Interpretable Machine Learning

Tyler Martin (tam66@cam.ac.uk)

Supervisor: Adrian Weller

Interpretability

Interpretability is defined as *presenting a rationale behind* an algorithm's decision in terms understandable to humans. For a machine learning algorithm b, both local and global and global interpretability exist for dataset D.

$$\mathcal{D} = (\mathcal{X}, \mathcal{Y})$$
 Local Global
$$b(x) = \hat{y} \qquad b: \mathcal{X} \to \hat{\mathcal{Y}}$$

• Understanding why a particular decision or prediction was made

• General understanding of what predictions will be made for any input

Two approaches to interpretability are 1) constraining models to be inherently interpretable and 2) applying posthoc explanation methods.

Inherently Interpretable

• Constrained model form (Rayes decision list)

(Bayes decision list)Accuracy tradeoff

Post-hoc

- Model agnostic
- Typically achieve local interpretability

TCAV

Testing with Concept Activation Vectors [1] is a post-hoc method with some degree of global interpretability. **Human-defined** concepts are used to create a set of images P_C that contain concept C. Another set of images N that do not contain concept C are generated randomly from ImageNet.

The activations $f_l(x)$ are found for layer l for each example image and a linear decision boundary is fit. The CAV is normal to the decision boundary hyperplane.

Concept Activation Vector

CAV Visualization

Questions about CAVs

- Will two distinct sets of the same concept produce a similar CAV?
- How do CAVs from activations of different layers change?
- Does changing the negative class affect CAVs?
- How does the linear model selection affect CAVs?

PCA to visualize CAVs

- Principal component analysis (n = 2) was applied to the layer activations $f_l(x)$ and CAVs
- Both are high dimensional ($d > 10^6$) depending on chosen layer

Class Sensitivity

Using CAVs with image classes

• Which examples from a given class *k* are most/least similar to a concept *C*?

$$S_{C,k,l}(\boldsymbol{x}) = \nabla h_{l,k} \left(f_l(\boldsymbol{x}) \right) \cdot \boldsymbol{v}_C^l$$

Most (left) and least (right) stripy zebra images based on human-defined striped class

Quantifying the sensitivity of a class to a concept

• The TCAV score computes the fraction of example images that have a positive directional derivative with respect to a concept

$$TCAV_{Q_{C,k,l}} = \frac{|\{x \in X_k : S_{C,k,l}(x) > 0\}|}{|X_k|}$$

Future Work

TCAV

- Test preliminary results with more concepts and classes
- Show the change in TCAV score for how high/low level concepts throughout layers
- Use the deep dream method to visualized learned concepts
- Consider alternate computation of TCAV score

Generative Model

- Interpretable Lens Variable Model (ILVM) [3]
- VAE with *side information* trained with a human in the loop process to maximize interpretability
- Test the learned representations on downstream tasks

References

[1] Been Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)". In: *arXiv preprint arXiv:1711.11279* (2017).

[2] Szegedy, Christian et al. "Rethinking the Inception Architecture for Computer Vision." 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016): n. pag. Crossref. Web.

[3] Tameem Adel, Zoubin Ghahramani, and Adrian Weller. "Discovering Interpretable Representations for Both Deep Generative and Discriminative Models". In: *Proceedings of the 35th International Conference on Machine Learning*. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmassan, Stockholm Sweden: PMLR, Oct. 2018, pp. 50-59. url: http://proceedings.mlr.press/v80/adel18a.html.