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ProblemDescription

�Gaussian Processes (GPs) are useful regression models with infinite
number of parameters.

�Zero-mean GP marginal likelihood is

N
(
y
∣∣ 0, KD,D + σ2

nI
)

(1)

where (KD,D)i,j = k (xi, xj), σ2
n = variance of observation noise.

�Computing K−1
D,D is O(N 3) operation =⇒ infeasible for large N .

�Sparse approximations accelerate inference, O(NM 2), but little work
on understanding their properties.

�Analysis directly applicable to regularly-sampled time series. Approxi-
mations discussed can also be used to accelerate inference in this case.

Sparse Approximations

State-of-the-art is [Titsias, 2009] - investigation therefore focuses on this.
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Figure 2: Depiction of speed vs. accuracy trade-off in extreme case. (blue=full GP, red=sparse approx.).
(Left: 24 pseudo-data. Right: 20 pseudo data.)

Despite a small change in the number of pseudo-data, a qualitative
change in the approximation is observed.

Circulant Approximations
to the CovarianceMatrix

� If regularly spaced data and stationary k then KD,D is Toeplitz.

�Toeplitz KD,D ≈ Circulant, which is easily inverted (see [Gray, 2006]).
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Figure 3: Visualisation of the circulant approximation for an RBF covariance matrix with lengthscale
0.05, computed between data spaced uniformly on [−0.25, 0.25]. Left: Exact Toeplitz covariance matrix.
Right: Circulant approximation to exact covariance matrix.

Accelerated computations via
the Fast Fourier Transform

The posterior mean for a full GP at the observed inputs is

mf = KD,D

(
KD,D + σ2

nI
)−1

y. (2)

If KD,D is approximately circulant then

mf ≈ FT †D
(
ΓD + σ2

nI
)−1

FTDy (3)

where the matrix FTD is the Discrete Fourier Transform (DFT) matrix,
FT †D is the Inverse DFT matrix and ΓD is a diagonal matrix whose ele-
ments are given by the DFT of the first row of circulant KD,D.

Posterior Mean Prediction Error

�Sparse predictive mean m̂f has same form as full (equation 2).

� Is also approximated as in equation 3. Diagonal of ΓD truncated to
first M elements.

�

||mf − m̂f ||22 ≈
T∑

t=M

|ỹt|2
(

γt
γt + σ2

n

)2

(4)

where ỹ := FTDy and {γt}T−1
t=0 comprise the diagonal of ΓD.

�Error a function of lost high-frequency information..

�Sparse approximation accurate if either kernel or data do not contain
frequencies higher than those supported by approximation.

Summary and future work

�The properties of sparse approximations can be highly sensitive to the
number of pseudo-data.

�Under certain conditions a simple expression is available for the accu-
racy of a sparse-approximation.

�More experimental validation to be undertaken.
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