used to express the same concept and there are bound to be outliers from each

set. Ideally, a CAV learns the commonality amongst a group of concept images and therefore be

minimally affected by outliers.

A linear classifier could fit these desiderata is a Closest Centroid Classifier. In this method, the

the centroid of each class is computed and the difference between the centroids becomes w, which

is also the CAV. For this example, the arithmetic mean was chosen as the centroid method, al-

though any other centroid method could be used. Therefore, this method will be referred to as the

difference of means method, or simply mean.

w = µ(+) − µ(−) (4.5)

b = −1

2

(∥∥∥µ(+)
∥∥∥2

−
∥∥∥µ(−)

∥∥∥2
)

(4.6)

Figure 4.8: Difference of Means: Original training data and decision boundary (left), means and
CAV highlighted (middle), and maximum perturbation by removing a point x from red class

(right). Normalized CAVs shown in top left of each image.

The CAV generation process for the difference of means method is shown for the toy data in fig. 4.8.

The CAV direction is learn directly, rather than by finding the vector normal to the decision bound-

ary. The maximum perturbation has a much smaller effect on the CAV with this method. It should

be noted that the perturbation metric in use here is the cosine similarity between the original and

perturbed CAVs, and not the Euclidean distance between the original and perturbed means. From

fig. 4.8, the most influential point is far in distance from the mean, but not the furthest; removing

this point, however, does move the mean in a direction that maximally affects the CAV. Because the

magnitude of the CAV is unimportant for cosine similarity, removing points that shift the mean in

the direction of the CAV (either shrinking or elongating it, put simply) ultimately have little impact



on the cosine similarity with the original CAV.

Using fabricated data, it appears that SVM approaches have downsides that the difference of means

(or others) might be able to overcome. However, these toy experiments are in R2 with two mostly

distinct classes. CAVs exists in a much higher dimensional space (table 3.1).

Next, experiments will focus on using the quantifying the effect of a more consistent classifier on

actual concept and class pairings to understand if these advantages manifest in a real application.

4.4.2 Consistent Classifier

To assess the importance of a more consistent classifier, the original SVM method (trained via SGD)

will be considered along with an average of 100 SVMs trained with SGD, as in fig. 4.6. The TCAV

score was found for several class/concept pairings at different points in the network. Ideally, the

TCAV score from the same class/concept pairing at the same bottleneck in the network would the

same, even with a different negative class N . In reality, there is some variance in TCAV scores

computed under very similar conditions. The goal of this experiment is to determine how much this

variance can be decreased by simply making the CAV generation process more consistent.

Figure 4.9: TCAV score distributions using the striped CAV for the zebra class in the mixed6 (top)
and mixed9 (bottom) layers. Error bars represent one standard deviation.

Ten negative classes each containing 50 random images were used to test the TCAV score distri-

bution N0
50, . . . , N

9
50. Ten random seeds s = 1, . . . , 10 for the train/test split were used to control

which examples were actually used for training. The overall statistics are summarized in table 4.1.

Additionally, the TCAV score distribution was plotted for each negative class in fig. 4.9.

Beyond an inconsistent CAV training process, there are other sources of variance that may be prop-

agating to variance in the TCAV score distributions.



SVM via SGD Ave. of SVMs
layer class concept µ σ µ σ

mixed6 zebra striped 0.83 0.054 0.85 0.021
mixed9 zebra striped 0.48 0.284 0.45 0.166

Table 4.1: TCAV score distribution statistics for two methods of CAV generation. Each distribution
has 100 observations from the combination of 10 train/test split seeds and 10 N50 classes.

4.4.3 Negative Class

From §4.3, preliminary experiments suggested that under constant conditions, a change in N led to

variance in the TCAV score and directional derivatives. This section aims to give further experi-

mental evidence and explore methods to mitigate this effect.

Figure 4.10: TCAV score distributions using the striped CAV for the zebra class in the mixed6
(left) and mixed9 (right) layers. Error bars represent one standard deviation.

In fig. 4.10, the TCAV score distribution is relatively narrow if considering a single negative class,

such as N50
0 , which represents the same Pc and N examples, but different training examples used as

the train/test split seed was varied from s = 1, . . . , 10. However, the distributions of the TCAV score

for different negative classes look quite different and seems to be drawn from a different distribution.

