
Combining Sum Product Networks and
Variational Autoencoders

Ping Liang Tan

Supervisor: Dr Robert Peharz

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Masters of Philosphy

Hughes Hall August 2018

Declaration

I, Ping Liang Tan of Hughes Hall, being a candidate for the MPhil in Machine Learning, Speech
and Language Technology, hereby declare that this report and the work described in it are my own
work, unaided except as may be specified below, and that the report does not contain material that has
already been used to any substantial extent for a comparable purpose.

Word Count : 14333

Signed :
Date : 17 August 2018

Ping Liang Tan
August 2018

Acknowledgements

First, I would like to thank my supervisor, Dr Robert Peharz. Without his knowledge of Sum Product
Networks, or his kind, attentive guidance, this MPhil project would not have been remotely possible.
Learning from Dr Peharz has been an enjoyable and intellectually stimulating experience.

Second, a special shout goes out to the MLSALT 2017-18 cohort which has taught me much about
working hard and having fun. Amongst my treasured memories are the late nights in the MPhil room,
where we often wondered if we can finish our coursework before the deadline, and our trip to Italy,
where we continued doing our coursework in the trains, plane, and cafes.

Not to be forgotten are the other people I met here in Cambridge. I have learnt a lot by meeting
people from diverse cultural and academic backgrounds. Having meals with familiar faces has also
helped me feel at home away from home.

Finally, I would like to thank my parents. Their beliefs in my ability and emphatic sighs when I
played too much had helped spur me on to achieve my goals.

Abstract

Sum Product Networks (SPNs) are a class of deep, tractable probabilistic models. Starting from
tractable distributions over few random variables, an SPN hierarchically composes distributions
together using only sums and products, which maintain the composite distribution’s tractability. A
Variational Autoencoder (VAE) on the other hand is a flexible generative probabilistic model that
is implemented with a neural network and trained with the assistance of another inference network.
Although marginal likelihoods are canonically intractable in VAEs, this thesis proposed using VAEs
as the starting distributions of an SPN, resulting in a hybrid model referred to as SP-VAE.

SP-VAE maintains its tractability by using only small VAEs with low-dimensional latent vari-
ables. Probabilistic queries like exact marginal likelihood and marginalization that are canonically
intractable in VAEs are now tractable in SP-VAE. Experiments on three image datasets and in three
distribution types show that SP-VAE is competitive against VAE as density estimators on continuous
and categorical image datasets but not on binary datasets. More significantly, SP-VAE does not need
inference networks for learning, and preserves some of SPN’s robustness against low resource datasets
and overfitting.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Aims and Scope . 1
1.3 Overview . 2
1.4 Notation . 2

2 Sum Product Networks 3
2.1 Historical Development . 3

2.1.1 Definitions . 4
2.2 Generalized SPN . 5

2.2.1 Formal Definition . 6
2.3 SPN Operations . 6

2.3.1 Sampling . 6
2.3.2 Complete observation . 7
2.3.3 Partial observation . 7
2.3.4 Marginalizing . 8
2.3.5 Conditioning . 8
2.3.6 Argmax . 9

2.4 Learning SPN . 10
2.4.1 Parameters . 10
2.4.2 Structure . 10

2.5 Poon Domingos architecture . 11
2.5.1 Description . 11
2.5.2 Network size . 13
2.5.3 Equivalence to tensorial decomposition . 14

x Table of contents

3 Variational Autoencoder 15
3.1 What is a VAE? . 15
3.2 Deriving the ELBO . 16
3.3 Importance weighted autoencoder . 17

4 SP-VAE 19
4.1 VAEs as SPN leaves . 19
4.2 SP-VAE operations . 19

4.2.1 Sampling . 20
4.2.2 Complete Observation . 20
4.2.3 Partial Observation . 20
4.2.4 Imputation . 21

4.3 Learning SP-VAE . 22
4.3.1 Structure Learning . 22
4.3.2 Parameter Learning . 22

5 Methodology 23
5.1 Choice of evaluation metric . 23
5.2 Choice of Dataset . 24

5.2.1 MNIST . 24
5.2.2 CALTECH101 . 24
5.2.3 SVHN . 25

5.3 Processing for Distribution Type . 25
5.3.1 Binary random variable . 26
5.3.2 Continuous random variable . 27
5.3.3 Categorical random variable . 27

5.4 Controls for Fair Model Comparison . 27
5.4.1 Model Size . 27
5.4.2 Hyperparameters . 27

5.5 Choice of models . 28
5.5.1 Model Code . 28
5.5.2 Design Choices . 29
5.5.3 Model Sizes . 29

5.6 Experiment Objectives . 30

6 Implementation 31
6.1 Choice of Deep Learning Framework . 31
6.2 Implementing SPNs in TensorFlow . 31

6.2.1 Log Domain . 31
6.2.2 Probability Vectors . 32

Table of contents xi

6.2.3 Regularization . 32
6.2.4 Computation Graph Size . 32

6.3 Implementing VAEs in TensorFlow . 33
6.4 Benchmark . 33
6.5 Training Models in TensorFlow . 34

6.5.1 Difficulties with Optimizing Variances . 34
6.5.2 Hyperparameter Tuning: Human in the Loop 35

7 Experiments 37
7.1 Experiment 1: Main Evaluation . 37

7.1.1 Motivation . 37
7.1.2 Setup . 37
7.1.3 Results and Discussions . 38

7.2 Experiment 2: Learning without Inference Networks 43
7.2.1 Motivations . 43
7.2.2 Results and Discussions . 44

7.3 Experiment 3: Data Efficiency . 45
7.3.1 Motivation . 45
7.3.2 Setup . 45
7.3.3 Results and Discussions . 45

7.4 Experiment 4: Ratio of SPNs to Leaves . 48
7.4.1 Motivation . 48
7.4.2 Setup . 49
7.4.3 Results and Discussions . 49

8 Further Work 53
8.1 Learning and Inference Methods . 53

8.1.1 Gradient-based Argmax for SPNs and SP-VAEs 53
8.1.2 Hybrid EM + Gradient-based Parameter Learning of SP-VAE 53
8.1.3 Different Learning Rates SP-VAE . 54

8.2 Effects to Investigate . 54
8.2.1 Regularization . 54
8.2.2 Vanishing Gradients . 54

8.3 Architectures . 54
8.3.1 Shared SP-VAE . 54
8.3.2 Representation Learning . 56
8.3.3 SP-NADEs . 56

8.4 Engineering . 56
8.4.1 Tensorial Decomposition Formulation of PD-SPN 56

xii Table of contents

9 Summary and Conclusions 59

References 61

Appendix A L1 Regularization on SPN Sum Nodes 65
A.1 Example of L1 Regularization . 65
A.2 Aside: Change of Variables on Laplace Prior . 66
A.3 Aside: MAP Estimation in Simplex Space . 67

List of figures

2.1 Fundamental composition operations of a sum product network 5
2.2 Naive Bayes SPN . 5
2.3 How to sample from an SPN. 7
2.4 SPN operations illustrated through an example . 8
2.5 How to construct PD SPN from a region graph . 12
2.6 Partitions of a region . 12
2.7 How to count size of PD architecture . 13

5.1 Samples from MNIST dataset . 24
5.2 Samples from CALTECH101 dataset . 25
5.3 Samples from SVHN dataset . 25
5.4 Two different ways of binarizing CALTECH101 images Top row: global threshold

set by mean of image (reject) Bottom row: adaptive Gaussian threshold; blocksize =
3 (accept) . 26

5.5 Binarizing SVHN with adaptive Gaussian thresholds 26

6.1 (Best view in color) Learning of SPN with Gaussian leaves is sensitive to parameteri-
zation of σ2. blue and orange: σ2 = 10−7 +w2

σ ; green and red: σ−2 = 10−7 +w2
σ .

Model optimized wσ using ADAM. wσ initialized with standard normal noise. . . . 35
6.2 Tuning Learning Rate on a single dataset . 35

7.1 Training curves of 12 different models on CALTECH101-18. Blue curves are training
evidence; Orange curves are test evidence. 39

7.2 (Best viewed in color) “test evidence decay" of SP-VAE (green) against that of VAE
(red), shallowSPN (orange), and deepSPN (blue) on 102 CALTECH101 datasets.
Area of scatterpoint indicates size of dataset. Attention should be paid to the scales of
the axes . 40

xiv List of figures

7.3 (Best viewed in color) Comparing the best test evidence of SP-VAE (green) against
that of VAE (red), shallowSPN (orange), and deepSPN (blue) on 102 CALTECH101
datasets. Area of scatterpoint indicates size of dataset. If a scatterpoint falls in the
upperright triangle, SP-VAE outperform the model is compared to on the x-axis.
Many deepSPN models did not converge as training took too long. Except for (a) and
(d), all figures show that SP-VAE is superior. 41

7.4 Training Curves . 43
7.5 Comparing best scores of SP-VAE vs SP-DensityNet 43
7.6 Test gap (train evidence - test evidence) at peak test performance of SP-VAE vs VAE

on CALTECH101 datasets. 45
7.7 (Best viewed in color) Test evidence of 9 different models on MNIST as amount of

training data is varied . 46
7.8 (Best viewed in color) Fastest converging training and test curves of 9 different models

on MNIST. Notice the green curve. 47
7.9 (Best viewed in color) Training and test curves of 12 different models on CALTECH101-18.

Notice the green curve . 48
7.10 Test evidence on SVHN against fraction of SPN parameters in sum nodes 51

8.1 Bright colored regions will be modelled by a shared VAE. Light colored regions can
be implemented by diagonal distributions. 55

8.2 Synthetic problem for shared SP-VAE. 55
8.3 Graphic Models. Y is a multivariate discrete variable related to the SPN sum nodes.

Z is a multivariate continuous variable related to the VAE. θ are the parameters of the
VAE. ρ are the categorical distributions of the SPN sum nodes. µ are the parameters
of the traditional SPN leaves. 56

A.1 Laplace prior in w space p(w) for different β . 67
A.2 Laplace prior in w space for different β , after change of variables to ρ 67

List of tables

5.1 Color codes for architectures to be evaluated . 28
5.2 Coarsegraining levels for SPNs . 29
5.3 Model Size . 30

6.1 Benchmark of Bernoulli models on CALTECH101-0 34

7.1 Experiment 1 Model Size . 37
7.2 Experiment 3 Model Size . 46
7.3 Experiment 4 model sizes : SPVAE . 49
7.4 Experiment 4 model sizes : shallowSPN . 50

Chapter 1

Introduction

“Combine SPNs and VAEs? Why not!"

1.1 Motivation

Amongst machine learning techniques capable of modelling probability distributions, Sum Product
Networks (SPNs) [32] stands out for its ability to tractably represent complicated distributions,
compute any marginal on that distribution and answer inference queries. Its tractability arises from
completeness and decomposability constrains, while its expressiveness arises from the use of depth in
a directed acyclic graph that can reuse sub-computation.

In its current understanding due to [28], SPNs can be thought of as like LEGO®. It is a composite
model whose basic building blocks are simple distributions, such as the Bernoulli distribution for bi-
nary variables, categorical distribution for discrete variables, and Gaussian distribution for continuous
variables. Using sum nodes and product nodes, many simple distributions can be composed together
into a complicated, multivariate distribution that retains many desirable properties of the individual
distributions — for example, easy sampling, exact likelihoods, and tractable inference.

This understanding naturally motivates exploring the use of more sophisticated building block
distributions. Looking into recent deep learning literature, neural probabilistic models (VAEs[21],
PixelRNNs[40], PixelCNNs[41], and MADEs[16]) are some of the most sophisticated probabilistic
models available today and are capable of even modelling “distributions over natural images". Using
them to increase the complexity of SPN leaves might be an easier way of boosting SPN performance
than learning more complicated SPN structures.

1.2 Research Aims and Scope

In this thesis, I explored the use of variational autoencoders (VAEs) as SPN leaves, leading to a hybrid
model called SP-VAE.

2 Introduction

Since SPNs, SP-VAEs, and VAEs are probabilistic models, the natural task on which to evaluate
them is the traditional problem of density estimation, which is a task of learning an estimate of a true
distribution from a set of samples. The samples used in this case are three academic image datasets —
CALTECH101, MNIST handwritten digits, and cropped Street View House Numbers.

The central aim of this thesis then is to evaluate how SP-VAE compares against traditional
SPNs, and vanilla VAE on image density estimation problems.

In addition to comparing SP-VAE, this thesis provides working code of SP-VAE, explanations of
tradeoffs inherent in SP-VAE, inference algorithms for SP-VAE, and possible applications of SP-VAE.

1.3 Overview

In the next two sections, the current literature on SPNs and VAEs is reviewed with occassional
introduction of original insights. In section 4, SP-VAE is defined, and learning and inference
algorithms are proposed for it. Section 5 documents the processing of dataset and considerations made
to ensure fair experimentation. Then in section 6, relevant considerations made about implementing
my experiments in Tensorflow are summarized. All these sections build up to section 7, where
SP-VAE is shown to be competitive against VAEs, better than traditional SPNs, and possesses hybrid
properties between SPNs and VAEs. Research ideas that were encountered but not prioritized during
this project are collected in section 8. Finally, section 9 summarizes the insights from experiments,
and note their significance to current research trends.

1.4 Notation

In this thesis, I will use upper case letters to refer to a random variable, and lower case letters to refer
to instantiations of the random variables. Whether the variable is a scalar, vector or a set will be clear
in the context of discussion.

θ : Parameters of a variational autoencoder

w : Weights of an SPN’s sum node(s)

X : Input random variables

Y : Discrete latent variables of SPN’s sum nodes

Z : Continuous latent variables of a VAE

ρC : Categorical distribution associated with sum node C.

Chapter 2

Sum Product Networks

“An SPN is a probabilistic model designed for efficient inference."

In this chapter, I will summarize the theoretical developments of SPNs up to its current under-
standing, and illustrate its fundamental algorithms. I will also describe a generic SPN structure for
image data which will be needed for the rest of this thesis, and note its equivalence to tensorial
decomposition.

2.1 Historical Development

Sum Product Networks (SPNs) were originally proposed [9] by Darwiche under the name of arithmetic
circuit (AC). AC originally refers to a tool in computational complexity theory for measuring the
complexity of evaluating polynomials. But Darwiche introduced [8] it into artificial intelligence
literature as a compact graphical representation of a discrete variable Bayesian Network (BN).

