
Manifold Hamiltonian Dynamics for
Variational Auto-Encoders

Yuanzhao Zhang

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Darwin College August 2018

I would like to dedicate this thesis to my loving parents . . .

Declaration

I, Yuanzhao Zhang of Darwin College, being a candidate for the MPhil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose.

Total word count: 9271

Yuanzhao Zhang
August 2018

Acknowledgements

I would like to acknowledge my supervisor Dr. Yichuan Zhang, who have been extremely
supportive throughout the project. He is very knowledgeable in this domain and has provided
me with clear and useful ideas. I am really grateful for his patience with me and I wouldn’t
have finished this project without him.

I would also like to thank Prof. Bill Byrne for his help and advice during my early stage at
Cambridge. It has been a great pleasure studying at one of the best engineering departments
in the world.

Last but not least, I would like to thank my beloved parents and my girlfriend Ting who have
always been there for me. My gratitude also goes to my friends and classmates at Cambridge.
You are the ones who make my experience at this lovely town unforgettable.

Abstract

Variational Auto-Encoder (VAE) has been a very successful generative model that is able
to compress high-dimension data into low-dimension latent space, as well as to generalize
to domain outside the training data and generate unseen new data. What is different about
VAE from the vanilla auto-encoder, is that VAE can model a continuous latent space using a
Gaussian distribution, whereas auto-encoder can only model a discrete latent space. This
enables us to sample from the latent space and generate variations different from the original
input.

However, VAE also has its limitations. One of the most significant one is that we assume
the latent distribution is a Gaussian, which is a over-simplified assumption because in reality
the true data distribution can be much more complicated. Since it was first introduced,
researchers have been trying to improve the vanilla VAE and we have seen some promising
results in the literature. In this dissertation, we try to address this issue by taking a specific
approach, which is to combine variational inference with Markov Chain Monte Carlo methods.
We examine the performance of Hamiltonian variational inference model by conducting
extensive experiments, and come up with a novel idea of Riemannian manifold variational
inference.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Dissertation organization . 2

2 Background 3
2.1 Variational Auto-Encoder . 3

2.1.1 Problem scenario . 3
2.1.2 Structure . 3
2.1.3 The variational lower bound . 4
2.1.4 The SGVB estimator . 4

2.2 Hamiltonian Monte Carlo . 5
2.2.1 Hamiltonian dynamics . 5
2.2.2 Proprieties of Hamiltonian dynamics 5
2.2.3 Link to the target distribution . 6
2.2.4 The Hamiltonian Monte Carlo algorithm 6

2.3 Riemannian Manifold Hamiltonian Monte Carlo 7
2.3.1 Riemannian manifold . 7
2.3.2 Exploiting Riemannian manifold concepts in MCMC 8
2.3.3 The Riemannian Manifold Hamiltonian Monte Carlo algorithm . . 8

3 Related Work 11
3.1 Importance Weighted Auto-Encoder . 11
3.2 Normalizing Flows . 11

3.2.1 Planar flow . 12

xii Table of contents

3.2.2 Radial flow . 12
3.2.3 Alternative flows . 13

3.3 Inverse Autoregressive Flow . 13

4 Methodology 15
4.1 Combining variational inference with MCMC 15

4.1.1 Basic idea . 15
4.1.2 ELBO of general MCMC variational inference 16
4.1.3 ELBO of Hamiltonian variational inference 17
4.1.4 ELBO of Riemann manifold Hamiltonian variational inference . . . 20
4.1.5 Theoretic comparison between models 23