Ideally, the replacement of one negative class with another should have little impact on the TCAV

score.

Now that the importance of selection of N has been shown experimentally, potential solutions

will be explored; first, using the difference of means method, then using a larger size for the negative

class.

4.4.3.1 Difference of Means

The difference of means method (eq. (4.5)) should have less dependence on outliers than an SVMs

based on preliminary experiments with fabricated data7 in §4.4.1. Because N is the set of the

negative examples used to train a CAV and comes from a distribution of random images, outliers

are inevitable. I hypothesize that using the difference of means method will decrease variance in the

TCAV score distribution.

7Of centroid method, the mean is more dependent on outliers than the median, for example. However, this is a
comparison with the SVM methods.



Figure 4.11: TCAV Score distribution against N for the striped CAV in layer mixed6 and zebra
class using two CAV generation methods over train/test split seeds s = 1, . . . , 10 for each N and

|N | = 50 (left). Overall distribution (right).

Figure 4.12: TCAV Score distribution against N for the striped CAV in layer mixed9 and zebra
class using two CAV generation methods over train/test split seeds s = 1, . . . , 10 for each N and

|N | = 50 (left). Overall distribution (right).

fig. 4.11 and fig. 4.12 agree with this hypothesis. The TCAV score is more consistent across different

N classes and the overall variance in TCAV score significantly decreases.

Ave. of SVMs Mean
layer class concept µ σ µ σ

mixed6 zebra striped 0.85 0.021 0.87 0.012
mixed9 zebra striped 0.45 0.166 0.56 0.085

Table 4.2: TCAV score distribution statistics for two methods of CAV generation. Each distribution
has 100 observations from the combination of 10 train/test split seeds and 10 N50 classes.

4.4.3.2 Increasing Size of Negative Class

Ideally, N would sufficiently represent the distribution of all possible random images. In reality,

the size of N is finite and typically limited to the size of Pc
8. If |Pc| = |N |, then the classes will

be balanced, which is ideal for a binary classification with equal penalties. If the hypothesis that

8the TCAV github repo (TCAV Github repository 2019) truncates all examples to the size of the smallest concept
to make sure positive and negative examples are balanced



|N | = 50 does not sufficiently cover some distribution of all images is correct, perhaps including

more elements, such as |N | = 500 could solve this issue. An advantage of TCAV is giving an analyst

the ability to define a concept of their choosing, which would likely involve either searching and

downloading images, using one of many Synsets9 in ImageNet, or a more manual selection process.

Therefore, |Pc| should be kept to a reasonable size to prevent the concept collection process from

being overly cumbersome.

Figure 4.13: PCA decomposition in mixed9 of means of N with either 50 or 500 elements. PCA
embedding from fig. 3.1 is used.

If |Pc| 6= |N |, then class weights could be used to avoid the classifier being biased toward classifying

everything in the class with the most training points. Scikit-learn, which is used for all linear clas-

sifiers in this project, has a setting that automatically computes class weights based on the number

of items in each class 10. Alternatively, some classifiers, such as the difference of means method do

not require class weights as the CAV is learned directly rather than through a linear classifier.

To confirm that |N | = 500 results in more consistency across negative classes, the mean of the

activations was computed for each negative class N0 . . . N9 for both |N | = 50 and |N | = 500. From

fig. 4.13, when |N | = 500, the means are more clustered around the overall mean. Because fig. 4.13

is a decomposition into R2, this observation was confirmed by finding the Euclidean distance from

the mean over the entire set. N where |N | = 500 is consistently much closer to the mean over the

entire set as expected.

Using |N | = 500 in fig. 4.14, the TCAV score was computed for the CAV generated from Pstriped

and N0 . . . N9. For each of these CAVs, random seeds s = 1, . . . , 10 were used.

From fig. 4.14, the TCAV score distribution is narrowed even further by using |N | = 500 with

the difference of means (mean) method. Is this also the case when the variance is already low? Us-

ing the mixed6 layer for Pstriped and k = zebra, the variance in TCAV score distribution is already

relatively low by using in difference of means method (fig. 4.11). From fig. 4.15, it seems as if there

is some irreducible variance as increasing |N | had only a small decrease in the variance of TCAV

9A ”synonym set” is set of synonyms that express the same concept, like cab and taxi. ImageNet uses these to
group images of the same concept.