This was done by first expressing the discrete variable BN as a (possibly intractable) multilinear
polynomial of indicator variables, also referred to by Darwiche as a network polynomial. Indicator
variables are like the indicator function in that they can only take values of 0 or 1. But algebraically,
they are treated like continuous variables that can be differentiated.

Then through BN’s classical jointree methods, the BN can be compiled into a compact AC.
Standard inference queries on the BN, like calculating the likelihood of evidence, was shown to be
equivalent to evaluating (forward pass) and differentiating (backpropagation) that AC. All tractable
BNs can thus be represented as ACs. But ACs are also more general than BNs because in addition to
conditional independence (CI), ACs can represent conditional specific independence (CSI).

Poon and Domingos [32] built upon Darwiche’s work on ACs. First, they relaxed the condition
that ACs need to be decomposable to just being consistent, and analyzed the effect of this relaxation.
For example, a complete but inconsistent AC overestimates the BN’s probability, while an incomplete
but consistent AC underestimates. Poon and Domingos argued that if ACs with unnormalized weights

4 Sum Product Networks

are complete and consistent, then they are more general than traditional ACs. This relaxed AC is
referred to in the seminal paper [32] as an SPN.

In the same paper, Poon and Domingos further generalized SPNs to handle continuous variables,
and treated SPN as a probability model on its own rights instead of just a compilation target for
BNs. They provided structure and parameter learning algorithms, and also described a missing
data inference algorithm. Experiments showed that SPNs over continuous variables significantly
outperformed traditional neural probability models, like deep belief networks and deep Boltzmann
machines, on a difficult inference task of image inpainting. SPN’s status as a tractable probabilistic
model was thus established.

Since then, theoretical research has clarified the correctness of SPNs’ core algorithms. One key
development was by Peharz [28] which showed that the MPE inference algorithm proposed by [32]
is correct only for selective SPNs. Peharz proposed [28] an augmentation algorithm to make an
SPN’s latent variables explicit as indicator variables, thereby allowing the SPN to be selective. Since
inferring latent variables is also a subroutine of the EM algorithm, Peharz derived [28] a correct
version of EM algorithm for SPNs.

Additionally, theoretical research was interested in the expressiveness of SPN. Multiple authors
[30, 44, 7], showed showed that the relaxation of decomposability into consistency does not allow for
exponentially more compact SPNs. A deeper SPN can, however, be exponentially more compact than
a shallow SPN [10].

On the application front, SPNs have been applied to new problem domains like language modeling
[6], and speech processing [29].

In practice, one of the most tricky factors in using SPNs is learning the structure from data. To
that end, many heuristic-based approaches have been proposed and studied. [26, 27, 1, 12, 35]

2.1.1 Definitions

Now, having mentioned some italicized concepts used in classifying SPNs, I will define them:
The scope of a sum or product node is the set of random variable which appears in its leaves.

• decomposable: the children of product nodes have disjoint scopes

• consistent: sampling the AC/SPN will never produce conflicting instantiation of any random
variable

• selective: no sum node in an evaluation (upwards pass) has more than one child with nonzero
weighted activation

• complete: all the children of a sum node have the same scope

2.2 Generalized SPN 5

(a) Sum node (b) Product node

Fig. 2.1 Fundamental composition operations of a sum product network

Fig. 2.2 Naive Bayes SPN

2.2 Generalized SPN

In its current understanding, a sum product network is a large, complicated multivariate probability
distribution hierarchically composed together from many tiny (often univariate) probability distri-
butions. There are two composition operations — a sum and a product. A sum operation creates
a mixture distribution from any number of distributions over the same scope. (See Figure 2.1a.)
The result is a more complicated distribution over the same scope. A product operation creates an
independent joint probability distribution from any number of distributions of disjoint scope. (See
Figure 2.1b.) The result is a distribution over a greater number of random variables.

The starting distributions before any operation are represented graphically as leaf nodes. The
distributions resulting from the sum and product compositions are represented as sum and product
nodes. Arrows point from the sum or product nodes to their input distributions.

By hierarchically composing distributions, a deep acyclic directed graph of sum and product
nodes can be built on top of the starting collection of leaf nodes. The top of the graph is usually a
single node representing the overall composite distribution. An example is shown in Figure 2.2.

The composition rules defined above ensures decomposability, and if all leaf distributions are
used, completeness is guaranteed. Rich SPN structures wtih fine-grained details (like CSI) can arise
just from these compositions rules. To give some organization within what may sometimes seem like
an highly detailed SPN structure, nodes with the same scope may be mentally grouped into layers.

6 Sum Product Networks

Leaf nodes of the same random variables form a leaf layer, while product layers interweave with sum
layers.

2.2.1 Formal Definition

More formally, we may define an SPN S = (G ,ρ) over random variables X as a tuple of a rooted
acyclic directed graph G = (V,E) and a set of categorical distributions ρ = {ρC}. The set of graph
nodes V contains three types of nodes C:

sum node : Cs is a node over other nodes C′ of the same scope

Cs = ∑
C′∈child(Cs)

ρCs(Cs→C′)×C′

Its scope is the same as any of its children.

scope(Cs) = scope(C′) ∀ C′ ∈ child(Cs)

product nodes : Cp is a node over other nodes C′ of disjoint scopes

Cp = ∏
C′∈child(Cp)

C′

Its scope is the union of its children’s scope.

scope(Cp) =
⋃

C′∈child(Cp)

scope(C′)

leaf nodes : Cl is a tractable distribution over some subset of random variables Y ⊆ X .
Its scope is Y .

2.3 SPN Operations

A simple but deep composition of elementary distributions preserves the ease of performing many
probabilistic manipulation and calculations. If the leaf distribution can perform a query in O(1) time,
often we find that an SPN of those leaves can perform the same query in O(N) time where N is the
number of nodes in the network. I will define six probabilistic queries for which SPNs are efficient,
and intuitively describe SPN’s algorithm to these queries. More details and proofs can be found in
[25].

2.3.1 Sampling

Definition: Draw a sample x from p(X)

2.3 SPN Operations 7

Fig. 2.3 How to sample from an SPN.

Algorithm: Ancestral sampling. We start from the root of the SPN and traverse down to the leaves.
If we encounter a sum node, we stochastically descend down to one of its children according to its
categorical probability. If we encounter a product node, we descend down all of its children. The
recursive process then continues in ever more parallel threads until we encounter a set of leaf nodes.
At that point, we independently sample observation from the leaf distributions.

Discussion: If the SPN is decomposable, it can be shown that the scopes of the leaves {Xl} are
partitions of the overall scope X . In other words, no random variable will be sample more than once.
If the SPN is consistent, a random variable may be sampled more than once but it will never produce
conflicting instantiations.

2.3.2 Complete observation

Definition: Compute p(X = xobs)

Algorithm: We start from the leaves of the SPN. All leaf distributions compute the likelihood of
their scopes. Like in a computation graph, these likelihoods propagate up the SPN to the root. A
sum node’s activation is a weighted sum of its children’s activation. A product node’s activation is a
product of its children’s activations. See Figure 2.4a

2.3.3 Partial observation

Definition: Only some random variables Xobs ⊆ X are observed. Let’s partition X into (Xobs,Xm).
Compute p(Xobs = xobs) =

∫
p(Xobs = xobs,Xm = xm)dxm

Algorithm: Same evaluate (upwards pass) as when computing complete observations, except now
leaf nodes without observations simply set their activations to 1.

Discussion: Peharz offered a proof of this algorithm in [25]. In a nutshell, an integral of a sum is a
sum of integrals, while an integral of a product of disjoint scopes is a product of integrals. The work

8 Sum Product Networks

(a) p(X = x) (b) p(Xobs = xobs)

Fig. 2.4 SPN operations illustrated through an example

needed to marginalize the distribution at the root of the SPN is thus reduced in polynomial time to
marginalization of the leaves.

Full marginalization of a leaf,
∫

p(X = x)dx, produces 1 — the entire probability mass. Partial
marginalization,

∫ b
a p(X = x)dx, is also possible and it produces some probability mass smaller than

1.
Note that after marginalization, the marginalized leaf’s activation have units of probability mass

while the other (continuous) leaves’ activations have units of densities. An SPN can compute mixed
probability mass and densities.

2.3.4 Marginalizing

Definition: Only some random variables Xobs ⊆ X are observed. Let’s partition X into (Xobs,Xm).
Create a new SPN p(Xobs) =

∫
p(Xobs,Xm = xm)dxm

Algorithm: Prune all sum nodes and leaf nodes whose scopes are purely in Xm. Renormalize sum
node weights, and remove redundant sum nodes and product nodes.

Discussion: Marginalizing before computing complete evidence is entirely equivalent to computing
the partial evidence. Yet I considered this to be a separate probabilistic query to highlight SPNs’
unique ability to compile a simpler version of itself.

2.3.5 Conditioning

Definition: Only some random variables Xobs ⊆ X are observed. Let’s partition X into (Xobs,Xm)

Create a new SPN of the posterior: p(Xm|Xobs = xobs).

2.3 SPN Operations 9

Algorithm: Calculate the likelihood of partial observation but this time, record the incoming
activations to every sum node. On downwards pass, renormalize the weighted activations at every
sum node such that they sum to 1, and use the activations as the new weights. Prune the observed
variables away, then remove redundant nodes from the SPN.

Discussion: Again, computing the posterior p(Xm = xm|Xobs = xobs) is entirely equivalent to com-
puting two forward passes on the original SPN p(Xm,Xobs) and using Baye’s rule:

p(Xm|Xobs) =
p(Xm,Xobs)

p(Xobs)
(2.1)

Yet I considered this as a separate probabilistic query to highlight SPN’s unique ability to compile a
simpler version of itself.

2.3.6 Argmax

Definition: Compute argmaxX p(X ,Y),
where Y are the latent variables associated with the SPN’s sum nodes.

Algorithm: Greedy Algorithm. Convert every sum node to a max node. We will start from the root
of the Max Product Network and descend to the leaves. If we encounter a sum node, we descend
down the child with the highest weight. If we encounter a product node, we descend all children. At a
leaf node, we instantiate the random variable at the mode of its distribution.

Discussion: This inference scenario is called Most Probable Explanation (MPE) because we opti-
mize over X and Y but discard the answer to Y . This is in contrast to an alternative inference scenario
called MAP, where we marginalize the uninteresting variables away before performing optimization.

(MPE inference) argmax
X

p(X ,Y) (2.2)

(MAP inference) argmax
X

p(X) = argmax
X

∑
y

p(X ,Y = y) (2.3)

This MPE algorithm is only correct for selective SPN [28]. Unless the leaves perfectly partition
the support of any random variable, generalized SPNs are not selective. And unfortunately, in general,
MPE and MAP inference in generalized SPN is NP-hard.

Often in literature [32], SPN’s inference capabilities are demonstrated on an image completion
problem. That is, we want the MAP inference.

argmax
Xm

p(Xm|Xobs) = argmax
Xm

∑
y

p(Xm,Y = y|Xobs) (2.4)

10 Sum Product Networks

This is done by fusing the argmax step and conditioning step (Section 2.3.5) without producing a
new intermediate SPN. Interestingly, the combined forward and backwards operation is very similar
to the Viterbi algorithm.

Alas, there is no efficient MAP (or even MPE) inference algorithm for generalized SPNs. So
many researchers employ this MPE algorithm as an approximation to the true MAP results.

2.4 Learning SPN

2.4.1 Parameters

In the seminal paper, Poon and Domingos proposed [32] two ways to learn sum nodes’ probabilities
and leaf nodes’ parameters. First is gradient-based optimization of the marginal likelihood.

d
dw

p(X) (2.5)

Second is a hard EM algorithm.

(hard) E-Step : Y t ← argmax
Y

p(Y |wt−1,X) (2.6)

M-Step : wt ← argmax
w

p(X |wt−1,Y t) (2.7)

Both methods can be described as generative training because we optimize the generative mecha-
nism to fit the observed data. On the other hand, Gens and Domingos proposed [14] a discriminative
gradient ascent framework for training SPNs. The SPN is optimized to predict a label variable given
the input variable X . This label can be the class of the image, or even a hierarchical description of the
image.

Both papers noticed difficulties with training SPN via gradient based methods and attributed it to
the gradient diffusion problem. Consequently, Gens and Domingos proposed [14] a hard gradient-
ascent where the learning signal is transmitted only to a subtree of the SPN. They derive the gradient
update formula for both the marginal inference and MPE inference case.

Peharz later discovered [28] that the MPE inference algorithm is only correct for selective SPN,
so the original EM algorithm is only correct for selective SPN. A correct soft EM algorithm was
derived for generalized SPNs.

2.4.2 Structure

Unlike the structure of neural networks, the structure of the SPN has probabilistic semantics (like CI
and CSI). The complexity of the overall SPN distribution is predominantly encoded in the structure
instead of the sum node weights. As such, structure learning is important for SPN.

The seminal paper [32] indirectly learnt an SPN structure by first designing a large dense SPN,
learning the probabilities with a sparse prior, and finally pruning the structure. This is a simple

2.5 Poon Domingos architecture 11

approach towards structure learning because it relies on reliably known techniques, and keeps the
maximum complexity of the structure controlled. More on this technique is described in the Section
2.5 below.

This method, however, is severely limited by the original dense SPN — it cannot learn a structure
that is not a sub-network of the dense SPN. As a remedy, Dennis and Ventura first proposed [11]
a method to construct an SPN structure purely from data. Starting from a data matrix, it performs
clustering on examples to create sum nodes, and clustering on variables to create product nodes. The
difficulty with clustering variables, however, is that it is hard to capture correlations.

To represent how the set of problem variables X is decomposed by clustering, Dennis and Ventura
introduced [11] the concept of a “region graph". Clustering essentially builds a region graph top-down.
As an alternative, Peharz [26] proposed learning a region graph from bottom up. Child regions to be
“merged" together are selected by independence tests. The sum node parameters in the merged regions
are learned by maximum mutual information. In doing so, the region graph was shown to be a useful
abstraction of SPN structure.

At the same time, Gens and Domingos proposed [15] learnSPN. Starting from a data matrix,
independence tests split variables to create produce nodes, and clustering methods split examples to
create sum nodes. This top-down structure learner became the most prominent approach, perhaps
because it elegantly reflects the interpretation of sum and product nodes as co-clustering of a data
matrix.