5 Experiments 25
5.1 Hamiltonian variational inference (HVI) 25

5.1.1 Fully-connected neural network configuration 25
5.1.1.1 MNIST experiments . 26

5.1.1.1.1 Data preparation 26
5.1.1.1.2 Implementation details 26
5.1.1.1.3 Results . 27

5.1.2 Convolutional neural network configuration 31
5.1.2.1 MNIST experiments . 31

5.1.2.1.1 Data preparation 31
5.1.2.1.2 Implementation details 31
5.1.2.1.3 Results . 32

5.1.2.2 CIFAR-10 experiments 35
5.1.2.2.1 Data preparation 35
5.1.2.2.2 Implementation details 36
5.1.2.2.3 Results . 37

5.2 Riemannian Manifold Hamiltonian variational inference (RMHVI) 40
5.2.1 Fully-connected neural network configuration 40

5.2.1.1 MNIST experiments . 40
5.2.1.1.1 Data preparation 40
5.2.1.1.2 Implementation details 40
5.2.1.1.3 Results . 41

5.2.2 Convolutional neural network configuration 43
5.2.2.1 MNIST experiments . 43

5.2.2.1.1 Implementation problems 43

Table of contents xiii

6 Summary and Future Work 47
6.0.1 Summary . 47
6.0.2 Future work . 48

References 49

List of figures

2.1 Graphical representation of VAE model from [8]. 3
2.2 Graphical explanation of why reparameterization trick introduces differentia-

bility. Figure taken from [5]. 4
2.3 Comparison between HMC and RMHMC paths from a stochastic volatility

model investigated in paper [3]. 10

4.1 Graphical representation of HVI model with fully-connected networks. . . . 19
4.2 Graphical representation of HVI model with convolutional networks, yellow

layers represent convolutional/deconvolutional layers 19
4.3 Graphical representation of RMHVI model with fully-connected networks. 21

5.1 Comparison of MNIST image before and after binarization. 26
5.2 Comparison of ELBO between different models. 27
5.3 Comparison of ELBO between different latent variable size with 8 leapfrog

steps. 29
5.4 Comparison of ELBO between models with fixed/optimized step size with 1

leapfrog step. 29
5.5 Comparison of generated images between different models. 30
5.6 Comparison of ELBO between different models with convolutional layers. . 33
5.7 Comparison of ELBO between different latent variable size with 8 leapfrog

steps. 33
5.8 Comparison of generated images between different models. 34
5.9 Sample images from CIFAR-10 dataset. 36
5.10 Comparison of CIFAR-10 ELBO between convolutional VAE and convolu-

tional HVI. 38
5.11 Comparison of generated images between different models at different epoch. 39
5.12 Comparison of ELBO between different models, 1 leapfrog step. 42
5.13 Comparison of generated images between HVI and RMHVI. 42

xvi List of figures

5.14 Comparison of negative reconstruction error between HVI and RMHVI. . . 43
5.15 Graphical representation of RMHVI model with convolutional networks. . . 44

List of tables

4.1 Comparison between fully-connected HVI and vanilla VAE for MNIST. . . 23

5.1 Comparison between fully-connected HVI and vanilla VAE for MNIST. . . 27
5.2 Comparison between different latent variable size with 8 leapfrog steps. . . 28
5.3 Comparison between convolutional HVI and convolutional VAE. 35
5.4 Comparison between different latent variable size with 8 leapfrog steps. . . 35
5.5 Comparison between convolutional HVI and convolutional VAE. 38
5.6 Comparison between VAE, HVI and RMHVI with 1 leapfrog step. 41

Chapter 1

Introduction

1.1 Motivation

Approximating an intractable posterior distribution is one of the core problems in Bayesian
inference. With Bayes’s rule:

p(z|x) = p(z)p(x|z)
p(x)

=
p(z)p(x|z)∫
p(z)p(x|z)dz

(1.1)

we have a simple recipe for the posterior. However, the integration part in the denominator
is often intractable for practical problems. There are two major approaches to solve this
problem: variational inference and Markov chain Monte Carlo (MCMC) methods. Both
methods have their pros and cons.