10scikit-learn.org/stable/modules/generated/sklearn.utils.class weight.compute class weight.html



Figure 4.14: TCAV Score distribution against N for the Striped CAV in layer mixed9 and zebra
class using |N | = 50 and |N | = 500 and the difference of means method over train/test split seeds
s = 1, . . . , 10 (left). Error bars represent one standard deviation. Overall distributions (right).

score distribution.

Figure 4.15: TCAV Score distribution against N for the Striped CAV in layer mixed6 and zebra
class using |N | = 50 and |N | = 500 and the difference of means method over train/test split seeds
s = 1, . . . , 10 (left). Error bars represent one standard deviation. Overall distributions (right).

Mean,|N | = 50 Mean,|N | = 500
layer class concept µ σ µ σ

mixed6 zebra striped 0.87 0.012 0.87 0.010
mixed9 zebra striped 0.56 0.085 0.56 0.042

Table 4.3: TCAV score distribution statistics for two methods of CAV generation. Each distribution
has 100 observations from the combination of 10 train/test split seeds and 10 N50 classes.

More comprehensive results are given in table A.2 and generally corroborate the conclusions that 1)

A deterministic linear classifier reduces variance in TCAV score 2) The difference of means method,

particularly using |N | = 500, results in the lowest variance in TCAV score.



4.5 Perturbing CAVs and TCAV Score

In §4.4.1 a toy dataset was used to examine fundamental differences in linear classifiers and how

their resulting CAVs respond to removing data from one class. So far, experiments have shown that

using difference of mean method to generate CAVs and using a larger N set decreases variance in

TCAV score distributions, thereby making the CAV and TCAV process more consistent. The next

set of experiments aim to evaluate several linear classifiers to determine which is the most resistant

to perturbations.

4.5.1 Removing a Single Training Point

In this context, a perturbation is the addition or removal of a data point in Pc or N . As in §4.4.1, a

maximum perturbation is achieved by finding the highest change in CAV by removing a single data

point i.

iinfl = argmin
i

[cosine sim(vlC ,v
l
C(−i)

)] (4.7)

Alternatively, the change in the magnitude of TCAV score (a scalar) could be considered as the

metric of interest rather than the CAV score11.

iinfl = argmax
i
|TCAVQC,k,l − TCAVQC(−i),k,l| (4.8)

Rather than selecting a single perturbation metric (eq. (4.7) or eq. (4.8)), both were collected for

the removal of every training point in Pc, one at a time. Using |Pc| = 50, |N | = 50, and train/test

split= 0.33, results in 34 training points for Pc and 33 for N . An original CAV was trained using all

points to serve as a baseline 12. Next, the first training point in Pc was removed, leaving 33 training

points in Pc. The process was repeated for each training point, resulting in 34 perturbed CAV and

TCAV score pairings for each method.

In fig. 4.16, the TCAV score from the SVM method is, not surprisingly, influenced by removing

training points. The difference of means method performed the best in the sense that the perturbed

CAVs varied very little in both cosine similarity to the original CAV, and more importantly, TCAV

score. Although some of the perturbed points for the difference of means method appear to have a

cosine similarity of 1, they are merely close (most ≈ .999). Because each point is used in calculating

the mean, removing any single point changes the mean.

In contrast, a CAV generated by an SVM is not necessarily influenced by the removal of any point;

only removing points that act as support vectors will alter the CAV. Of 34 training points in Pc,

20 were used as support vectors, so the cosine similarity of the CAVs perturbed by removing the

non-support vector points is 1, meaning the CAV is the same. These points are visible in fig. 4.16.

11Using eq. (4.8) for perturbation comes at a significant computation cost. From eq. (2.3) and eq. (2.2) the
activations and gradients must be computed for each input image x ∈ Xk to compute the TCAV score. Computing
a new TCAV score for each training set with one element removed becomes computationally expensive.

12An original CAV was trained for each method, so the cosine similarities are with a CAV generated through the
same method



Figure 4.16: TCAV Score vs cosine similarity for four CAV generation methods. Each point
represents the CAV and TCAV score that resulted from removing one training point in Pc. This is

the striped concept in layer mixed6 and tested for 150 zebra images.