Since then, many other structure learners have been proposed. Another prominent one is by
Rooshenas and Lowd which proposed [35] ID-SPN. It generalized learnSPN by not decomposing the
data matrix to single variables, but instead to groups of variables whose structures are then learnt by
ACMN [22], which is a method to learn the structures and parameters of a tractable discrete variable
Markov network.

2.5 Poon Domingos architecture

2.5.1 Description

The novelty in the seminal paper [32]’s structure learner lies in generating a dense SPN structure for
image data. We will call this structure the Poon-Domingos (PD) architecture.

First, a region graph is constructed from top-down. (See Figure 2.5a, black squares are partitions.
Group of coloured squares are regions.)

A region graph is an acyclic directed graph of regions and partitions. A region is a local
rectangular patch of the image, while a partition is a vertical or horizontal split of a region. Every
partition has one parent region and two child regions. As an example, Figure 2.6 shows two possible
partitions of a 2×3 region. In general, an m×n region has m−1 possible horizontal partitions and
n−1 possible vertical partitions.

12 Sum Product Networks

(a) Region Graph (b) SPN constructed from Region Graph

Fig. 2.5 How to construct PD SPN from a region graph

(a) Vertical partition (b) Horizontal partition

Fig. 2.6 Partitions of a region

2.5 Poon Domingos architecture 13

(a) A region (b) A partition

Fig. 2.7 How to count size of PD architecture

Starting from the root region (the entire image), we build a region graph by recursively adding
all partitions of leaf regions into the graph, until the leaves are 1× 1 regions. If a child region of
a partition already exists in the region graph, that child is shared between the multiple partition
parents. By making every region unique, the region graph shares substructures and grows deep
without exponential blowup in size.

However, sometimes we may not need to add every possible partition to the region graph. We
may first coarsegrain the image before partitioning. In other words, we only add every cth horizontal
and vertical partition of a region, resulting in a region graph with c× c (or sometimes smaller) leaf
regions. Partitioning then continues, at perhaps another smaller coarsegrain lengthscale c2, until only
1×1 leaf regions are left.

Next, a dense SPN structure is built from the region graph. (See Figure 2.5b. Blue circles are sum
nodes. Red circles are product nodes)

Every non-leaf region corresponds to a layer of Ksum sum nodes, while every leaf region corre-
sponds to a layer of Klea f leaf nodes. A partition also corresponds to a layer of product nodes, but
this time, the number of product nodes is the product of the number of nodes in its child regions. If
both child regions are non-leaf layers, then there are K2

sum product nodes; if one is a leaf region, then
there are KsumKlea f product nodes; or if both are leaf regions, then there are K2

lea f . The product layer
is densely connected to its parent and child layers. At the root region, we use only one sum or product
node, representing the overall distribution of the SPN.

2.5.2 Network size

The PD architecture is defined recursively on local image patches. To get a handle on the total size of
the architecture constructed, I will explain how to count the number of regions and partitions. In the
discussion below, I will ignore coarsegraining.

In an m by n image, a region is a rectangle that fits within the image. The number of such
rectangles is then the number of ways to pick two row and two column boundaries.

regions =
(

m+1
2

)(
n+1

2

)
=

m(m+1)n(n+1)
4

(2.8)

14 Sum Product Networks

A partition of a region must lie between the column (or row) boundaries. So the number of partitions
is the number of ways to pick two row (or column) and three column (or row) boundaries.

partitions =
(

m+1
3

)(
n+1

2

)
+

(
m+1

2

)(
n+1

3

)
=

m(m+1)n(n+1)(m+n−2)
12

(2.9)

2.5.3 Equivalence to tensorial decomposition

The regularities within PD architecture suggests that there may be a more abstract description of the
dense SPN. Indeed, though not often mentioned in literature, PD architecture can be interpreted as a
tensorial mixture model[36]. In the tensorial formulation, the sums and products are implicit within
the matrix multiplications. To show this equivalence, we will describe PD architecture more formally.

Every region is labelled by its scope X . Every sum (or leaf) node in each region is indexed with
integer k ∈ [0,K]. So the kth probability distribution of scope X is denoted as

pk (X) (2.10)

Every partition children of a node is indexed with an integer n ∈ [0,N]. Additionally, let’s define
a convenience function child(X ,n,L/R) that maps a parent region X , partition index n, and binary
argument (L or R) to a child region. Using Figure 2.6 as an example:

child({1..6},0,L) = {1,4}

child({1..6},0,R) = {2,3,5,6}

child({1..6},1,L) = {1,2,3}

child({1..6},1,R) = {4,5,6}

Every non leaf region X has two probability tensors — Ak
n and Bn

k1,k2. Ak
n is the mixing probability

of the nth partition for the kth sum node in region X . Having selected the nth partition, Bn
k1,k2 is the

mixing probability of the joint pair of kth
1 node of the left child region and the kth

2 node of the right
child region.

So in Einstein’s summation notation, the probability distribution represented by the kth sum node
of region X is recursively defined as: (implicit sum over n,k1,k2)

pk(X) = Ak
n Bn

k1,k2 pk1(child(X ,n,L)) pk2(child(X ,n,R)) (2.11)

Chapter 3

Variational Autoencoder

“A VAE is an easy way to learn a high dimensional p(X |Z)."

Variational Autoencoders (VAEs) are an active area of research in machine learning. This chapter
only describes the basic concepts of VAEs most relevant to this thesis.

3.1 What is a VAE?

At its heart, a variational autoencoder (VAE) is a density network, which is a continuous latent variable
model proposed [23] by Mackay. A density network defines a prior over the latent variable pθ (Z),
and a conditional distribution pθ (X |Z) implemented by a neural network. The distribution of interest
is the marginal of the joint probability distribution.

p(X) =
∫

pθ (X |Z = z)pθ (Z = z)dz (3.1)

This integral (Eq 3.1) scales exponentially with the dimension of Z. If Z is high dimensional,
learning of parameters θ through gradients methods is intractable because every gradient update
requires an expensive marginalization. Parameters θ also cannot be learnt by EM algorithm because
the conditional probability distribution pθ (X |Z) is implemented by a neural network and is thus
difficult to invert.

In Mackay’s paper [23], Z was kept low dimensional and parameters θ were still learnable by
calculating gradients of a Monte Carlo approximation of Eq 3.1. If Z is high dimensional, Mackay
suggested using Hamiltonian Monte Carlo sampling of the posterior to generate importance weighted
samples for the Monte Carlo integral.

Fast forward two decade, two seminal papers [21, 34] proposed a way to avoid the exponential
scaling of Eq 3.1. With an inference network qφ (Z|X = x) that approximates the true posterior
pθ (Z|X = x) for all = x, importance weighted samples z can be cheaply generated for the integral. Both
the density network and the inference network can be be jointly trained if the evidence lower bound

16 Variational Autoencoder

(ELBO) was used as an objective. To allow the gradients to flow pass the sampling operation and reach
the inference network, both papers proposed a reparameterization trick (stochastic backpropagation).

Traditionally in variational inference, the parameters of the variational distribution qφ (Z|X = xi)

has to be learnt individually for every single datapoint. For example if qφ (Z|X = xi) is a Gaussian,
φ = {{µi,Σi}...}. Instead for a VAE, a neural network learns a function to predicts the variational
parameters for all possible xi.

qφ (Z|X = xi) = N (Z|µi,Σi) , µi,Σi = fφ (xi) (3.2)

VAEs are thus a method to combine probabilistic reasoning with the flexibility of deep learning.
From the lens of traditional variational inference [43], the cost of inference is said to be “amortized"
over all the training examples. Thus learning VAEs with is scalable to high dimensions of Z and large
amounts of data {xi}.

Since then, VAEs have attracted strong interest in the machine learning community: first, for
the density network’s potential to generate new observations similar to the examples it has been
trained on, and second, for its inference network’s potential to find compact and possibly interpretable
representations of high dimensional observations.

3.2 Deriving the ELBO

The ELBO L is a variational lower bound to the marginal likelihood because its error is the KL
divergence between the approximate posterior and the true marginal likelihood.

In classical variational bayes, we want to do full Bayesian prediction which requires a posterior
over some unknowns weights given data.

∫
f (y|W) p(W |D)︸ ︷︷ ︸

needed

dw (3.3)

While p(W |D) is often intractable, we can approximate it with some tractable function qφ (W)

parameterized by φ . To select the best q, we optimize the KL divergence between qφ and p(W |D).

φ
∗ = argmin

φ

KL[qφ (W)||p(W |D)] (3.4)

However, since p(w|D) is intractable, we rewrite the KL as:

KL[qφ (W)||p(W |D)] =
∫

qφ (W = w) log
qφ (W = w)

p(W = w,D)
dw+

∫
qφ (W = w) log p(D)dw (3.5)

=−L + log p(D) (3.6)

Since the KL divergence is always positive, L is a lower bound of log p(D). To minimize the
KL, we maximize L .

3.3 Importance weighted autoencoder 17

This derivation, done in the context of Bayesian prediction for a posterior over weights, can
equivalently be done in the context of density networks for a posterior over latent variables.

p(X) =
∫

pθ (X ,Z = z)dz (3.7)

=
∫ pθ (X ,Z)

p(Z = z|X)
p(Z = z|X)︸ ︷︷ ︸

needed

dz (3.8)

≈
∫ pθ (X ,Z)

qφ (Z = z|X)︸ ︷︷ ︸
approx

qφ (Z = z|X)︸ ︷︷ ︸
approx

dz (3.9)

So

KL[qφ (Z|X)||p(Z|X)] =
∫

qφ (Z = z|X) log
qφ (Z = z|X)

p(X ,Z = z)
dz+

∫
qφ (Z = z|X) log p(X)dz (3.10)

=−L + log p(X) (3.11)

L can then be estimated through importance weighted Monte Carlo integration with cheaply
generated samples.

L =
∫

qφ (Z = z|X) log
p(X ,Z = z)
qφ (Z = z|X)

dz (3.12)

≈ 1
N ∑

n
log

p(X ,Z = zn)

qφ (Z = zn|X)
, zn ∼ qφ (Z|X) (3.13)

Empirically, Kingma and Welling [21] found that N can be as few as 1 if the batch size M is large
enough (>100).

3.3 Importance weighted autoencoder

There is a more direct way to derive L using Jensen’s inequality.

log p(X) = log
∫

pθ (X ,Z = z)dz (3.14)

= log
∫

qφ (Z = z|X)
pθ (X ,Z = z)
qφ (Z = z|X)

dz (3.15)

≥
∫

qφ (Z = z|X) log
pθ (X ,Z = z)
qφ (Z = z|X)

dz = L (3.16)

Now, let F(z) = pθ (X ,Z=z)
qφ (Z=z|X) . How wide F(z) varies for different z determines how tight the

variational bound is. If F(z) is almost constant, the inequality becomes exact. This insight motivates

18 Variational Autoencoder

constructing tighter bounds by reducing the variance of F(z). A simple way to do so is to increase the
dimension of the problem.

F(z) =
pθ (X ,Z = z)
qφ (Z = z|X)

−→ F(z1, ...,zK) =
1
K

K

∑
k=1

pθ (X ,Z = zk)

qφ (Z = zk|X)
(3.17)

In the larger space of integration, the integrand looks smoother. This is the smoothing trick at the
heart of the importance weighted autoencoder (IWAE) by Burda et al [5].

log p(X) = log
∫

qφ (Z = z|X)F(z)dz (3.18)

= log
∫ K

∏
k=1

qφ (Z = zk|X)F(z1, ...,zK)dz1...dzK (3.19)

≥
∫ K

∏
k=1

qφ (Z = zk|X) logF(z1, ...,zK)dz1...dzK = LK (3.20)

By shrinking the variance of F(z) before the application of Jensen’s inequality, Burda et al [5]
proved that ever tighter bounds can be constructed.

L = L1 ≤L2 ≤L3...≤LK (3.21)

LK can then be estimated by importance weighted Monte Carlo integration with K times more
samples. N is again usually set to 1.

LK ≈
1
N ∑

n
logF(zn1, ...,znK) , znk ∼ qφ (Z|X) (3.22)

Since the variance of F has decreased, the Monte Carlo error in estimating F also decreased.
There are, however, tradeoffs to using IWAE. First, the expression logF(z1, ...,zK) no longer

allows us to break the KL divergence expression into a reconstruction error term and a regularization
loss term. In the case of VAE with Gaussian approximate posterior and prior, the regularization loss
term can be analytically calculated, a trick with Kingma and Welling exploited to reduce the variance
of the gradient estimate. Second, even though the variance of the gradient estimate reduces with
increasing K, the magnitude of the gradient signal entering the inference network decreases faster,
thus increasing the signal to noise ratio [33].

Chapter 4

SP-VAE

“SP-VAE maintains tractability by keeping its VAE leaves small."

In this chapter, I will define SP-VAE, a hybrid mix of SPNs and VAE investigated in this thesis.

4.1 VAEs as SPN leaves

The SPN operations described in Chapter 2 requires SPN leaves to be able to produce 1) independent
samples, 2) likelihood of observation and 3) the argmax of the distribution. Ideally, since there are
many leaves in an SPN, each leaf should also be computationally cheap and use little memory.

VAEs do not seem to fit these requirements, where its most immediate disqualification seems to
be its canonically intractable likelihood. But this intractability is not fatal. Although VAEs can only
compute a lower bound of the log likelihood, ever tighter bounds can be constructed using IWAE
[5]. Additionally, if the VAEs are sufficiently small, then the exact likelihood can be sufficiently
approximated by Monte Carlo integration.

VAE leaves have benefits over traditional SPN leaves: First, they can represent significantly more
complex distributions. A greater complexity reduces the need to learn large SPNs or even many
duplicate leaves with the same scope. Second VAEs have a latent variable which opens up a possibility
for SPNs to perform representation learning. And third, if this latent variable is shared between leaves,
either within a scope or between scopes, perhaps better “communication" or “entanglement" between
SPN leaves can be achieved with a smaller SPN.