Variational Auto-Encoder (VAE) [8] is a powerful generative model which utilizes
variational inference to learn the distribution of the given data. VAE has gained a lot of
research interests given its nice interpretability and overall good performance to model the
data distribution and generate new data. However, VAEs also suffer from several drawbacks,
one of them being the over-simplified posterior approximation. The vanilla VAE uses a
multivariate Gaussian with a diagonal covariance to approximate the true posterior, which
has a significant impact on the quality of inferences made using variational methods.

On the other hand, a popular alternative to variational inference is Markov chain Monte
Carlo (MCMC) method. Samples of the desired distribution can be obtained by running a
Markov chain for a number of steps. The more steps there are, the closer we can approach
the equilibrium distribution.

2 Introduction

1.2 Contribution

The central idea of the project is to combine variational inference with MCMC methods
to obtain the best of both worlds. More specifically, we aim to first fully examine the
performance of Hamiltonian variational inference (HVI), which was presented in paper [16],
then we try to come up with a novel idea of Riemannian Manifold Hamiltonian variational
inference (RMHVI) based on the principle of HVI. It incorporates Riemannian Manifold
Hamiltonian Monte Carlo (RMHMC) [3], which is a Hamiltonian Monte Carlo sampling
method defined on the Riemannian manifold and it is designed to resolve the shortcomings
of existing Monte Carlo algorithms when sampling from target densities that may be high
dimensional and exhibit strong correlations.

We augment the inference networks (both fully-connected and convolutional networks) in
vanilla Variational Auto-Encoders (VAE) with HVI and test the model on different datasets
to prove the effectiveness of combining variational inference with MCMC methods for image
generation tasks. We also implement RMHVI with VAEs by using fully-connected neural
network configuration and compare its performance with HVI.

1.3 Dissertation organization

The remaining chapters are organized as follows: chapter 2 provides the necessary back-
ground information on Variational Auto-Encoders, Hamiltonian Monte Carlo and Riemannian
Manifold Hamiltonian Monte Carlo. Chapter 3 introduces several related work in the current
literature. Chapter 4 presents the detailed algorithms and principles behind HVI and RMHVI.
Chapter 5 gives the experiment details including datasets, neural network configurations,
experiment results and analysis. Finally chapter 6 draws a conclusion of our work and
provide possible methodologies for future work.

Chapter 2

Background

2.1 Variational Auto-Encoder

2.1.1 Problem scenario

Given a dataset XXX = {xxx(i)}N
i=1 consisting of N i.i.d samples of variable xxx, if we assume the

data are generated in two steps: first a latent variable zzz is generated from a prior pθ (zzz);
then a variable xxx is generated from pθ (xxx|zzz). We are then interested in the parameters θ and
latent variable zzz which are usually hidden from us. Unfortunately, the posterior is usually
intractable, algorithms like expectation–maximization (EM) cannot be directly used here.

2.1.2 Structure

A graphical representation of VAE is shown in Figure 2.1. Solid lines denote pθ (zzz) and
pθ (xxx|zzz), which are the generative section of VAE. Dashed lines denote qφ (zzz|xxx), which is the
variational approximation to the true posterior. During training, the parameters θ and φ are
jointly learned.

Fig. 2.1 Graphical representation of VAE model from [8].

4 Background

2.1.3 The variational lower bound

The marginal likelihood for each individual datapoint xxx(i) can be written as:

log pθ (xxx(i)) = DKL(qφ (zzz|xxx(i))||pθ (zzz|xxx(i)))+L(θ ,φ ;xxx(i)) (2.1)

where the first term is the KL divergence of our approximation from the true posterior, and
the second term is called the variational lower bound. KL divergence measures how one
distribution diverges from another one, and it is always non-negative. Thus we have:

log pθ (xxx(i))≥ L(θ ,φ ;xxx(i)) = Eqφ (zzz|xxx)
[
− logqφ (zzz|xxx)+ log pθ (xxx,zzz)

]
(2.2)

if we rearrange the terms of the above expression, we get another expression of the lower
bound:

L(θ ,φ ;xxx(i)) =−DKL(qφ (zzz|xxx(i))||pθ (zzz))+Eqφ (zzz|xxx)
[

log pθ (xxx(i)|zzz)
]

(2.3)

To optimize the lower bound we need to compute the gradient w.r.t. to parameter φ . However,
if we use the Monte Carlo gradient estimator, the gradient w.r.t. φ can be a bit tricky because
the variance can be very high because of sampling from qφ (zzz|xxx), and it needs to be controlled
as in [10] and [15].