The logistic classifier also appears to be less influenced by perturbations than both SVM meth-

ods. How many training examples can be removed with similar results? The answer is likely very

context-dependent. Further experiments were conducted focusing on the logistic and difference

of means methods as those proved to be the most effective in the above experiment.

4.5.2 Removing n Training Points

Rather than removing each training point, one at a time, random groups of training points in Pc of

size n were discarded.

Figure 4.17: Example of removing n = 30 training points from Pc, shown in a sparse PCA
embedding. This is the striped concept in mixed9 and the CAV was generated using the difference

of means method.

For example, for n = 10, a random subset of size 10 was selected out of a constant training set of Pc

(size 34). A CAV was generated from the remaining 24 training examples and the cosine similarity

TCAV score were recorded for this case. Then, this process was repeated as 50 times for fig. 4.18.

A visualization of this process is given in fig. 4.17

Using the both the difference of means and logistic methods to generate CAVs results in remarkably



consistent CAVs and TCAV scores. Even when 30 training examples were removed (leaving only 4

training examples in Pc)
13, the TCAV score remained in a relatively narrow distribution for all 50

trials. As expected, removing fewer training examples (n = 10, 20) results in CAVs that are more

similar to the original CAV and less variance in the TCAV score.

Figure 4.18: TCAV Score vs cosine similarity for the logistic method (left) and difference of means
method (right). Each point represents the CAV and TCAV score that resulted from removing n
training points in Pc randomly for n = 10, 20, 30. This is the striped concept in layer mixed8 and

tested for 150 zebra images.

The same process was repeated for a different class/concept pairing in the same layer (mixed8) in

fig. 4.19. Similar results are observed, although the minimum cosine similarity is lower (≈ 0.6 com-

pared to ≈ 0.75 in fig. 4.18) and the variance in TCAV score is generally higher for all values of

n and both methods in fig. 4.19. I hypothesize that this is because the grassland concept is less

homogeneous than the striped concept. In other words, two random images in the grassland concept

are likely further away than two random images in the striped concept because textures are simpler

than scenes. Thus, the CAV would be more susceptible to change with a less homogeneous concept.

Figure 4.19: TCAV Score vs cosine similarity for the logistic method (left) and difference of means
method (right). Each point represents the CAV and TCAV score that resulted from removing n
training points in Pc randomly for n = 10, 20, 30. This is the grassland concept in layer mixed8

and tested for 150 lion images.

13This is not meant to suggest analysts should use |Pc| = 4; This is a test of the limits of each method.



In the mixed8 layer, the average Euclidean distance to µPc was 75.3 for striped, 98.8 for grassland,

and 107.5 for a random set. Based on the average distance to the mean, it seems that the striped

activations are more clustered in the mixed8 layer and plausible that this contributed to the behavior

of the perturbed CAVs. However, other sources of the observed differences are also possible.



4.5.3 Adding n Noisy Training Points

Rather than perturbing a CAV by removing training points, the next experiment will explore the

behavior of CAVs and the TCAV score when n training points are added to Pc. In this case, the

training points to be added do not contain concept c. Rather, they are drawn randomly from a large

set of random images, N . The purpose of this experiment is to assess how careful an analyst must

be when gathering concept images and generally test the limits of the broadness of a concept. If a

few noisy examples are included in Pc, will this affect important metrics, like the TCAV score?

A metric, β is used to keep track of the perturbation size with respect to the training set size.

β =
nnoisy

ntrain
(4.9)

Figure 4.20: Original training data and CAV (left). Perturbed training data by adding 10 noisy
training examples (right). Both shown in a sparse PCA embedding. This is the striped concept in

mixed9.

Four methods were considered. For each trial, n = 10 examples from N were randomly selected and

concatenated to the training set of Pc. A CAV is generated using each of the four methods and the

resulting TCAV score was found using 150 zebra images. The perturbation process is visualized in

fig. 4.20. This process was repeated 25 times to generated fig. 4.21.

From fig. 4.21, the difference of means method of CAV generation results in a TCAV score distri-

bution with the lowest variance and perturbed CAVs that are closest to the original CAV (of the

same method) based on cosine similarity. At n = 10 and more pronounce at n = 50, the TCAV

scores generally decreases compared to the original and approach the baseline TCAVQ = 0.51 from

random CAVs. This likely indicates that the concept is less defined now and the CAV encodes less

meaning of the original concept as noisy examples are added.