4.2 SP-VAE operations

Like in Section 2.3, this section will define some probabilistic queries which can be answered by
SP-VAE. With more complex leaves, SP-VAE may not be as agile and flexible as SPNs is with
traditional leaves. For example, it cannot compile a simpler version of itself after conditioning or

20 SP-VAE

marginalizing. There also may not be a case of SP-VAE where an exact argmax algorithm exists
(although it may still be worth studying if Monte Carlo maximum likelihood algorithms will work)

4.2.1 Sampling

Definition: Draw independent samples from p(X)

Algorithm: Similar as in SPNs. The only difference is that when we reach a VAE leaf, we first
sample the latent variable z∼ p(Z), pass z through the decoder, and finally sample from the output
distribution of the decoder x∼ p(X |Z = z)

4.2.2 Complete Observation

Definition: Compute p(X = xobs)

Algorithm: The likelihood is canonically intractable, so the importance weighted ELBO is used as
a lower bound. After, passing xobs through the VAE’s encoder, K samples of z are drawn from the
approximate posterior distribution zi ∼ p(Z|X = xobs). These samples zi pass through the decoder to
derive K distribution parameters. We can now compute the importance weighted ELBO according to:

L = log

[
1
k

k

∑
i=1

p(X = xobs,Z = zi)

q(Z = zi|X = xobs)

]
(4.1)

Alternatively, if the VAE latent variables are small enough, we can perform the integration through
Monte Carlo integration:

p(X = xobs) =
∫

p(X = xobs,Z = z)dz (4.2)

≈ 1
N

N

∑
k=1

p(X = xobs|Z = zk) , zk ∼ p(Z) (4.3)

Leaf activations then propagate up to the sums and products just as in traditional SPNs.

4.2.3 Partial Observation

Definition: Only some random variables Xobs ⊆ X are observed. Let’s partition X into (Xobs,Xm).
Compute p(Xobs = xobs) =

∫
p(Xobs = xobs,Xm = xm)dxm

Algorithm: Like when computing likelihood of complete observations, VAE leaves with complete
observations still compute their ELBO or Monte Carlo estimate of their likelihood. The only difference
is that VAE leaves with partial or no observations need more tricks.

Case 1: If the entire VAE’s scope is unobserved, then we can automatically set the likelihood to 1

4.2 SP-VAE operations 21

Case 2: If only one variable is missing, and that variable has closed support between a and b, we can
do Monte Carlo integration through the complete observation. This method uses the VAE leaf’s
inference network.

p(Xobs = xobs) =
∫

p(Xobs = xobs,Xm = xm)dxm (4.4)

≈ |b−a|
N

N

∑
k=1

p(Xobs = xobs,Xm = x(k)m) , x(k)m ∼ uni f orm[a,b] (4.5)

Case 3: Alternatively, we may avoids use of the inference network and directly integrate the latent
variable. This method assumes that the VAE leaf’s latent variable is low dimensional, and that
the output distribution is diagonal or easily marginalizable.

p(Xobs = xobs) =
∫

p(Xobs = xobs,Z = z)dz (4.6)

≈ 1
N

N

∑
k=1

p(Xobs = xobs|Z = zk) , zk ∼ p(Z) (4.7)

Discussion: This operation motivates the development of future latent variable inference methods
that can accept inputs with missing features. If all of X is missing, inference should produce the prior
over Z. If more of X is observed, the uncertainty in Z should decrease.

4.2.4 Imputation

Definition: Draw a sample from p(X ,Y,Z) with high likelihood,
where Y are the latent variables associated with the SPN’s sum nodes, and Z the latent variables

of the VAE leaves.

Algorithm: Same greedy algorithm as in SPN of converting sum nodes to max nodes. The only
difference is that when we have descended into a VAE, we perform approximate Gibbs sampling as
suggested by Rezende et al [34]:

1. Randomly initialize an x

2. Pass x through the encoder.

3. Sample z from the posterior p(Z|X = z) and pass that through the decoder.

4. Sample an x′ from the decoder p(X |Z = z)

5. Feed that x′ back into encoder and repeat until converge.

22 SP-VAE

Discussion: Ideally, we would like to have a tractable argmax algorithm for SP-VAE. However,
argmax is hard for a neural network as it is a highly nonconvex function. An easier task would be for
SP-VAE to produce a sample x “near" one of its modes. In a VAE, this imputation task can be achieved
by Gibbs sampling as described above. Samples drawn after the Gibbs sampler has converged should
lie near some mode of the VAE distribution p(X)

Now, Gibbs sampling requires a posterior, but only an approximate posterior is available through
the inference network. Rezende et al [34] proved that if the marginal error of other approximate
posterior is bounded, then the error in the weak fixed point of the Markov Chain is also bounded by a
similar amount.

Gibbs sampling has its own set of difficulties, the most well-known of which is the difficulty in
judging if the Gibbs sampler has converged. In the context of SP-VAE, it is not yet clear if there are
any additional difficulties when performing Gibbs sampling on many tiny VAEs.

As mentioned in Section 2.3.6, the argmax of the conditional p(Xm|Xobs) is the ideal approach
to solving image completion problem. It is difficult to condition the VAE distribution on partially
observed data. However, it is still possible for Gibbs sampling to sample

p(Xm,Xobs = xobs,Z) (4.8)

We will follow the same Gibbs sampling procedure, except now, the observed variables are reset to
the observed values before passing x′ is passed into the encoder.

4.3 Learning SP-VAE

4.3.1 Structure Learning

A dominant fraction of SP-VAE’s modelling power lies in the leaves instead of the structure of the
SPN. So the structure of the SPN is less important than in pure SPNs.

As a default used in this thesis, PD architecture coarsegrained at lengthscale c could be used,
resulting in VAE leaves over c× c patches (or smaller). This only require choices of hyperparameters
and no structure learning takes place. Alternative, instead of coarsegraining, random partitions, as
done in [31], could be used.

If the rectangular blocky nature of PD architecture is undesirable, ID-SPN structure learner is a
possible alternative. The only difference now is that a VAE implements the multivariate leaves instead
of a Markov network.

4.3.2 Parameter Learning

SPNs admit EM and gradient-based learning algorithms. VAEs, however, can only rely on stochastic
gradient descent. So gradient-based methods are the simplest way to jointly train SP-VAE.

Chapter 5

Methodology

“Make comprehensive and fair comparisons."

The central aim of this thesis is to understand how does SP-VAE’s performance compare against
SPNs and VAEs. This aim motivates and guides the experiments in this thesis. In this chapter, I state
the method of evaluation, summarize considerations made to ensure valid and rigorous investigations,
and motivate the objectives of experiments.

5.1 Choice of evaluation metric

How do we know how well a model performed at density estimation if the true distribution is unknown
(and perhaps even undefined)? Besides evaluating the model through downstream applications, there
are two popular approaches to evaluation used in literature: First is via the likelihood on a test set.
The second approach is sample fidelity. This can be qualitatively done through visual inspection,
1-NN or even through a visual Turing test, but they are subjective and time consuming.

Some recent research [37] have suggested that test likelihoods and sample fidelity are independent
indicators of the quality of fit. Different sample fidelity metrics may even favor different models. The
search for a good evaluation metric for generative models is still an active area of research.

In light of this, I choose to use the test likelihood as an evaluation metric, because first, it is
an established methodology in literature, and second because it can generalize to non-image data.
More specifically, I monitor a model’s performance on a test set and report the best test performance
after a sufficiently long period of training. Admittedly, reporting best test likelihood is not standard
methodology; training progress is typically measured on a validation set instead of a test set. However,
this may have been necessary in this thesis because some CALTECH101 datasets are too small to
afford a validation set. In effect, I would be making and comparing optimistic measures of a model’s
capacity.

Another difficulty arises because VAEs computes an ELBO instead of a likelihood. I chose
nonetheless to compare ELBOs and log likelihoods on equal footing, relying on the assumption that

24 Methodology

the variational gaps are small compared to differences due to the model architecture. Note that in this
thesis, I will use the term “evidence" to ambiguously refer to either log likelihoods or ELBOs.

5.2 Choice of Dataset

The main evaluation dataset used in this thesis is the CALTECH101 image dataset. But MNIST
handwritten digits, and cropped Street View House Numbers (SVHN) are also used in smaller scale
experiments.

5.2.1 MNIST

MNIST is a classic image dataset of greyscale handwritten digits. It consists of 60000 training and
10000 test images. Each image is 28 x 28 pixels. Most of the image’s background is black (pixel
value 0) while the digit is bright.

Fig. 5.1 Samples from MNIST dataset

5.2.2 CALTECH101

CALTECH101 is a collection of 102 datasets of various object categories ranging from accordions
to yin yangs. This is a challenging dataset for density estimation for a few reasons: First, the size of
each category’s dataset varies widely, ranging from 800 images (airplanes category) to 31 images
(inline_skate category). Second, most images even within the same category do not have the same
dimensions. The number of rows ranges from 92 to 3999 and number of columns range from 80 to
3481.

Since our models require fixed image dimensions, the images need to be center padded to a
square shape. The images are colored as well and need to be converted to greyscale. [32] has already
done these and additionally resized the images down to 100 x 100 pixels. Using their processed
CALTECH101 dataset, I further shrunk the images to 25 x 25 pixels. Finally, I split each category’s
dataset into test/train sets with 33.3% / 66.6% probability.

5.3 Processing for Distribution Type 25

Fig. 5.2 Samples from CALTECH101 dataset

5.2.3 SVHN

SVHN is a dataset of digits like MNIST, but it is significantly more challenging for multiple reasons:
Each image is larger (32 x 32 pixels), and colored. The digits may be rotated, blurred, of different
scales, aspect ratios and styles. The background is textured, while additional circles or squares may
frame the digit. The digit’s contrast against the background may be poor, or even inverted. Most
challengingly, there may be distracting digits to the left or right of the digit in the center of the image.
There are 73257 training and 26032 test images.

I greyscaled the images using the luminosity kernel (0.299, 0.587, 0.114)

Fig. 5.3 Samples from SVHN dataset

5.3 Processing for Distribution Type

A dataset is interpreted as a collection of independent observations of a random multivariate variable
(an image in this case). I considered the case where the random variable could be binary, continuous,
or categorical, and built models based on Bernoulli, Gaussian, and Binomial distributions accordingly.
The datasets should ideally reflect the discrete or continuous nature of the random variable considered.
Otherwise, pathologies may occur like exploding densities when fitting continuous distributions onto
a discrete dataset, and zero probability masses when fitting discrete distributions on a continuous
dataset.

26 Methodology

5.3.1 Binary random variable

MNIST dataset is easy to binarize because of the clear distinction between digit and background. I
calculated the mean pixel value of each image and used it as a global threshold of binarization.

CALTECH101 is harder to binarize because it is a collection of natural images. Using global
thresholds leads to large monotone patches, rendering the image object unrecognizable. An alternative
of dithering based methods also leads to poor results due to the small size of the images. In the end,
I chose to use adaptive Gaussian thresholds with blocksize of 3. This binarization method retains
fine grained image details (like the eyes of a face and texture of background), which are precisely the
challenge of natural images for density models.

Fig. 5.4 Two different ways of binarizing CALTECH101 images
Top row: global threshold set by mean of image (reject)

Bottom row: adaptive Gaussian threshold; blocksize = 3 (accept)

SVHN is also hard to binarize for the same reasons as CALTECH101. In the end, I used an adaptive
Gaussian thresholds with blocksize of 15.

(a) Blocksize = 5 (Reject) (b) Blocksize = 15 (Accept)

Fig. 5.5 Binarizing SVHN with adaptive Gaussian thresholds

5.4 Controls for Fair Model Comparison 27

5.3.2 Continuous random variable

Assuming pixel values are uint8 integers ranging from 0 to 255, standard normal random noise is
added to every pixel of every image in all datasets. If pixel values range from 0 to 1, Gaussian noise is
scaled by 1/255. Pixel values exceeding the minimum and maximum are clipped.

5.3.3 Categorical random variable

Raw pixel values take integer values between 0 and 255. So they are already discrete in nature and no
further processing is needed.

5.4 Controls for Fair Model Comparison

SPNs, SP-VAE, and VAEs are different model architectures, each with its own performance tradeoffs,
training behaviors, and scaling properties. In order to make meaningful comparisons between the
model architectures’ performances, ideally we should control for other factors which may affect the
model’s performance. Differences in model complexity or training efficiency can then be attributed
purely (or at least with more certainty) to differences in model architectures.

5.4.1 Model Size

The first factor we controlled for is “model size". As a heuristic, model size is measured by the
number of parameters in the model. This may not be a perfect measure of model size because the
number of parameters may not reflect the actual degrees of freedom in the model, and not all degree
of freedoms are equivalent. Nonetheless, the number of parameters is a useful gauge because it can be
measured across a diverse range of parametric models, and is intuitively understood by the machine
learning community. And since model size is not well defined, control for it cannot be exact anyway.

5.4.2 Hyperparameters

The second factor we controlled for is hyperparameters. Since we want to compare the best perfor-
mance of one architecture against another, we need to tune hyperparameters to their optimal for each
dataset. But this is a resource intensive process made even worse by the fact that we do it by hand. As
such this thesis cannot guarantee that the hyperparameters found are optimal.

In the process of manual tuning, we found that performance is most sensitive to learning rate
and batch size. This is consistent with observations by other machine learning practicioners.[17].
Concretely, we found that a smaller learning rate tends to give better performance. However, it comes
at a cost of longer training times. So the optimal learning rate depends also on amount of training
time we are willing to tolerate.

28 Methodology

Model Code Distribution Type Model Description

M1

Bernoulli

Deep SPN
M2 Shallow SPN
M3 SP-VAE
M4 VAE

M5

Gaussian

Deep SPN
M6 Shallow SPN
M7 SP-VAE
M8 VAE

M9

Binomial

Deep SPN
M10 Shallow SPN
M11 SP-VAE
M12 VAE

Table 5.1 Color codes for architectures to be evaluated

5.5 Choice of models

5.5.1 Model Code

There are four main architectures evaluated in this thesis. To be comprehensive, they are evaluated
when implemented as three distribution types — Bernoulli, Gaussian, and binomial

1. deepSPN : A PD-SPN, coarsegrained at lengthscale c, that decomposes an image down to
individual pixels. Univariate Bernoulli, Gaussian, or Binomial distributions used as leaves

2. shallowSPN : A PD-SPN, coarsegrained at lengthscale c, that decomposes an image down to
c× c superpixels. c2-dimensional diagonal Bernoulli, Gaussian, or binomial distributions are
used as leaves

3. SP-VAE : A PD-SPN, coarsegrained at lengthscale c, that decomposes an image down to c× c
superpixels. VAEs with 2-dimensional latent variables and c2-dimensional observations are
used as leaves. VAE’s generative distribution may be diagonal Bernoulli, Gaussian, or binomial
distributions.