2.1.4 The SGVB estimator

Fig. 2.2 Graphical explanation of why reparameterization trick introduces differentiability. Figure
taken from [5].

To solve the above problem, we apply a technique called the reparameterization trick. This
trick can make the Monte Carlo estimate of the expectation w.r.t. qφ (zzz|xxx) differentiable w.r.t.

2.2 Hamiltonian Monte Carlo 5

φ . Figure 2.2 illustrates the reason. In the original form, we can not apply backpropagation
through the graph because zzz is derived from a random sampling process. However, if we
introduce an additional parameter ε which is sampled from a fixed distribution, and then
apply a deterministic transformation zzz = gφ (εεε,xxx), the whole process becomes differentiable
because now we can backpropagate through deterministic nodes.

Using this technique, we can get the Stochastic Gradient Variational Bayes (SGVB)
estimator of the lower bound:

L̂(θ ,φ ;xxx) =−DKL(qφ (zzz|xxx(i))||pθ (zzz))+
1
L

L

∑
l=1

(log pθ (xxx(i)|zzz(i,l))) (2.4)

where zzz(i,l) = gφ (εεε
(i,l),xxx(i)) and εεε(l) ∼ p(εεε). If we look at equation 2.4, we can see that the

first term acts as a regularizer which measures how closely the latent variables match a unit
Gaussian, and the second term gives a reconstruction error.

2.2 Hamiltonian Monte Carlo

2.2.1 Hamiltonian dynamics

In physics, Hamiltonian dynamics explicitly defines the time evolution of the system by a set
of Hamilton’s equations:

dθ

dt
=

∂H
∂ ppp

(2.5)

d ppp
dt

=−∂H
∂θ

(2.6)

where θ is the position vector, ppp is the momentum vector and H is the Hamiltonian. For a
closed system which does not allow energy transfer in or out of the system, it is the sum of
the kinetic and potential energy. A simple example of such a system can be a frictionless ball
that slides over a surface of varying height. The potential energy U(θ) is associated with the
position/height of the ball, and the kinetic energy K(ppp) is associated with the momentum of
the ball.

2.2.2 Proprieties of Hamiltonian dynamics

• The total energy is preserved: H(θ(t), ppp(t)) = H(θ(0), ppp(0))

6 Background

• The volume in (θ , ppp) space is preserved: dθ(t)d ppp(t) = dθ(0)d ppp(0). Because the
determinant of the Jacobian of the mapping Ts : (θ(t), ppp(t))→ (θ(t +dt), ppp(t +dt))
is equal to one.

• The Hamiltonian dynamics is reversible, meaning that the mapping Ts from the state at
time t to the state at time t +dt is one-to-one because the state transitions are explicitly
guided by Hamilton’s equations, and hence reversible.

2.2.3 Link to the target distribution

To relate an energy function to a distribution, we can use a concept adopted from statistical
mechanics known as the canonical distribution. For an energy function E(θ) over θ ,
the corresponding canonical distribution is defined as: p(θ) = 1

Z e
−E(θ)

T , where Z is the
normalizing constant, and T is the temperature of the system. In practice, we do not need
to worry about Z because MCMC methods can sample from unnormalized probability
distributions, and T is set to be 1.

