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Interpretability

CAYV Visualization

Questions about CAVs
* Will two distinct sets of the same concept produce a similar CAV?
* How do CAVs from activations of different layers change?

Class Sensitivity

Using CAVs with image classes
* Which examples from a given class k are most/least
similar to a concept C?

Interpretability 1s defined as presenting a rationale behind
an algorithm's decision in terms understandable to humans.
For a machine learning algorithm b, both local and global

and global interpretability exist for dataset D.

* Does changing the negative class affect CAVs?
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Local Global PCA to visualize CAVs |
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* Understanding why a
particular decision or
prediction was made

* General understanding of
what predictions will be
made for any input

 Both are high dimensional (d > 10°) depending on chosen layer
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human-defined striped class

Quantifying the sensitivity of a class to a concept

@ Pctrain | . o . ) * The TCAV score computes the fraction of example images
Two approaches to interpretability are 1) constraining Potest o . oo . ok, s ﬁ PR that have a positive directional derivative with respect to a
models to be inherently interpretable and 2) applying post- @ Nirain ] . S Y et e i -2 concept
hoc explanation methods. Y N test ) TCAV - Hz e Xy Sok(z) > 0}
Post-hoc AV : Qo

Inherently Interpretable
* Constrained model form
(Bayes decision list)
* Accuracy tradeoff

* Model agnostic
* Typically achieve local
interpretability

TCAV

Testing with Concept Activation Vectors !l is a post-hoc
method with some degree of global interpretability. Human-
defined concepts are used to create a set of images P that
contain concept C. Another set of images N that do not
contain concept C are generated randomly from ImageNet.

The activations f;(x) are found for layer / for each example
image and a linear decision boundary is fit. The CAV is
normal to the decision boundary hyperplane.

Concept Activation Vector
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P, = striped set 1, N =random set 2,
layer =9, classifier = SVM
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P, = striped set 1, N =random set 2,
layer = 9, classifier = Logistic
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P =striped set 2, N =random set 2,

layer =9, classifier = SVM
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P, = striped set 1, N =random set 2,

layer = 4, classifier = SVM

I n Ce pt' o N v3 [2] Input: 299x299x3, Outpul 8x8x2048
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Future Work

TCAV

* Test preliminary results with more concepts and classes

* Show the change in TCAV score for how high/low level
concepts throughout layers

* Use the deep dream method to visualized learned concepts
* Consider alternate computation of TCAV score

Generative Model
* Interpretable Lens Variable Model (ILVM) 1]
* VAE with side information trained with a human in the
loop process to maximize interpretability
* Test the learned representations on downstream tasks
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Input: Output:
299x299x3 8x8x2048

Convolution
AvgPool
MaxPool
Concat
Dropout

Fully connected
Softmax

Final part:8x8x2048 -> 1001