4. VAE : A vanilla VAE whose encoder and decoder are implemented by MLPs. Prior and
variational distributions are Gaussian. Generative distribution may be diagonal Bernoulli,
Gaussian, or binomial distributions.

To ease comparisons, these architectures are given numerical and color codes as shown in Table
5.1.

5.5 Choice of models 29

5.5.2 Design Choices

All SPN structures, including SP-VAE, follow the PD architecture, which means that scopes are
partitioned by horizontal and vertical splits in the image domain. Specifically, they follow the
superpixel architecture, which means that the image dimension is a multiple of the coarsegraining
level and that all leaf regions have disjoint scopes.

For the pure SPN, I initially chose to decompose the image down to individual pixels. However,
even with coarsegraining and efforts at optimization, the resulting model takes too much memory and
time to compute in Tensorflow. So a shallow version that decomposes an image down to the same
superpixels as in SP-VAE was introduced. Its leaves are a product of univariate distributions. The
original SPN is thus named deepSPN, and the latter shallowSPN.

All VAE encoders and decoders, both pure and as VAE leaves, are implemented by MLPs with 2
hidden layers. All hidden layers within a VAE have the same number nodes. All activation functions
in MLPs are softplus.

If the VAE is an SPN leaf, its latent variable is two dimension regardless of the size of the
leaf region. If the VAE is pure (modelling the full scope), its latent dimension is equal to 2×
(number of leaf regions in an equivalent SP-VAE).

We made the latent dimension of pure VAE depend on the SP-VAE it is compared to because we
want to maintain equal “latent representation power" between both models. If the total number of
latent dimension is equal between SP-VAE and VAE, we can imagine SP-VAE as disentangling some
latent dimensions and forcing them to specialize on some superpixel of the image.

The design choices described above constrain the number of free parameters available when
choosing a model topology. For a VAE, the only free parameter left is the number of nodes per hidden
layer nh. For an SPN, the free parameters are number of sum nodes per leaf region Klea f and the
number of sum nodes per region Ksum.

The coarsegraining level c seems like a free parameter but is in fact highly constrained by the
dataset because we want c to be a factor of the image dimension.

Table 5.2 Coarsegraining levels for SPNs

Dataset image dimension choices for c chosen c

CALTECH101 25 x 25 5 5
MNIST 28 x 28 2, 4, 7 4
SVHN 32 x 32 2, 4, 8, 16 8

5.5.3 Model Sizes

With fewer free parameters, it becomes easier to count the number of parameters in a model, and also
easier to create a model with approximately the desired number of parameters.

30 Methodology

If we further constrain K = Klea f = Ksum, then the total number of parameters can easily be
counted by the formula below:

Table 5.3 Model Size

Model Code # parameters

M2/M10 #spn(n′r,n
′
c,K)+n′rn

′
cC

2K
M3/M11 #spn(n′r,n

′
c,K)+n′rn

′
cK#vae(nz,nh,C2)

M4/M12 #vae(nz,nh,nx) = 2n2
h +2nxnh +3nznh +4nh +2nz +nx

M6 #spn(n′r,n
′
c,K)+2n′rn

′
cC

2K
M7 #spn(n′r,n

′
c,K)+n′rn

′
cK#vae(nz,nh,C2)

M8 #vae(nz,nh,nx) = 2n2
h +3nxnh +3nznh +4nh +2nz +2nx

#spn(nr,nc,K) = #parts(n′r,n
′
c)K

3 +(n′r +n′c−2)(K2−K3)

5.6 Experiment Objectives

Many experimental objectives were defined at the start of the project. However, they were highly
adapted and reprioritized as we gained new insights and faced unexpected challenges. The overall
sequence of investigations is now best grouped into four experiments.

Experiment 1: Best performances (main evaluation)

Experiment 2: Learning without inference networks

Experiment 3: Data efficiency

Experiment 4: Balance between SPN and VAE

Chapter 6

Implementation

“SPNs are unnatural for TensorFlow."

In this chapter, I summarize relevant implementation hurdles, considerations made to solving
them, and final design choice made if there were any.

6.1 Choice of Deep Learning Framework

Since this thesis involve VAEs, experiments have to be implemented in one of the modern deep
learning libraries. TensorFlow was selected as the framework of choice because it has a well supported
collection of primitive operations, an ecosystem of convenience libraries, and code examples online.
In particular, TensorFlow’s optimization library (tf.train), and, to a lesser extent, its input pipeline
library (tf.data) and an monitoring library (tf.summary) made TensorFlow an attractive choice.
TensorFlow’s automatic handling of distributed computing (multiple CPU/GPUs) is an added bonus.

While there are many reference implementations online of VAEs in TensorFlow, there are no
publicly available implementation of SPNs in TensorFlow. This is mostly because 1) SPNs were
conceptualized before TensorFlow was popular, 2) most published implementations are in Java
or python, and 3) SPNs is a probabilistic model with sampling operations that are not natural to
TensorFlow’s dataflow programming regime.

As such, besides implementing SPNs for the sake of experiments, this thesis hopes to contribute a
simple TensorFlow implementation of SPNs in Keras’ functional API.

6.2 Implementing SPNs in TensorFlow

6.2.1 Log Domain

Images are high dimensional, so likelihoods over them are usually on the order of -100 nats and if not
more. Likelihoods computed have to be kept in the log domain to prevent underflows. Consequently,
products are realised via additions and sums are realised via logsumexps.

32 Implementation

A quick profile of relevant TensorFlow operations showed that logsumexp is the most expensive.
However, this operation is unavoidable if we were to stay in the log domain. I considered the
possibility of running experiments on small images with 128 bit floating point precision so that
likelihoods can be computed in the linear domain without underflow. Unfortunately, TensorFlow does
not support such high precision.

6.2.2 Probability Vectors

Every SPN sum node has a categorical distribution associated with it. The probability vector ρ

parameterizing the categorical distribution must satisfy two constrains: ρi ≥ 0 and ∑i ρi = 1. In
TensorFlow, however, maintaining these contrains is unnatural. I considered a few options: 1)
renormalize the probability vector after every gradient update, 2) using Lagrange Multipliers, 3)
reparameterized from the simplex to real space using the softmax.

ρi =
exp(wi)

∑k exp(wk)
(6.1)

The last option is the simplest to implement and was thus chosen.

6.2.3 Regularization

The reparameterization of probability vectors introduces degeneracy. To see this, consider how
exp(wi)

∑k exp(wk)
= exp(wi+c)

∑k exp(wk+c) . There are infinitely many www = www0 + c, where c is an arbitrary real number,
corresponding to the same unique ρρρ . In weight space, these degenerate www form “equipotential lines".

The SPN model function is agnostic to degenerate weights, so its gradients are perpendicular to
these equipotential lines. As the model trains, there is no guarantee that these weights will be kept
small. Regularization is desirable to prevent www from drifting into unnecessarily large values, which
may cause overflow in the computation graph.

I chose to regularize probability weights using L1 penalty with weight decay = 0.1. This reg-
ularization scheme penalizes overconfidence of the SPN (low entropy distributions), encouraging
balanced probabilities in the sum node instead of sparsity. An example to illustrate this effect is given
in Appendix A

6.2.4 Computation Graph Size

A major limitation of implementing PD-SPN in TensorFlow is the O(m3n3) growth in network size,
where the image problem is m×n in dimensions. While Poon and Domingos [32] could virtualized
the network structure, and logically retrieve or create a subset of nodes activation whenever needed
by their hard EM algorithm, TensorFlow cannot and needs to implement the entire network as a
computation graph residing in memory.

It takes TensorFlow about one hour on a modern Sandy Bridge Core i7 Intel CPU to construct
a computation graph of an SPN with about 200000 nodes, decorate the graph with gradient update

6.3 Implementing VAEs in TensorFlow 33

operations, and initialize variables. The entire TensorFlow session takes large amount of memory
(~10GB) and time (~10s) to perform a single upward pass.

The core problem is that there are too many atomic operations explicitly specified in the computa-
tion graph, like additions or logsumexps between activations of tiny scopes. Operation definitions and
communication overheads dominate the computations.

One possible way to reduce memory usage (and hence improve runtime) is not to make product
nodes explicit in the computation graph. This leads us to the tensorial decomposition formulation of
SPNs. The SPN’s computation graph can be built with log_tensordot operations if computation
is done in the log domain. Alas, TensorFlow does not support log_tensordot as a primitive
operation. However, log_tensordot can still be indirectly implemented using logsumexp or directly
as a custom C++ kernel for TensorFlow. An untested implementation of tensorial decomposition
using logsumexp and array broadcasting tricks shows an approximately 10% to 20% reduction in
computation graph size. Directly implementing the C++ kernel is left for future work.

6.3 Implementing VAEs in TensorFlow

Implementations of VAEs in TensorFlow are readily found online, so little is discussed here besides
noting design choices. Importance weighted variational objective with K = 5 were used. Encoders
and decoders were implemented with two hidden layer MLPs with L2 regularization and weight decay
= 0.1.

6.4 Benchmark

As a guide for how to deploy various experiments, I performed rough benchmarks on different
machines.

The environment used for this benchmarks are:

• TensorFlow: v1.8

• CPU (4 cores machine): i5-6200U CPU

• GPU : Tesla K40c

Experiment implementation changes frequently and actual run time may differ significantly
because the computing environment may be shared with other users, and/or have many more CPU
cores available. Thus these benchmark numbers are only meant to give order of magnitude estimates
when allocating time for experiments.

In memory measurements, the large GraphDef size of deepSPNs clearly shows the intractability
of implementing pure SPNs in TensorFlow. ShallowSPNs have a smaller GraphDef than SP-VAE
because all of the former’s Klea f leaves can be wrapped and defined as a single Klea f dimensional

34 Implementation

Table 6.1 Benchmark of Bernoulli models on CALTECH101-0

Model
Time for 10 epoch

GraphDef size
4 core GPU

deepSPN - 61s 332MB
shallowSPN 56s 2.4s 10MB

SP-VAE 4.5s 3.5s 22MB
VAE 0.76s 0.08s 238kB

tensor. A VAE’s GraphDef is one order of magnitude smaller than SP-VAE because only one VAE is
defined.

In runtime measurements, deepSPNs take too much memory to be benchmarked on a 4 core CPU
machine with 16GB RAM. Otherwise, all models invariably run faster on GPUs. It is curious that
although SP-VAE is more complex than shallowSPN, the former still runs faster than the latter on
CPU.

6.5 Training Models in TensorFlow

All models were trained using ADAM with its default hyperparameters (β1 = 0.9, β2 = 0.999,
ε = 10−8).

6.5.1 Difficulties with Optimizing Variances

The univariate Gaussian distribution has two parameters — mean µ and variance σ2. Learning σ2

by gradient methods is delicate for multiple reasons: First, it may shrink to zero, creating arbitrarily
large probability density which disrupts maximum likelihood learning. Practitioners often handle this
by placing a lower bound on σ2 for numerical stability during training, and/or adding noise to the
training data so that the optimal σ2 is at least at the noise threshold. Second, σ2 must be positive.
While we could use constrained optimization, it is more convenient to reparameterize σ2 onto the real
line. Third, this choice of reparameterization may have significant effects on the training dynamics.
For example, consider how the negative log likelihood is convex with respect to σ−2 but not σ2

(Section 7.1 of [4]). Finally, the learnt σ2 is sensitive to initialization.
To illustrate the importance of choosing a good parameterization, Figure 6.1 shows the training

curves of two parameterization of σ2. Both models (shallow SPNs with diagonal Gaussian leaves)
were trained on the same dataset with the same hyperparameters. Parameterizing σ−2 as 10−7 +w2

σ

gives smoother and higher log likelihoods than parameterizing σ2 as 10−7 +w2
σ .

6.5 Training Models in TensorFlow 35

Fig. 6.1 (Best view in color) Learning of SPN with Gaussian leaves is sensitive to parameterization of
σ2. blue and orange: σ2 = 10−7 +w2

σ ; green and red: σ−2 = 10−7 +w2
σ . Model optimized wσ using

ADAM. wσ initialized with standard normal noise.

Fig. 6.2 Tuning Learning Rate on a single dataset

6.5.2 Hyperparameter Tuning: Human in the Loop

A good selection of hyperparameters can make significant difference in training speed and test
outcomes. As an illustration, Figure 6.2 shows some results from tuning learning rate. A learning rate
that is too large (blue) may not lead to faster convergences and in fact risks producing NaNs in the
computation graph. A learning rate that is too small (green) achieves marginally higher test scores but
takes too long to converge.

Realizing the impact of hyperparameters, I decided to tune them, but only manually: Starting
from some default batch size (Full batch for CALTECH101, 128 for MNIST and 100 for SVHN)
and learning rate (0.1 for pure SPN, 0.01 for SP-VAE, 0.001 for VAEs), a trial training run is done. I
would then analyse the training and test curves, before proposing a new set of batch size, learning rate
and number of epochs.

In future work, more systemic grid search of hyperparameters should be used.

Chapter 7

Experiments

“SP-VAEs are competitive, more robust, and easier to train than VAEs!"

7.1 Experiment 1: Main Evaluation

7.1.1 Motivation

“How does SP-VAE compare against SPNs and VAEs?" In this first exploratory experiment, I want
to comprehensively evaluate the models on a diverse range of datasets of varying difficulty, thus
CALTECH101 was chosen. Later experiments can then be developed from patterns found in this
experiments.

7.1.2 Setup

SP-VAE model size was first arbitarily picked and the other models’ sizes were calibrated to match it.
Table 7.1, records the choice of free parameters after this calibration.

Table 7.1 Experiment 1 Model Size

Model Code
Region Graph SPN VAE # Weights

% spn
coarsegrain sumK leafK nh nz total leaves spn

M1 / M9 1, 5 2 2 - - 126018 1250 124768 99.0%
M2 / M10 5 7 7 - - 207823 4375 203448 97.9%
M3 / M11 5 2 2 25 2 143718 138950 4768 3.3%
M4 / M12 - - - 90 50 143285 - -

M5 1, 5 2 2 - - 127268 2500 124768 98.0%
M6 5 7 7 - - 212198 8750 203448 95.9%
M7 5 2 2 25 2 176218 171450 4768 2.7%
M8 - - - 80 50 176470 - -

38 Experiments

7.1.3 Results and Discussions

VAEs’s training curves have noise due to Monte Carlo ELBO

Figure 7.1 shows the training and test curves of all models on CALTECH101-18 dataset after
hyperparameter tuning.