The Hamiltonian can be written as:

H(θ , ppp) =U(θ)+K(ppp) (2.7)

Using the concept of canonical distribution, we can define the joint probability density of
θ and ppp to be:

p(θ , ppp) ∝ e−H(θ ,ppp) = e−U(θ)e−K(ppp)
∝ p(θ)p(ppp) (2.8)

We can see that the joint distribution factorizes, which means θ and ppp are independent.
We denote the variable of interest by θ and the auxiliary variables by p which allows the
Hamiltonian dynamics to operate. Since θ and ppp have independent distributions, we are
free to choose any distribution of momentum ppp. A common practice is to use a multivariate
Gaussian with zero mean and diagonal covariance, which corresponds to a quadratic kinetic
energy: pppT M−1 ppp

2 .

2.2.4 The Hamiltonian Monte Carlo algorithm

The Hamiltonian Monte Carlo (HMC) algorithm can be used to sample from a continuous
distribution (up to an unknown normalizing constant).

The algorithm typically consists of three steps. The first step only changes the momentum
ppp by drawing an initial sample from its Gaussian distribution independent of the θ vector.

2.3 Riemannian Manifold Hamiltonian Monte Carlo 7

The second step updates the position and momentum vector using the leapfrog method,
which is a discretized approximation to the Hamilton’s equation. The leapfrog method works
as follows:

ppp(t +
ε

2
) = ppp(t)− ε

2
∂U(θ(t))

∂θ
(2.9)

θ(t + ε) = θ(t)+ ε
ppp(t + ε

2)

MMM
(2.10)

ppp(t + ε) = ppp(t +
ε

2
)− ε

2
∂U(θ(t + ε))

∂θ
(2.11)

It is easy to see that each complete leapfrog step is reversible by simply negating ppp due to
symmetry. Likewise, as the Jacobian of the transformations has unit determinant then the
volume is preserved. However, the total Hamiltonian is only approximately conserved. This
is an artifact known as energy drift due to the approximations used to discretize time.

In the third step, a Metropolis acceptance probability is computed and the proposed state
(qqq∗, ppp∗) from the leapfrog steps is either accepted or rejected. This ensures the states stay in
high-density regions of the target probability, while at the same time be able to occasionally
travel to low-density regions. The probability of acceptance is computed as:

min
[
1,exp(−U(θ ∗)+U(θ0)−K(ppp∗)+K(ppp0))

]
(2.12)

If the proposed state is rejected, the next state is the same as the current state. If the integration
error in the total Hamiltonian is small, we would expect that this acceptance probability will
remain at a very high level.

2.3 Riemannian Manifold Hamiltonian Monte Carlo

2.3.1 Riemannian manifold

A Riemannian manifold is a real, smooth manifold M equipped with an inner product gp

on the tangent space TpM at each point p that varies smoothly from point to point. [18].
The Euclidean space itself carries a natural structure of the Riemannian manifold, but the
general concept of Riemannian manifold is broader and can contain much more complicated
geometric structures than Euclidean manifold.

Another important concept is metric tensor, which is a function that takes a pair of
tangent vectors v and w as inputs and produces a scalar g(v,w). This function can be
seen as a generalization of dot product in Euclidean space. It defines the length and angle
between tangent vectors so that we can compute the length of curves in the manifold through

8 Background

integration. By definition, a manifold equipped with a positive definite metric tensor is known
as a Riemannian manifold. In a Riemannian manifold, the curve/line connecting two points
that has the smallest length is called a geodesic. Its length is the distance that a point needs to
traverse to go from one point to the other [17]. In Euclidean space, the geodesic between two
points is simply the straight line connecting the two points, whereas in Riemannian space it’s
not the case. If we define the distance between two points p and q as d(p,q) (equivalent to
the length of geodesic), then we can see the metric tensor as the derivative of the distance
function.