The next experiment sought to understand why the difference of means method generates such stable

CAVs and TCAV scores in comparison to other methods when noisy training examples are intro-

duced. From fig. 4.22, the CAVs generated from the difference of means method remain remarkably

similar as more noisy training examples are introduced. As n increases, µPc
is dragged closer to

µN . However, it seems that this change mainly affects the magnitude instead of the direction of



Figure 4.21: TCAV Score vs cosine similarity using 4 CAV generation methods. Each point
represents the CAV and TCAV score that resulted from adding n = 10 (left) and n = 50 (right)
noisy training points to Pc, shown on the same scale. This is the striped concept in layer mixed6
and tested for 150 zebra images. The dashed line represents the baseline TCAVQ from random

CAVs (table A.3).

Figure 4.22: Training data, CAVs, and class means with Pc perturbed by n noisy training
examples and shown in a sparse PCA embedding. This is the striped concept in layer mixed9 and

the difference of means method is used to generated CAVs.

the CAV, at least as it appears in the sparse PCA decomposition into R2. Considering fig. 4.21 at

n = 50, the CAVs generated from the difference of means method still remain close to the origi-

nal TCAV score and have a relatively high cosine similarity, giving evidence to the observation in R2.

The difference of means method proved to be the most effective CAV generation method consid-

ered in resistance to perturbations and a possible explanation was presented.



Chapter 5

Exploring TCAV Modifications

In this chapter, two possible modifications to the TCAV process are proposed based on observations

from experiments.

5.1 Thresholding TCAV Score

In the originally proposed TCAV score (eq. (2.3)), the sign each directional derivative is used to

compute a fraction. This modification considers using the magnitude each directional derivative.

Some TCAV scores, especially in the mixed10 layers had high variance or increased dramatically

from a low TCAV score in mixed9, shown in table A.2. Additionally, the uncertainty in TCAV scores

for random CAVs appears to increase through the network and is especially high in mixed10 (see

table A.3). This experiment considers thresholding as a potential solution to this issue.

In fig. 5.1, substituting zebra images with noise for Xk in computing directional derivatives results

in the same TCAVQ while the directional derivative distribution over 150 images is very different.

A similar observation is made when Pc is changed. In fig. 5.2, the using Pdotted to generate a CAV

resulted in the same TCAVQ as using Pstriped.

Figure 5.1: Comparison of directional derivatives using with 150 noise (top) or zebra (bottom)
images for Xk and a threshold of λ = 0 (middle) or λ = 0.05 (right). The striped concept in layer

mixed10 is used and the difference of means method is used to generate the CAV.

48



Figure 5.2: Comparison of directional derivatives and TCAV score using Pdotted (top) and Pstriped

(bottom) and a threshold of λ = 0 (middle) or λ = 0.05 (right). 150 zebra images are used for Xk.
Layer mixed10 is used and the difference of means method is used to generate the CAV.

Therefore, an alternative TCAV score, TCAVλ is proposed. λ is a threshold, used to filter out

directional derivatives that are only just above zero.

TCAVλC,k,l
=
|{x ∈ Xk : SC,k,l(x) > λ}|

|Xk|
(5.1)

Using λ = 0.05 resulted in filtering out nearly all noise and resulted in no loss in signal for this

example.

In thinking of a more principled method to compute λ, random CAVs where considered, which

are trained using two N classes to create a meaningless CAV. A distribution of directional deriva-

tives can be found for a random CAV and class k. I collected 20 of these distributions to create

fig. 5.3, which should be a good approximation of the inherent bias from the class k as the CAVs

are random. Using the mean µrand and standard deviation σrand of this concatenated distribution,

eq. (5.2) is one way λ could be computed.

λ = µrand + 2 ∗ σrand (5.2)

Figure 5.3: Histogram of directional derivatives from random CAVs. The 3000 observations are
from 20 random CAVs and 150 zebra images. Layer mixed10 is used and the difference of means

method is used to generate CAVs.



Thresholding can prevent noise from being included in TCAVλ and one method for systematically

computing λ is given.