First notice that the blue training curves are noisy for VAEs and SP-VAE. This is because VAE’s
training objective is a Monte Carlo estimate of the ELBO. Even if batch noise is absent, as is the case
in this experiment, there will still be noise in the training curves. Theoretically, we would expect
smaller noise in SP-VAE’s training curve because its VAEs are smaller. However this cannot be
observed in Figure 7.1 as VAE’s learning rate is an order of magnitude lower than SP-VAE (0.001 vs
0.01).

SPNs’s training curves are smooth

In contrast, notice that the blue training curves of pure SPNs (Figure 7.1), are smooth and monotonic,
even at learning rate of 0.1. Such smoothness is rare for a gradient-based optimization of a nonconvex
function. From experience optimizing dense MLPs, even if full batch and deterministic objectives
were used, such monotonicity is rarely achieved at 0.1 learning rate.

To be sure, the optimization landscape of an SPN is nonconvex. An intuitive argument for its
non-convexity is given as follows: If we permute sum nodes within a scope and ensure that the weights
in the parent scopes also permute to counteract that change, then the SPN will have the same loss but
at a different part of weight space. In other words, any local minimum (or maximum) is necessarily
replicated throughout many other parts of weight space.

Yet this monotonicity at high learning rate is a strong suggestion that the local minima in SPN’s
loss surface have lengthscales much greater than the step sizes taken by the gradient optimizer. The
possible simplicity of SPN’s loss surface is corroborated by the fact that SPNs are multilinear functions
of distributions; their only nonlinearities apart from the distributions are simple multiplications. Future
mathematical studies into the optimization landscape of SPNs can verify this hypothesis.

If indeed the lengthscales in the optimization landscape of SPN weights is vastly different from
that of VAE weights, then vanilla gradient descent should not be used for SP-VAE. Instead, a learning
rate that customizes to individual variables like ADAM is needed, or even some other algorithm
involving natural gradients [2]. Or perhaps, a mix of EM algorithm and gradient methods should be
used to train SP-VAE.

SPN are robust against overfitting

A pertinent worry in this thesis is if the reported test evidence is overly optimistic. The testing curves
in Figure 7.1 shows that test evidence do sometimes peak and decay as training progresses. However,
it seems that the test evidence decays to a smaller extent in SPNs than in VAEs.

7.1 Experiment 1: Main Evaluation 39

Bernoulli Gaussian Binomial

VA
E

(a) (b) (c)

SP
-V

A
E

(d) (e) (f)

sh
al

lo
w

SP
N

(g) (h) (i)

de
ep

SP
N

(j) (k) (l)

Fig. 7.1 Training curves of 12 different models on CALTECH101-18. Blue curves are training evidence;
Orange curves are test evidence.

40 Experiments

Bernoulli Gaussian Binomial

VA
E

(a) (b) (c)

sh
al

lo
w

SP
N

(d) (e) (f)

de
ep

SP
N

(g) (h) (i)

Fig. 7.2 (Best viewed in color) “test evidence decay" of SP-VAE (green) against that of VAE (red),
shallowSPN (orange), and deepSPN (blue) on 102 CALTECH101 datasets. Area of scatterpoint
indicates size of dataset. Attention should be paid to the scales of the axes

To ensure that this is not unique to CALTECH101-18, Figure 7.2 plots the “test evidence decay"1

of SP-VAE against that of other models. The results are consistent with the initial observation of
CALTECH101-18. For example, consider the Gaussian models from Figure 7.2. Mean “test evidence
decays" are around 4000 nats for VAEs, 200 nats for SP-VAE, 13 nats for shallowSPN and 7 nats for
deepSPN. This strongly suggests that SPNs are more limited in the extent to which they can overfit
than VAEs. A simple reason for this may be that SPNs are less expressive than VAEs. As a hybrid of
the two, SP-VAE retains some of SPN’s robustness against overfitting.

Promising results for SP-VAE

SP-VAE’s best evaluated evidence on the test set (y-axis) is compared against that of other pure
models (x-axis) in Figure 7.3. If a point falls in the upper triangle, SP-VAE performed better.

1test evidence decay: defined as best evidence on test set minus evidence on test set after training has converged (No
early stopping)

7.1 Experiment 1: Main Evaluation 41

Bernoulli Gaussian Binomial

VA
E

(a) (b) (c)

sh
al

lo
w

SP
N

(d) (e) (f)

de
ep

SP
N

(g) (h) (i)

Fig. 7.3 (Best viewed in color) Comparing the best test evidence of SP-VAE (green) against that
of VAE (red), shallowSPN (orange), and deepSPN (blue) on 102 CALTECH101 datasets. Area
of scatterpoint indicates size of dataset. If a scatterpoint falls in the upperright triangle, SP-VAE
outperform the model is compared to on the x-axis. Many deepSPN models did not converge as
training took too long. Except for (a) and (d), all figures show that SP-VAE is superior.

42 Experiments

In the Gaussian and Binomial case of Figure 7.3, almost all 102 scatterpoints fell in the upper
right triangle, indicating that SP-VAE is the best architecture.

SP-VAE outperformed SPNs as expected. On a 5x5 patch, the shallowSPN leaves are mixtures of
7 diagonal distributions, while the deepSPN leaves over the same patch are mixtures of 2 subSPNs.
The SP-VAE leaves over the same patch are 2 layer MLP density networks which, without proof, I
assume is more expressive than the others.

That SP-VAE outperformed VAEs is a new unintuitive finding, because if SPNs are less expressive
than VAEs, then the hybrid SP-VAE should also be less expressive. To test this intuition, side
experiments tested VAEs with increased model capacity, and again surprisingly, that increased
theoretical flexibility translated to worse test outcomes. Perhaps one reason why SP-VAEs are
superior is that it removed unnecessary modelling power but retains the ability to model local image
correlations. In a simpler optimization landscape, the optimizer has a better chance of finding a good
local optimum.

SP-VAE’s comparative advantage seems to lie in smaller datasets. In Figure 7.3, scatter points
with lower test evidence tends to lie in SP-VAE’s favor (upper left triangle). An exception to this trend
seems to be Bernoulli and Gaussian deepSPNs, where higher scoring datasets are in SP-VAE’s favor.
But this is because deepSPN models ended training before convergence as training took too long.

Anomaly

However, in the Bernoulli case, SP-VAE performs poorer than VAEs. This is puzzling and may be
due to two reasons:

First, pixels throughout a binary image are globally correlated. In a 5x5 patch, it is difficult to
predict what one pixel is given the other 24; information from other patches is needed. Consequently,
the modelling power between patches is important.

Second, SP-VAE does not have sufficient modelling power between its leaves. As seen in the Table
7.1, SP-VAE stands out for placing most of its modelling power in the leaves (~97% of parameters
are VAE parameters), while deepSPN and shallowSPN places most of their modelling power in the
SPN structure (~96% of parameters are SPN sum node weights). As demonstrated in the Gaussian
and binomial case, weaker interactions between leaves need not be a fatal feature. Instead this
suggests that the ratio of modelling power within leaves and between leaves should be tuned. In this
binary CALTECH101 dataset, perhaps more modelling power than necessary have been given to the
Bernoulli VAE leaves.

Deep SPNs are the worst

In all distribution types, deepSPNs fared the worst, and by a wide margin. Perhaps I had used
insufficient number of leaves per region. But multiple authors [32, 14] also noted difficulty in training
deep SPNs by gradient methods, a difficulty they attributed to the gradient diffusion problem.

7.2 Experiment 2: Learning without Inference Networks 43

(a) Bernoulli Density Net (b) Gaussian Density Net (c) Binomial Density Net

Fig. 7.4 Training Curves

(a) Bernoulli Density Net (b) Gaussian Density Net (c) Binomial Density Net

Fig. 7.5 Comparing best scores of SP-VAE vs SP-DensityNet

While SPNs are very deep indeed (18 levels at its deepest in our models), I doubt if vanishing
gradients may be the cause. First because training was done via by ADAM which adapts learning rates.
Second because there are also many “residual connections"[18] between nodes of vastly different
depths. Investigating the poor performance of deep SPN is left for future work.

7.2 Experiment 2: Learning without Inference Networks

7.2.1 Motivations

In SP-VAEs, the VAE leaves are tiny. They only need to model a subset of the problem scope, and
hence their latent variable need not be high-dimensional — perhaps only one or two. This begs the
question if the VAE leaves’ marginal likelihood (Eq 3.1) is intractable in the first place.

By breaking a large VAE into many small VAEs, SP-VAE shifts the cost of marginalization from
the exponent to the multiplicative constant. I hypothesize that SP-VAE can still train without the
inference networks of the VAEs. The resulting model is called SP-DensityNet.

44 Experiments

7.2.2 Results and Discussions

SP-DensityNet can work

As seen in Figure 7.5, SP-DensityNet tends to achieves higher evidence than SP-VAE. This is expected
because the former computes an estimate of the log marginal likelihood while the latter computes a
lower bound.

Interestingly, in the case of Bernoulli and Gaussian SP-VAEs, the ELBO is close to the true log
likelihood. On average, SP-DensityNet is only 4 nats higher than SP-VAE in the Bernoulli case,
and 100 nats higher in the Gaussian case. This begs the question of what affects the bound gap
between SP-VAE and SP-DensityNet. Preliminary experiments showed that the tightness of the
bound is largely determined by the number of importance weighted samples K in the ELBO objective.
Increasing the dimension of latent variable of the VAE leaves from 2 to 5 does little to worsen to
bound gap.

An anomaly is the binomial case, where the SP-DensityNet evidence can be many thousands of
nats higher than that of VAE. This is very curious and it suggests either that importance weighted
ELBO of Binomial VAE is still not tight. Having a tight ELBO is important because ultimately we
would like to optimize our generative models according to the marginal likelihood.

This experiment demonstrates that SP-VAE does not need an inference network to train. If the
individual tiny inference networks can be removed, perhaps they also can be aggregated. A single
large inference network that simultaneously predicts the posterior over latent variables for all density
network leaves may be more convenient if downstream applications require an encoder.

In the larger context of variational inference, this result is promising because training density
networks is fundamentally unscalable with higher dimensional latent variables. It was only recently
that VAEs were proposed as a tractable and scalable way of training them. SPNs offer an alternative
divide and conquer approach towards density network training and inference.

SP-DensityNet vs SP-VAE

If SP-DensityNet gives higher evidences and computes exact likelihood, should it always be preferred
over SP-VAE? The answer depends on the application. If only density estimates are required, then
SP-DensityNet is preferred.

SP-DensityNet has the additional advantage of simplicity. This is important since VAEs may suffer
from the problem of posterior mismatch and recent literature has proposed various modifications to the
inference network (for example [39, 20]) to improve the quality of the approximate posterior. Without
an inference network, not only do we avoid posterior mismatch, we also avoid making unnecessary
design choices and worrying about the influence of those choices on the quality of the approximate
posterior. As a bonus, the training will converge faster as well.

However, the inference network is still needed if we need to approximately sample the mode of
the VAE distribution (argmax operation), or perform representation learning.

7.3 Experiment 3: Data Efficiency 45

Bernoulli Gaussian Binomial

(a) (b) (c)

Fig. 7.6 Test gap (train evidence - test evidence) at peak test performance of SP-VAE vs VAE on
CALTECH101 datasets.

7.3 Experiment 3: Data Efficiency

7.3.1 Motivation

In experiment 1, SP-VAE tends to do better than VAE on smaller datasets, and par with VAE on larger
datasets. Also, when examining the the models training curves, it is hard to miss the fact that the gap
between the training and test evidence tends to be smaller in SP-VAE than VAEs, and even smaller
still in deepSPNs compared to SP-VAE.

Figure 7.6 shows a scatterpoint of test gaps (train evidence - test evidence) at peak test performance
of SP-VAE (y-axis) against VAE (x-axis). The size of the scatter point indicates the size of the dataset.
If a scatterpoint falls in the lower right triangle, SP-VAE has a smaller test gap.

These observations suggest that perhaps when SPNs are combined with VAEs, the SPNs have
a regularizing effect on the VAE leaves which constrains the extent to which they can overfit. To
investigate this intuition, I compared the best performances of three models (shallowSPN, SP-VAE,
and VAE) on MNIST as the amount of training data is varied.

7.3.2 Setup

I selected the free hyperparameters of each models such that all models have approximately the same
number of parameters. They are detailed in Table 7.2.

Amount of training data is varied by taking a randomly selected fraction (data f rac) of the 60,000
images in the original MNIST dataset. Because the reduced datasets are not consistent across models,
the experimental sweep through data f rac is repeated at least twice to ensure that results are consistent
and reproducible.

7.3.3 Results and Discussions

Figure 7.7 shows the best test evidence on MNIST of shallowSPN, SP-VAE, and VAEs against pruning
fraction. The higher the test evidence, the better the performance.

46 Experiments

Table 7.2 Experiment 3 Model Size

Model Code
Region Graph SPN VAE # Weights

coarsegrain sumK leafK nh nz total leaves spn

M2 / M10 4 4 4 - - 203264 3136 200128
M3 / M11 4 2 2 16 2 143032 117992 25040
M4 / M12 - - - 71 98 143548 - -

M6 4 4 4 - - 206400 6272 200128
M7 4 2 2 16 2 169688 144648 25040
M8 - - - 61 98 170856 - -

Bernoulli Gaussian Binomial

(a) (b) (c)

Fig. 7.7 (Best viewed in color) Test evidence of 9 different models on MNIST as amount of training
data is varied

As an aside, Figure 7.8 presents and compares the fastest training and testing curves of shallowSPN,
SP-VAE, and VAE. All comparable models presented here were trained with the same batch size,
while the learning rate was tuned by grid search.

SPNs are robust to low resource data

In Figure 7.7, the test evidence of all three model architectures all show the same logarithmic style of
performance saturation as the amount of training data grows. However, SPNs are the first to reach
saturation point, beyond which additional training examples do not improve test evidence; VAEs are
the last to reach saturation. The marginal gain from additional training examples is also minimal in
SPNs, while VAEs stand to gain the most. Perhap unsurprising for a hybrid, SP-VAE’s saturation
point and marginal gain are intermediate between SPNs and VAEs.

In an online learning setting where the amount of training data grows incrementally, SP-VAE will
be advantageous over VAE during the early stage of few training examples. Unlike SPNs, this does
not come at a cost of worse performance in the later stages when there are more training examples.