2.3.2 Exploiting Riemannian manifold concepts in MCMC

There are various ways of measuring the “distance” between two probability density functions.
One of them is the symmetric KL divergence: DS(p||q) = DKL(p||q)+DKL(q||p). For a
probability density function p(y;θ), if we permute the parameter θ by a small displacement
δθ and derive a new probability function p(y;θ + δθ), we have p(y;θ + δθ) = p(y;θ)+

δθ T ∇θ p(y;θ)+O(2). Since log(1+ ε)≈ ε , naturally we can get:

DS(p(y;θ +δθ)||p(y;θ)) = δθ
TEy|θ{∇θ log p(y;θ)∇θ log p(y;θ)T}δθ

= δθ
T G(θ)δθ

(2.13)

where G(θ) is called the Fisher information matrix. Paper [13] noted that G(θ) is by
definition positive-definite, therefore it is a metric tensor of a Riemannian manifold. We can
conclude that the space of probability functions is endowed with a Riemannian geometry.

Intuitively, we can see δθ as the term that determines the direction of the geodesic
between two points (in this case, two distributions) in the manifold, and the matrix G(θ)

determines the distance that we should move along each dimension. If we define G(θ) to be
an identity matrix, it then reduces to the metric tensor in Euclidean manifold and we lose the
nice property of Riemannian manifold where the position specific metric tensor is able to
reflect the local geometric structure.

2.3.3 The Riemannian Manifold Hamiltonian Monte Carlo algorithm

In this subsection, we will briefly introduce the concepts behind the Riemannian Manifold
Hamiltonian Monte Carlo (RMHMC) algorithm.

Following on from section 2.3.2, we can now define the Hamiltonian on a Riemannian
manifold. We can see the standard HMC as described in section 2.2.4 as an algorithm defined
in Euclidean space, where we need to manually tune the mass matrix M defining a globally

2.3 Riemannian Manifold Hamiltonian Monte Carlo 9

constant metric. Whereas in RMHMC the mass matrix is replaced by G(θ) which exploits
the local geometric structure automatically. More specifically, the norm of each θ̇ becomes:

||θ̇ ||2G(θ) = θ̇
T G(θ)θ̇ = pppT G−1(θ)ppp (2.14)

instead of:
||θ̇ ||2M = θ̇

T Mθ̇ = pppT M−1 ppp (2.15)

thus the kinetic energy has a new form defined by the inverse of G(θ). Therefore the
Hamiltonian on Riemann manifold can be written as:

H(θ , ppp) =−L(θ)+ 1
2

log((2π)D|G(θ)|)+ 1
2

pppT G(θ)−1 ppp (2.16)

so that the marginal density of θ is the desired target density:

p(θ) ∝

∫
exp(H(θ , ppp))d ppp =

exp(L(θ))√
2πD|G(θ)|

∫
exp(−1

2
pppT G(θ)−1 ppp)d ppp = exp(L(θ))

(2.17)
The dynamics is defined by a new set of Hamilton’s equations:

dθ

dt
=

∂H
∂ ppp

= G(θ)−1 ppp (2.18)

d ppp
dt

=−∂H
∂θ

=
∂L(θ)

∂θ
− 1

2
Tr[G(θ)−1 ∂G(θ)

∂θ
]+

1
2

pppT G(θ)−1 ∂G(θ)

∂θ
G(θ)−1 ppp (2.19)

With this new set of Hamilton’s equations, a generalized leapfrog algorithm is proposed and
the details are shown in algorithm 5 in section 4.1.4. A nice visualization of a comparison
between HMC and RMHMC is shown in Figure 2.3 from paper [3]. The left image shows
the path of a Markov chain using HMC with a unit mass matrix, and the second image shows
the path from the same starting point using RMHMC. Note how the use of a position specific
G(θ) makes the Markov chain converges much faster.

10 Background

Fig. 2.3 Comparison between HMC and RMHMC paths from a stochastic volatility model investigated
in paper [3].