5.2 Retraining CAVs

CAVs are meant to encode a meaningful direction in the activations of a layer in a neural network.

The decision boundary of the linear classifier associated with a CAV can be decomposed and plot-

ted along with the training and testing data that produced it, as in fig. 5.4. The next step in the

TCAV process is using examples from the class of interest to find directional derivatives to compute

a TCAV score.

Figure 5.4: Training and testing data for a striped CAV (from SVM) in layer mixed9 decomposed
using sparse PCA.

In fig. 5.5, the training and testing data is still present but the embeddings and predictions fl(x)

∀x ∈ Xk are highlighted and colored according to their predicted class (either Pc or N). These

activations span a wide area in the embedding and 44 of 150 class images are classified as Pstriped.

Proximity of a point to the training set for each class and its connection to the semantics of each

class is explored in fig. 5.5.

Figure 5.5: Zebra class images classified as either Pstriped or N according to the SVM classifier
(left). Some example class images at different points in the embedding (middle). Classification

results after including point b in the training set for the CAV (right).



For example, point a, is very close to a cluster of training points from Pc and its corresponding

original image is a clearly articulated striped texture. Point b is far from either set of training points

and is classified as N . The corresponding image does exhibit the striped concept although it is only

at the center of the image. Finally, c is close to N and the striped texture barely visible.

Should point b actually be classified as belonging to Pc? The CAV is computed starting with

human-defined examples of a given concept. However, it is clear now that the linear classifier and

therefore CAV have a narrower understanding of the striped concept than anticipated. When exam-

ining the images used in Pc, many of them contain a striped texture occupying the entire image (see

fig. 3.10). I hypothesize that the linear classifier has therefore learned this definition of the concept

and has not learned to generalize to include examples in which the concept is not the entirety of the

image.

Based on this new insight into the CAV, I retrained the SVM, including point b in the training

set.As mentioned in §4.4.1, SVMs are particularly influenced by outliers. Point b is an outlier with

respect to the rest of the Pc training set. Therefore, including it in the training set has a significant

impact on the resulting linear classifier and CAV, as shown in fig. 5.6. Now, 136 of 150 zebra class

images are classified as belonging to Pc, a massive increase from the original classification. The shift

also increased the TCAV score from 0.54 to 0.61.

Figure 5.6: Original (left) and one example added (right) training and test data, decision
boundary, and CAV (from SVM)

The retraining process described could be used to fine-tune CAVs. Consider a scenario in which

an analyst has access to a large number of concept images, like through an online database. While

these concepts might be close to the true concept desired by the analyst, they may not be perfect.

Adding training example(s) to Pc and using a linear classifier that is highly influenced by outliers

can significantly alter the CAV in the intended direction and could be useful for an analyst.



Chapter 6

Discussion

6.1 TCAV Best Practices

Keeping in mind the objectives of Robust TCAV are 1) consistency in TCAV scores for nearly

identical scenarios and 2) Resistance to perturbations in the concept class, the best practices

and key experimental results for practitioners are summarized below.

• A consistent classifier §4.4.2 can significantly reduce variance TCAV score

• The difference of means method eq. (4.5) proved to be the highest performing CAV generation

method for both objectives above, especially when used with a larger negative class (|N | = 500)

• The difference of means method performed well in all perturbation experiments. The logistic

classifier has comparable results in perturbation by removing n training examples

• As few as 4 training points in Pc are needed to generate a meaningful concept1, as demonstrated

in perturbation by removing n training examples

• Considering the perturbation by adding n noisy training examples, most methods can tolerate

several noisy examples additions with relatively low loss in TCAV score

• The difference of means method can tolerate a surprisingly high number of noisy training

examples with relatively low change in TCAV score and CAV similarity

• The spread of Pc can affect how resulting CAVs behave when points in Pc are removed

• Thresholding can be used to eliminate an inherent bias in the TCAV score for a given class

• Classifiers that are highly influenced by outliers, like SVMs, can easily be retrained by adding

specific training examples

These conclusions are from the Inception v3 architecture pre-trained for ImageNet and primarily

uses ImageNet for concept images. Thus, these findings may not be the same with other archi-

tectures, datasets, and domains. These best practices are meant to be a general guide and useful

observations about the TCAV process rather than a absolute rules about its behavior.