7.3 Experiment 3: Data Efficiency 47

Bernoulli Gaussian Binomial

Tr
ai

n

(a) (b) (c)

Te
st

(d) (e) (f)

Fig. 7.8 (Best viewed in color) Fastest converging training and test curves of 9 different models on
MNIST. Notice the green curve.

Aside: SP-VAE converges faster than VAEs

Initially, I wanted to investigate if datasets with fewer examples allow for higher learning rates and
larger batch sizes, and thereby allowing faster convergence, but I noticed a more fundamental trend
— the different model architectures consistently show different convergence rates. The difference is
consistent across datasets pruned to various sizes.

In Figure 7.8, SP-VAE converged the fastest in all cases. At first sight, such a comparison between
models of different complexities may not be fair — a model may be increasing its training evidence
faster but that may be due to it converging to a higher evidence. But the consistency of its fast
convergence irregardless of its converged training likelihood suggests that there may be some form of
training acceleration implicit in SP-VAE.

To seek more experimental verification of SP-VAE’s convergence speed, I looked back at Experi-
ment 1’s results. VAEs may sometimes increase its training evidence faster than SP-VAE, but SP-VAE
invariably converged earlier than VAEs. In the binomial case, deepSPNs converged the fastest.

If SP-VAE converges faster than VAEs, the cause is not clear. Perhaps one reason is that the depth
offered by the SPN to the VAE leaves created an implicit training acceleration. This is a recent insight
by Sanjeev et al [3] into the role of depth in deep learning. As unintuitive as it sounds, [3] showed that
increasing the depth in linear models with Lp regularization where p > 2 leads to faster convergence.
Linear models were chosen because increasing their depth only increases the number of parameters
in the model but not the model complexity. The authors noted that depth in non linear models may

48 Experiments

Bernoulli Gaussian Binomial

Tr
ai

n

(a) (b) (c)

Te
st

(d) (e) (f)

Fig. 7.9 (Best viewed in color) Training and test curves of 12 different models on CALTECH101-18.
Notice the green curve

have the same effect but it is not guaranteed. Ever increasing depth is also not ideal as the vanishing
gradient problem starts to affect training.

Another reason may be the divide-and-conquer nature of SP-VAE. When a large VAEs is broken
into smaller pieces and combined exactly through an SPN, the variance in the ELBO estimate has
smaller variances. With less noise in the gradients, fewer gradient updates are needed. Additionally,
since the weights in a mixture of VAEs are “more decoupled" than the weights in a single large VAE,
optimization of the former may be an easier problem. To test this intuition, a future experiment may
compare SP-VAEs against VAEs as the number of pixels in the image problem scales up.

7.4 Experiment 4: Ratio of SPNs to Leaves

7.4.1 Motivation

A major role of the SPN is to learn the correlations between its leaves. In previous experiments,
SP-VAE were constructed with most of its modelling power is in its leaves. Could better performance
be obtained if there were more modelling power in the SPN?

In this experiment, I compare how SP-VAE, and shallowSPN’ performances on SVHN change as
the ratio between the number of sum node weights and number of VAE weights is varied.

7.4 Experiment 4: Ratio of SPNs to Leaves 49

Table 7.3 Experiment 4 model sizes : SPVAE

Distribution Type
Parameters # Weights

% spn
K nh leaves spn total

Bernoulli
Binomial

2 31 200576 1576 202152 0.78
3 22 195456 5292 200748 2.64
4 17 191488 12512 204000 6.13
5 13 176000 24400 200400 12.18
6 10 158208 42120 200328 21.03
7 7 126784 66836 193620 34.52
8 5 103424 99712 203136 49.09
9 3 72000 141912 213912 66.34

Gaussian

2 35 308864 1576 310440 0.51
3 25 308736 5292 314028 1.69
4 19 300288 12512 312800 4.00
5 15 288960 24400 313360 7.79
6 12 273024 42120 315144 13.37
7 9 236544 66836 303380 22.03
8 7 210432 99712 310144 32.15
9 5 171648 141912 313560 45.26
10 3 120960 194600 315560 61.67

7.4.2 Setup

For SP-VAE, there are two free parameters: 1) nh is the number of hidden nodes per layer and 2)
K = Klea f = Ksum is the number of sum nodes or leaf nodes per region. Similarly there are two free
parameters for shallowSPN: 1) Ksum is the number of sum nodes per region while 2) Klea f is the
number of leaf nodes per leaf region.

The free parameters of SP-VAE and shallowSPN were varied while keeping the overall model
size approximately constant:

7.4.3 Results and Discussions

Figure 7.10 presents the test evidence of shallowSPN and SP-VAE the ratio of number of SPN sum
node weights to number of leaf parameters is varied. As part of hyperparamter tuning, training was
done with three learning rates, 0.1 (green), 0.01 (blue), and 0.001 (orange). Figure 7.10 presents the
results of these learning rate tuning attempts with a standard batch size of 100.

Ratio affects optimal learning rate of SP-VAE

In Figure 7.10, the Gaussian and binomial case of SP-VAE suggest that there is no single optimal
learning rate for SP-VAE across all range of sum nodes to leaf ratios. If a greater fraction of weights

50 Experiments

Table 7.4 Experiment 4 model sizes : shallowSPN

Distribution Type
Parameters # Weights

% spn
Klea f Ksum leaves spn total

Bernoulli
Binomial

53 2 54272 146008 200280 72.90
44 3 45056 161748 206804 78.21
37 4 37888 167744 205632 81.57
31 5 31744 167920 199664 84.10
27 6 27648 178200 205848 86.57
22 7 22528 175196 197724 88.61
18 8 18432 180352 198784 90.73
14 9 14336 186192 200528 92.85
10 10 10240 194600 204840 95.00
5 11 5120 198748 203868 97.49

Gaussian

59 2 120832 179416 300248 59.76
49 3 100352 197388 297740 66.30
43 4 88064 218432 306496 71.27
37 5 75776 224080 299856 74.73
33 6 67584 240408 307992 78.06
28 7 57344 239708 297052 80.70
24 8 49152 247168 296320 83.41
21 9 43008 266328 309336 86.10
17 10 34816 273560 308376 88.71
13 11 26624 283228 309852 91.41
8 12 16384 285408 301792 94.57
3 13 6144 296192 302336 97.97

7.4 Experiment 4: Ratio of SPNs to Leaves 51

Bernoulli Gaussian Binomial

SP
-V

A
E

(a) (b) (c)

sh
al

lo
w

SP
N

(d) (e) (f)

Fig. 7.10 Test evidence on SVHN against fraction of SPN parameters in sum nodes

are in sum nodes, a larger learning rate is better. This agrees with observations from experiment 1
that SPNs a greater magnitude of learning rate compared to VAEs, and gives further motivation to
developing hybrid training methods for SP-VAE.

Balanced ratios give higher test performance

Intuitively, one would expect that SP-VAE would perform poorly if most of its parameters are in
its leaves or SPN sum nodes only. Indeed, this inversed U shape is observed in the Gaussian and
binomial case of SP-VAE. Presumably it is not observed in the other cases because the sweep of sum
node weights fraction did not pass the optimal ratio and enter the opposite regime.

In general, the optimal ratio of sum node weights to leaf weights for SP-VAE seems to lie
near 50:50. An exception to this trend is Bernoulli SP-VAE, reflecting the same anomaly found in
experiment 1. This suggest that binary datasets are fundamentally challenging for the divide and
conquer approach of SP-VAE.

Chapter 8

Further Work

“Maybe we could try..."

In the process of defining, implementing and evaluating SP-VAE, there were multiple ideas to
explore which were not prioritized in this thesis. This section will summarize these ideas.

8.1 Learning and Inference Methods

8.1.1 Gradient-based Argmax for SPNs and SP-VAEs

An MPE inference algorithm for selective SPNs is often employed on non-selective SPNs to efficiently
obtain an approximate optimum.

After obtaining an approximate MPE estimate, perhaps the estimate can be further optimised
to the true MPE solution using gradient-based optimimzation. Differentiating with respect to the
input X is similar to approaches used in generating adversarial examples [42]. If X is discrete, this
gradient-based approach is still possible by first relaxing the discrete variable onto the continuous
simplex using the concrete distribution [24, 19].

Similarly in VAE leaves, assuming that the latent variables of the leaves are low-dimensional, a
Monte Carlo estimate of the marginal likelihood function p̃ can be constructed and differentiated with
respect to the input X .

p̃(X = x) =
1
N

N

∑
i=1

pθ (X = x|Z = zi) , zi ∼ pθ (z) (8.1)

The quality and costs of the gradient-based argmax should be analyzed.

8.1.2 Hybrid EM + Gradient-based Parameter Learning of SP-VAE

In a recent preprint, [31] showed that EM algorithm converges in much fewer iterations than gradient
methods on SPNs. So an hybrid training algorithm could possibly be to interleave EM algorithm for
the SPN and stochastic gradient methods for the VAE.

54 Further Work

8.1.3 Different Learning Rates SP-VAE

A single learning rate was tuned when optimizing SP-VAE. However, since it is found that SPNs and
VAEs have fundamentally different optimal learning rates, perhaps future optimization of SP-VAE
should tune two separate learning rates.

8.2 Effects to Investigate

8.2.1 Regularization

In this thesis, L1 regularization was used on the sum node weights. However, beyond the intuitive
effect that it favors balanced probabilities, little else is known. Is L1 the best way to regularize sum
nodes? Or could a concrete distribution prior [24] be placed on the sum node weights.

8.2.2 Vanishing Gradients

As mentioned in the discussion of deepSPN, multiple authors [32, 14] have reported difficulties of
training deep SPNs with gradient-based methods, and the reason is often attributed to the vanishing
gradient problem. Yet deepSPNs have many residual connections, which are supposed to alleviate
the vanishing gradient problem. An experimental verification of the vanishing gradient problem can
clarify this doubt.

8.3 Architectures

8.3.1 Shared SP-VAE

The SP-VAE used in this thesis had coarsegrain lengthscale c that was an integer factor of the
image dimensions. This meant that PD-SPN will decompose the image down to “superpixels". All
superpixels will be disjoint and of the same size of c× c. However, if the image dimensions are not
multiples of the coarsegraining length, then leaf scopes are of different sizes, while some leaf scopes
have overlapping random variables.

It seems almost costly that some random variables are repeated in multiple leaf scopes. Instead of
design an SPN architecture or coarsegraining policy that minimises overlap in leaf scopes, we could
design an SPN architecture that maximizes the overlap in leaf scopes and instead share the weights of
the VAEs that implements the leaf nodes in the leaf scopes. This motivates us to propose a Shared
SPN architecture.

The benefit of sharing the weights of a VAE is that a single (or multiple) VAEs of size nxm can be
trained on NxM images, where n < N and m < M. When a high modelling power leaf is mixed with
a low modelling power leaf, the likelihood of data can be maximized by placing the high powered
leaf on the complicated foreground, and the less complicated leaves on the uninteresting background.

8.3 Architectures 55

Fig. 8.1 Bright colored regions will be modelled by a shared VAE. Light colored regions can be
implemented by diagonal distributions.

Fig. 8.2 Synthetic problem for shared SP-VAE.

If there are multiple VAEs, perhaps the model could also learn different classes of images in an
unsupervised way.

To illustrate what I mean, consider a reduced 14×14 MNIST with on a 28×28 Gaussian noise
background in Figure 8.2. The expectation for shared SP-VAE is not only to learn how to generate
the 14 x 14 MNIST digits given 28× 28 training images, but also learn their classes and location
within the training image, all in an unsupervised way. A recent paper [13] has been exploring a similar
problem with a synthetic dataset called Multi-MNIST.

56 Further Work

(a) SPN (b) VAE (c) SPVAE (d) SPVAE for representa-
tion learning?

Fig. 8.3 Graphic Models. Y is a multivariate discrete variable related to the SPN sum nodes. Z is
a multivariate continuous variable related to the VAE. θ are the parameters of the VAE. ρ are the
categorical distributions of the SPN sum nodes. µ are the parameters of the traditional SPN leaves.

8.3.2 Representation Learning

Instead of sharing the entire VAE, in the current superpixel architecture, the latent variables of the
SPN may also be shared improve entanglement between the VAE leaves. VAE leaves entangled
through their latent variables may have greater difficulty performing inference. This may be where a
shared global inference network may be helpful.

Since every VAE leaf only models a smaller sub-scope of the problem, it would be interesting to
investigate if this encourages disentangled latent representations.

8.3.3 SP-NADEs

SP-VAE was motivated by the observation that the leaves of an SPN needs, in its most basic require-
ments, to be a distribution with tractable likelihood. Besides VAEs, there are also other neural network
based density estimator like Neural Autoregressive Density Estimator [38]. On images, autoregressive
density estimation methods tend to read the image pixel by pixel, and row by row. Perhaps if NADE
were used as SPN leaves, they could offer SPNs its expressiveness in density estimation, while SPNs
could offer NADE training and inference benefits by its ability to “divide and conquer" a problem.

8.4 Engineering

8.4.1 Tensorial Decomposition Formulation of PD-SPN

At the moment, deep learning frameworks are not well suited to implement SPNs which have numerous
but cheap operations. The tensorial decomposition formulation of PD-SPN, which makes sums and
products implicit within a tensordot operation, is a promising way to more compactly define the
operations in an PD-SPN.

8.4 Engineering 57

To prevent underflow, likelihood computations have to be done in the log domain and unfor-
tunately, log_tensordot is not yet supported in any deep learning frameworks. Writing a C++
log_tensordot kernel for TensorFlow is a possible solution.

Once SPNs have better hardware and software support, research on SPN can iterate faster and
experiment with more complex and heterogenous mix of leaves.

Chapter 9

Summary and Conclusions

“SP-VAEs are promising!"

This thesis proposed a hybrid combination between SPNs and VAE, referred to as SP-VAE, and
successfully evaluated it against pure SPNs and vanilla VAEs on the problem of density estimation of
CALTECH101 datasets.

SP-VAEs were clearly superior over pure SPNs due to greater model complexity, and except for
binarized datasets, SP-VAE showed competitive, and if not superior results than VAEs on all datasets.
By keeping VAEs small and composing more of them with an SPN as the problem scope grows, I was
able to train SP-VAEs without inference networks. Compared to a single large VAE, a composition of
many smaller VAEs has the benefits of faster convergence and greater robustness against overfitting.