Chapter 3

Related Work

3.1 Importance Weighted Auto-Encoder

The Importance Weighted Auto-Encoder (IWAE) was first proposed in [1]. The central
idea is to use a tighter evidence lower bound (ELBO) by applying importance sampling in
the evaluation of the ELBO. It has the same architecture as the standard VAE, the major
distinction lies in the way the ELBO is computed. For the standard VAE, the ELBO is the
Monte Carlo estimate for a single sample zzz ∼ qφ (zzz | xxx) where zzz is the latent variable, whereas
for IWAE, it considers not just one sample, but a fixed number of k samples:

Lk(xxx) = Ezzz1,...zzzk∼qφ (zzz|xxx)
[

log
1
k

k

∑
i=1

p(xxx,zzzi)

q(zzzi|xxx)
]

(3.1)

The larger k is, the closer the ELBO gets to the true marginal likelihood of the data. When
k = 1, it is the same as the ELBO of the standard VAE. Ideally, if we increase k to infinity,
equation 3.1 gives the true marginal likelihood.

However, as shown in paper [12], as k increases, the gradient estimator becomes prob-
lematic. More specifically, the gradient of the parameters to be optimized becomes zero. The
paper concludes that using a tighter ELBO can be detrimental to the process of learning.

3.2 Normalizing Flows

In paper [14], Normalizing Flows were introduced to enrich the posterior approximation
family. It is able to specify flexible, arbitrarily complex and scalable posterior approximations.
The basic idea is to transform a simple initial density into a more complex one by applying a
sequence of invertible transformations to reach a certain level of complexity.

12 Related Work

To start with, let’s consider a simple example where “change of variables” is involved.
Let zzz be a random variable that follows a distribution zzz ∼ q(zzz), and f is an invertible
transformation that maps zzz to yyy. The resulting variable yyy= f (zzz) has the following distribution:

q(yyy) = q(zzz)|det
∂ f−1

∂ zzz
|= q(zzz)|det

∂ f
∂ zzz

|−1 (3.2)

If we apply a series of transformations fk,k ∈ 1, ...K, we get a normalizing flow:

zzzK = fK ◦ fK−1 ◦ ... f1(zzz0) (3.3)

qK(zzzK) = q0(zzz0)
K

∏
k=1

|det
∂ fk

∂ zzzk−1
|−1 (3.4)

where zzz0 is sampled from an initial distribution q0(zzz0). From equation 3.4 we can see that
the determinant of the Jacobian need to be computed and this could easily be the bottleneck
of the algorithm. Thus we require to have normalizing flows that allow for inexpensive
computation of the determinant, or where the Jacobian is not needed at all. To achieve this,
the paper proposed two families of transformations.

3.2.1 Planar flow

Planar flows have the form:
f (zzz) = zzz+uuuh(wwwT zzz+b) (3.5)

where λ = {www ∈ RD,uuu ∈ RD,b ∈ R} and h(·) is a smooth element-wise non-linearity, which
is typically the activation function in neural networks. If we define ψ(zzz) = h

′
(wwwT zzz+b)www,

the determinant is then easily computed as:

|det
∂ f
∂ zzz

|= |1+uuuT
ψ(zzz)| (3.6)

We can think of this flow as slicing the zzz space with the hyperplane defined using wwwT zzz+b = 0.

3.2.2 Radial flow

An alternative to the planar flow is the radial flow. The transform is defined as:

f (zzz) = zzz+βh(α,r)(zzz− zzz0) (3.7)

3.3 Inverse Autoregressive Flow 13

where r = |zzz−zzz0| and h(α,r) = 1
α+r , the free parameters are λ = {zzz0 ∈RD,α ∈R+,β ∈R}.

The determinant is computed as:

|det
∂ f
∂ zzz

|=
[
1+βh(α,r)

]d−1[1+βh(α,r)+1+βh
′
(α,r)r

]
(3.8)

This family of transformations also allow for efficient linear-time computation of the determi-
nant. The radial flows introduce reference points in the z-space and apply radial contractions
and expansions around the reference points.

3.2.3 Alternative flows

The paper [14] also proposed Langevin flow and Hamiltonian flow. The Langevin flow is
defined by the Langevin stochastic differential equation. In this case, the transformation of
densities can be obtained by the Fokker-Planck equation, and the stationary solution for qt(zzz)
is given by the Boltzmann distribution: q∞(zzz) ∝ e−L(zzz).