1this is not a suggestion for practitioners, merely an observation
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6.2 Perspective on TCAV Score

Kim et al. 2017 do statistical significance testing against the TCAV scores from random CAVs, the

scores of which typically have a mean around 0.5, as in table A.3. This seems to imply that a

TCAV score of 0.5 is the equivalent of a meaningless CAV and/or that the concept of interest is not

important to the given class.

Using the thresholding method presenting in §5.1, a network-specific threshold λ could be imple-

mented so that TCAVλ only counts examples in which a class prediction was significantly sensitive

to a concept. The threshold could be set to prevent meaningless CAVs from having TCAVλ > 0.1

and I described a process using random CAVs to automatically set λ achieve this. With this altered

score, essentially all noise is filtered out, so TCAVλ = 0.3 would be significant whereas TCAVQ = 0.3

(threshold of 0) is probably not significant.

6.3 Future Work

Ideally, prediction algorithms would be free of bias and incapable of discrimination. One direction

of future work could be using the TCAV score in the training process. For example, with a

human-defined concept like a particular race, the algorithm could be trained under the constraint

that the TCAV score for a classification and this race concept is below a certain threshold.

In the TCAV algorithm, CAVs exists in bottleneck layers of a neural network, so TCAV scores

are computed for each layer. While this is helpful for understanding where in the network concepts

are most recognized, having multiple CAVs and TCAV scores is not immediate helpful to reaching a

conclusion about whether a class is sensitive to a concept. Kim et al. imply that if the TCAV score

is statistically different from that of a random CAV for any bottleneck layer, then it is reasonable

to conclude that the class is sensitive to the concept of interest. Of course, the degree of sensitivity

depends on the magnitude of the TCAV score. It could be possible to concatenate the activations

from all layers to train a single CAV and have a single TCAV score from this, which is related to

the hypothesis that semantic representations are distributed (R. Fong and Vedaldi 2018). While this

would give a simple answer, one disadvantage is that some high-level concepts (like road in fig. 3.11)

are not clearly articulated until the last few layers. Therefore, this approach might drown out signal

if the CAV is not well-defined throughout the network.

Given the success in the difference of means method, other centroid methods could be con-

sidered to directly learn CAVs. For example, the median, or using the L1 norm could result in CAVs

with different, and possibly better, properties.

Future work could more directly quantify the number of examples needed to convey meaning

in a CAV. In a medical application, ≈20 concept examples were needed to achieve a high cosine

similarity amongst CAVs of the same concept (Cai et al. 2019). In this project, as few a 4 concept

examples were used to generate meaningful CAVs §4.5.2.



Finally, a VAE could be used to map the activations of a concept or class to a low dimensional

latent space to inspect what has been learned at that point in the network.

6.4 Conclusion

This project explored the TCAV algorithm, which uses user-defined concepts to give global explana-

tions for DNNs using intermediate activations. TCAV is a significant step in the field of interpretable

machine learning and one motivation for this project was to accelerate the adoption of TCAV by

practitioners by recommending practices that work.

Methods for CAV generation were explored, starting with suggestions from the original implemen-

tation. The idea of Robust TCAV was introduced, which focuses on 1) reducing variance in the

TCAV score distribution and 2) Increasing CAV and TCAV score resistance to perturbations in Pc.

Through experimentation, a difference of means method for CAV generation was found to be the

best overall approach towards Robust TCAV. Finally, a few modifications to the TCAV process are

considered, including thresholding to reduce noise in the TCAV score.

This project is a step towards a more reliable and useful TCAV process and hopefully the best

practices will be helpful for practitioners interpreting their models and for further work in this

exciting area.
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Appendix A

TCAV Score Variance Detailed

Results

Classifier Method Details

SVM via SGD α = 0.1, otherwise default from
scikit-learn.org/stable/modules/generated/sklearn.linear model.SGDClassifier.html

Ave of SVMs Average of 100 SVM via SGD using random seeds s = 1, . . . , 100
SVM C = 0.1, otherwise default from

scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Logistic default from
scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html