While this thesis shows that SP-VAEs are promising, there is scope for more work to be done to
further demonstrate the credibility and viability of SP-VAE as a model:

On the theoretical front, SP-VAE’s inference algorithm may be improved upon by sophisticated
Monte Carlo maximum likelihood algorithms. The insight I found that SP-VAE requires different
learning rates for its SPN and VAE parts motivates future hybrid parameter learning algorithms.

On the evaluation front, a metric other than the best test likelihood could be used to more
convincingly demonstrate SP-VAE’s potential. The relative benefits of SP-VAEs over VAEs as the
problem difficulty scales up has also yet to be investigated.

On the application front, the machine learning community is currently less interested in density
estimation and more in learning an interpretable representation of data in an unsupervised fashion — a
task considered as one of the “holy grails" of machine learning. SP-VAE could be studied along these
lines since they naturally decompose dimensions of a latent variable to subscopes of the problem.

Looking beyond this thesis and SP-VAE, the machine learning community has strong interests in
combining probabilistic graphical models with deep learning in order to create a balanced solution
that capitalizes on the strengths of both fields. This thesis evaluated one way in which this can be
done between SPNs and VAEs, with promising results. Perhaps SPN holds potential for introducing
structure, and ultimately tractable inference, into other deep learning models.

References

[1] Adel, T., Balduzzi, D., and Ghodsi, A. (2015). Learning the structure of sum-product networks
via an svd-based algorithm. In UAI, pages 32–41.

[2] Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276.

[3] Arora, S., Cohen, N., and Hazan, E. (2018). On the optimization of deep networks: Implicit
acceleration by overparameterization. CoRR, abs/1802.06509.

[4] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

[5] Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519.

[6] Cheng, W.-C., Kok, S., Pham, H. V., Chieu, H. L., and Chai, K. M. A. (2014). Language
modeling with sum-product networks. In Fifteenth Annual Conference of the International Speech
Communication Association.

[7] Choi, A. and Darwiche, A. (2017). On relaxing determinism in arithmetic circuits. CoRR,
abs/1708.06846.

[8] Darwiche, A. (2001). Decomposable negation normal form. J. ACM, 48(4):608–647.

[9] Darwiche, A. (2003). A differential approach to inference in bayesian networks. Journal of the
ACM (JACM), 50(3):280–305.

[10] Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In Shawe-Taylor,
J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 24, pages 666–674. Curran Associates, Inc.

[11] Dennis, A. and Ventura, D. (2012). Learning the architecture of sum-product networks using
clustering on variables. In Advances in Neural Information Processing Systems, pages 2033–2041.

[12] Dennis, A. and Ventura, D. (2015). Greedy structure search for sum-product networks. In
Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages
932–938. AAAI Press.

[13] Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., and Hinton, G. E. (2016).
Attend, infer, repeat: Fast scene understanding with generative models. CoRR, abs/1603.08575.

[14] Gens, R. and Domingos, P. (2012). Discriminative learning of sum-product networks. In
Advances in Neural Information Processing Systems, pages 3239–3247.

[15] Gens, R. and Pedro, D. (2013). Learning the structure of sum-product networks. In International
conference on machine learning, pages 873–880.

62 References

[16] Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). MADE: masked autoencoder
for distribution estimation. CoRR, abs/1502.03509.

[17] Hardt, M., Recht, B., and Singer, Y. (2015). Train faster, generalize better: Stability of stochastic
gradient descent. CoRR, abs/1509.01240.

[18] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385.

[19] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144.

[20] Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving variational inference with
inverse autoregressive flow. CoRR, abs/1606.04934.

[21] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

[22] Lowd, D. and Rooshenas, A. (2013). Learning markov networks with arithmetic circuits. In
Artificial Intelligence and Statistics, pages 406–414.

[23] Mackay, D. J. and Gibbs, M. N. (1999). Statistics and neural networks. chapter Density
Networks, pages 129–145. Oxford University Press, Inc., New York, NY, USA.

[24] Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712.

[25] Peharz, R. (2015). Foundations of sum-product networks for probabilistic modeling. PhD thesis,
PhD thesis, Graz University of Technology.

[26] Peharz, R., Geiger, B. C., and Pernkopf, F. (2013). Greedy part-wise learning of sum-product
networks. In Proceedings of the 2013th European Conference on Machine Learning and Knowledge
Discovery in Databases - Volume Part II, ECMLPKDD’13, pages 612–627, Berlin, Heidelberg.
Springer-Verlag.

[27] Peharz, R., Gens, R., and Domingos, P. (2014a). Learning selective sum-product networks. In
LTPM workshop.

[28] Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. (2017). On the latent variable interpreta-
tion in sum-product networks. IEEE transactions on pattern analysis and machine intelligence,
39(10):2030–2044.

[29] Peharz, R., Kapeller, G., Mowlaee, P., and Pernkopf, F. (2014b). Modeling speech with sum-
product networks: Application to bandwidth extension. In ICASSP, pages 3699–3703.

[30] Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos, P. (2015). On theoretical properties
of sum-product networks. In Artificial Intelligence and Statistics, pages 744–752.

[31] Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., and Ghahramani,
Z. (2018). Probabilistic deep learning using random sum-product networks. arXiv preprint
arXiv:1806.01910.

[32] Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages
689–690. IEEE.

References 63

[33] Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M., Wood, F., and Teh, Y. W.
(2018). Tighter variational bounds are not necessarily better. arXiv preprint arXiv:1802.04537.

[34] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

[35] Rooshenas, A. and Lowd, D. (2014). Learning sum-product networks with direct and indirect
variable interactions. In International Conference on Machine Learning, pages 710–718.

[36] Sharir, O., Tamari, R., Cohen, N., and Shashua, A. (2016). Tensorial mixture models. CoRR,
abs/1610.04167.

[37] Theis, L., Oord, A. v. d., and Bethge, M. (2015). A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844.

[38] Uria, B., Côté, M.-A., Gregor, K., Murray, I., and Larochelle, H. (2016). Neural autoregressive
distribution estimation. The Journal of Machine Learning Research, 17(1):7184–7220.

[39] van den Berg, R., Hasenclever, L., Tomczak, J. M., and Welling, M. (2018). Sylvester normaliz-
ing flows for variational inference. arXiv preprint arXiv:1803.05649.

[40] van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016a). Pixel recurrent neural
networks. CoRR, abs/1601.06759.

[41] van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K.
(2016b). Conditional image generation with pixelcnn decoders. CoRR, abs/1606.05328.

[42] Yuan, X., He, P., Zhu, Q., Bhat, R. R., and Li, X. (2017). Adversarial examples: Attacks and
defenses for deep learning. CoRR, abs/1712.07107.

[43] Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. (2017). Advances in variational inference.
CoRR, abs/1711.05597.

[44] Zhao, H., Melibari, M., and Poupart, P. (2015). On the relationship between sum-product
networks and bayesian networks. CoRR, abs/1501.01239.

Appendix A

L1 Regularization on SPN Sum Nodes

In this appendix, I demonstrate through an example why L1 regularization of sum node weights favors
balanced probabilities

A.1 Example of L1 Regularization

Consider a set of binary observations D = {0,0,1,0,0,1,0, ...1} from a random bernoulli distributed
random variable X . We wish to infer the bernoulli parameter ρ in a bayesian framework. But instead
of using a Beta distribution as a prior on ρ , we will reparameterise ρ in terms of w

ρ = f (w) =
exp(w)

1+ exp(w)

and place a laplace prior on w, which has the form:

p(w) =
exp(−β |w|)∫

∞

−∞
exp(−β |w|)dw

=
β

2
exp(−β |w|) (A.1)

According to the bernoulli distribution, the likelihood of observing D is

p(D |w) =
N

∏
i=1

(
exp(w)

1+ exp(w)

)xi
(

1
1+ exp(w)

)1−xi

(A.2)

Simplifying the likelihood using logarithms,

log p(D |w) =
N

∑
i=1

[xiw− log(1+ exp(w))] (A.3)

= nw−N log(1+ exp(w)) (A.4)

66 L1 Regularization on SPN Sum Nodes

If we solve for the maximum likelihood estimate (MLE), we get the commonsense answer of ρMLE = n
N

argmax
w

log p(D |w) =⇒ d
dw

log p(D |w) = 0 (A.5)

n−NρMLE = 0 (A.6)

Now, the posterior of w is given by Bayes’ rule:

log p(w|D) = log p(D |w)+ log p(w)− log p(D) (A.7)

= nw−N log(1+ exp(w))−β |w|+ constant (A.8)

If we solve for the maximum a posteriori (MAP) estimate, we discover the laplace prior on w
encourages more balanced probabilities.

argmax
w

log p(w|D) =⇒ d
dw

log p(w|D) = 0 (A.9)

n−Nρ−β = 0 if ρ > 0.5 (A.10)

n−Nρ +β = 0 if ρ < 0.5 (A.11)

ρ =


n−β

N = ρ > 0.5
n+β

N = ρ < 0.5
(A.12)

Here, ρ is pushed away from the MLE estimate toward 0.5.

A.2 Aside: Change of Variables on Laplace Prior

In the above example, significant amount of derivation is needed to answer the question of whether
the L1 regularization favours balanced or sparsed probabilities. Perhaps the question can be more
intuitively answered if we transform the prior on weight space into a prior on the simplex. Since ρ

and w are related by a smooth invertible function f , this can be done via a change of variables:

p(ρ)dρ = p(w)dw (A.13)

p(ρ) = p(w)
dw
dρ

(A.14)

=
β

2
exp(−β |w|)(1+ exp(w))2

exp(w)
(A.15)

=
β

2
exp

(
−β

∣∣∣∣log(
ρ

1−ρ
)

∣∣∣∣) ρ/(1−ρ)

ρ2 (A.16)

(A.17)

A.3 Aside: MAP Estimation in Simplex Space 67

Fig. A.1 Laplace prior in w space p(w) for different β

Fig. A.2 Laplace prior in w space for different β , after change of variables to ρ

p(ρ) preserves the kink at w = 0. But now for small values of β , the maximum density is an
undefined singularity at ρ = 0 or ρ = 1. This makes sense as many large values of w corresponds to
almost the same ρ . Probability mass contained in vast regions of w is then compressed into a tiny
region of ρ . Only when β > 1 will the laplace probability density decay faster than the compression
effect.

A.3 Aside: MAP Estimation in Simplex Space

Now, p(ρ) and p(w) represent the same prior distribution over the same uncountably many Bernoulli
models. However, they are have fundamentally different density types. p(ρ) has closed support while
p(w) has infinite support. p(w) has no singularities while p(ρ) may. Consequently MAP inference in
ρ space is different from MAP inference in w space.

argmax
ρ

p(ρ|D) ̸= f (argmax
w

p(w|D))

This suggests that MAP inference is sensitive to the parameterization of priors and likelihoods.
The only time when parameterization does not matter is when we are performing full bayesian
inference.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Research Aims and Scope
	1.3 Overview
	1.4 Notation

	2 Sum Product Networks
	2.1 Historical Development
	2.1.1 Definitions

	2.2 Generalized SPN
	2.2.1 Formal Definition

	2.3 SPN Operations
	2.3.1 Sampling
	2.3.2 Complete observation
	2.3.3 Partial observation
	2.3.4 Marginalizing
	2.3.5 Conditioning
	2.3.6 Argmax

	2.4 Learning SPN
	2.4.1 Parameters
	2.4.2 Structure

	2.5 Poon Domingos architecture
	2.5.1 Description
	2.5.2 Network size
	2.5.3 Equivalence to tensorial decomposition

	3 Variational Autoencoder
	3.1 What is a VAE?
	3.2 Deriving the ELBO
	3.3 Importance weighted autoencoder

	4 SP-VAE
	4.1 VAEs as SPN leaves
	4.2 SP-VAE operations
	4.2.1 Sampling
	4.2.2 Complete Observation
	4.2.3 Partial Observation
	4.2.4 Imputation

	4.3 Learning SP-VAE
	4.3.1 Structure Learning
	4.3.2 Parameter Learning

	5 Methodology
	5.1 Choice of evaluation metric
	5.2 Choice of Dataset
	5.2.1 MNIST
	5.2.2 CALTECH101
	5.2.3 SVHN

	5.3 Processing for Distribution Type
	5.3.1 Binary random variable
	5.3.2 Continuous random variable
	5.3.3 Categorical random variable

	5.4 Controls for Fair Model Comparison
	5.4.1 Model Size
	5.4.2 Hyperparameters

	5.5 Choice of models
	5.5.1 Model Code
	5.5.2 Design Choices
	5.5.3 Model Sizes

	5.6 Experiment Objectives

	6 Implementation
	6.1 Choice of Deep Learning Framework
	6.2 Implementing SPNs in TensorFlow
	6.2.1 Log Domain
	6.2.2 Probability Vectors
	6.2.3 Regularization
	6.2.4 Computation Graph Size

	6.3 Implementing VAEs in TensorFlow
	6.4 Benchmark
	6.5 Training Models in TensorFlow
	6.5.1 Difficulties with Optimizing Variances
	6.5.2 Hyperparameter Tuning: Human in the Loop

	7 Experiments
	7.1 Experiment 1: Main Evaluation
	7.1.1 Motivation
	7.1.2 Setup
	7.1.3 Results and Discussions

	7.2 Experiment 2: Learning without Inference Networks
	7.2.1 Motivations
	7.2.2 Results and Discussions

	7.3 Experiment 3: Data Efficiency
	7.3.1 Motivation
	7.3.2 Setup
	7.3.3 Results and Discussions

	7.4 Experiment 4: Ratio of SPNs to Leaves
	7.4.1 Motivation
	7.4.2 Setup
	7.4.3 Results and Discussions

	8 Further Work
	8.1 Learning and Inference Methods
	8.1.1 Gradient-based Argmax for SPNs and SP-VAEs
	8.1.2 Hybrid EM + Gradient-based Parameter Learning of SP-VAE
	8.1.3 Different Learning Rates SP-VAE

	8.2 Effects to Investigate
	8.2.1 Regularization
	8.2.2 Vanishing Gradients

	8.3 Architectures
	8.3.1 Shared SP-VAE
	8.3.2 Representation Learning
	8.3.3 SP-NADEs

	8.4 Engineering
	8.4.1 Tensorial Decomposition Formulation of PD-SPN

	9 Summary and Conclusions
	References
	Appendix A L1 Regularization on SPN Sum Nodes
	A.1 Example of L1 Regularization
	A.2 Aside: Change of Variables on Laplace Prior
	A.3 Aside: MAP Estimation in Simplex Space