Mean Difference of arithmetic mean for each class

Table A.1: Implementation details for each classifier.
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SVM via SGD Ave of SVMs SVM
class concept layer µ σ µ σ µ σ

zebra

striped

mixed4 0.61 0.036 0.61 0.027 0.61 0.027
mixed6 0.83 0.035 0.86 0.023 0.86 0.026
mixed8 0.79 0.071 0.80 0.071 0.80 0.061
mixed9 0.51 0.310 0.51 0.156 0.52 0.124
mixed10 1.00 0.000 1.00 0.000 1.00 0.000

dotted

mixed4 0.39 0.049 0.37 0.035 0.39 0.024
mixed6 0.36 0.079 0.35 0.031 0.32 0.034
mixed8 0.29 0.130 0.26 0.109 0.28 0.115
mixed9 0.16 0.320 0.03 0.029 0.21 0.161
mixed10 0.90 0.274 0.87 0.324 0.99 0.013

lion

grassland

mixed4 0.55 0.052 0.57 0.037 0.56 0.041
mixed6 0.56 0.074 0.58 0.061 0.56 0.059
mixed8 0.83 0.044 0.85 0.055 0.84 0.054
mixed9 0.62 0.210 0.47 0.157 0.81 0.116
mixed10 0.80 0.322 0.78 0.317 0.65 0.350

ocean

mixed4 0.48 0.48 0.48 0.032 0.46 0.033
mixed6 0.46 0.056 0.47 0.056 0.47 0.046
mixed8 0.45 0.100 0.45 0.084 0.43 0.100
mixed9 0.17 0.104 0.13 0.057 0.14 0.068
mixed10 0.10 0.255 0.02 0.042 0.02 0.020

Logistic Mean, |N | = 50 Mean, |N | = 500
class concept layer µ σ µ σ µ σ

zebra

striped

mixed4 0.61 0.026 0.59 0.021 0.59 0.015
mixed6 0.86 0.021 0.87 0.012 0.87 0.011
mixed8 0.77 0.074 0.74 0.036 0.73 0.020
mixed9 0.64 0.102 0.58 0.075 0.55 0.051
mixed10 1.00 0.000 1.00 0.000 1.00 0.000

dotted

mixed4 0.36 0.028 0.44 0.022 0.43 0.013
mixed6 0.36 0.035 0.31 0.02 0.31 0.016
mixed8 0.27 0.098 0.21 0.058 0.18 0.016
mixed9 0.01 0.011 0.1 0.040 0.08 0.026
mixed10 0.96 0.156 0.99 0.006 0.98 0.012

lion

grassland

mixed4 0.56 0.034 0.58 0.037 0.58 0.018
mixed6 0.57 0.057 0.57 0.043 0.58 0.023
mixed8 0.84 0.054 0.89 0.024 0.88 0.018
mixed9 0.38 0.120 0.84 0.072 0.82 0.035
mixed10 0.67 0.353 0.68 0.295 0.67 0.258

ocean

mixed4 0.47 0.032 0.47 0.028 0.44 0.027
mixed6 0.47 0.046 0.45 0.048 0.44 0.026
mixed8 0.44 0.094 0.44 0.083 0.44 0.065
mixed9 0.10 0.048 0.27 0.101 0.20 0.05
mixed10 0.02 0.042 0.00 0.006 0.00 0.00

Table A.2: Detailed results of TCAV score distribution for several concept and class pairings at
several different layers. Each mean and standard deviation is from 25 trials using each combination
of negative class N0 . . . N4 and train/test split seeds s = 1, . . . , 5.



TCAV Score
class layer µ σ

zebra

mixed4 0.51 0.068
mixed6 0.51 0.107
mixed8 0.57 0.209
mixed9 0.56 0.322
mixed10 0.61 0.498

lion

mixed4 0.55 0.092
mixed6 0.55 0.101
mixed8 0.58 0.201
mixed9 0.48 0.297
mixed10 0.51 0.418

cab

mixed4 0.51 0.050
mixed6 0.54 0.095
mixed8 0.53 0.157
mixed9 0.57 0.304
mixed10 0.60 0.411

aircraft carrier

mixed4 0.53 0.082
mixed6 0.53 0.089
mixed8 0.62 0.202
mixed9 0.51 0.334
mixed10 0.55 0.442

Table A.3: TCAV score for CAVs generated from two random N classes, each with 50 images. Each
distribution has 10 observations. 150 images from each class were used to compute the TCAV score.
SVM via SGD was used for the linear classifier.