For the Hamiltonian flow, it can be seen as a kind of normalizing flow on an augmented
space (zzz, ppp) where ppp is the momentum of the Hamiltonian dynamics. It is an instance of an
infinitesimal volume-preserving flow.

Both flows are examples of utilizing transition operators in the MCMC literature. As we
know that as the number of transitions goes to infinity, the distribution q(zzz) will converge
to the true posterior p(zzz|xxx). In particular, the Hamiltonian flow has a very similar way of
turning a simple distribution into a complex one by utilizing the Hamiltonian dynamics when
compared with the focus of this MPhil project. A disadvantage of using such normalizing
flows is that they require additional time for computing the likelihood and the corresponding
gradients in the leapfrog steps.

3.3 Inverse Autoregressive Flow

To improve the expressivity of the normalizing flows introduced in the above section, Inverse
Autoregressive Flow (IAF) was introduced in [7]. To start with, let’s first consider autoregres-
sive transformations, which belong to a family of transformations where the ith dimension of
the resulting variable yyy only depends on the 1st to the ith dimension of the input variable xxx
like the following:

y1 = µ1 +σ1x1 (3.9)

yi = µ(yyy1:i−1)+σ(yyy1:i−1)xi (3.10)

14 Related Work

To get the complete output variable yyy we need to perform O(D) sequential computations
which cannot be parallelized thus making the overall computation expensive. However, we
can see that its inverse transformation can be parallelized because the inverse has the form:

xi =
yi −µ(yyy1:i−1)

σ(yyy1:i−1)
(3.11)

we can vectorize the above equation:

xxx =
yyy−µ(yyy)

σ(yyy)
(3.12)

The major difference between the forward and inverse autoregressive transformations
is that the output variable of the inverse autoregressive transformation does not have the
dependencies between dimensions as in the forward transformation, making it possible to
parallelize the computation. In addition, the Jacobian of equation 3.12 is lower triangular
with a simple diagonal. As we know, the determinant of a lower triangular matrix equals
to the product of the elements on the diagonal, which makes the computation extremely
efficient.

Chapter 4

Methodology

4.1 Combining variational inference with MCMC

4.1.1 Basic idea

As mentioned in chapter 1, variational inference and MCMC methods are the two major
methods for estimating the intractable posterior distribution q(zzz|xxx) in machine learning
problems. The major benefit we get from variational inference is that we can explicitly
optimize an ELBO using any available optimization algorithms. The lower bound usually
has the form:

log p(xxx)≥ log p(xxx)−DKL(qθ (zzz|xxx)||p(zzz|xxx))=Eqθ (zzz|xxx)
[

log p(xxx,zzz)− logqθ (zzz|xxx)
]
=L (4.1)

Maximizing the lower bound w.r.t. θ will minimize the KL-divergence.
As for MCMC, it usually starts by taking an initial sample zzz0 from an initial distribution

q(zzz0) or q(zzz0|xxx), and the apply a stochastic transition operator to the sample zzz0:

zzzt ∼ q(zzzt |zzzt−1,xxx) (4.2)

If we apply this transition operator for a sufficient number of times, we can approach the true
posterior, but it takes a longer time to do so.

The central idea to combine variational inference and MCMC is that we can regard
the intimidate samples: yyy = zzz0,zzz1, ...zzzt−1 as auxiliary variables for computing the ELBO.

16 Methodology

Namely, we can integrate the auxiliary variables into the expression of the ELBO:

Laux = Eq(yyy,zzzT |xxx)
[

log
[
p(xxx,zzzT)r(yyy|xxx,zzzT)

]
− logq(yyy,,,zzzT |||xxx)

]
= L−Eq(zzzT |xxx){DKL

[
q(yyy|zzzT ,xxx)||r(yyy|zzzT ,xxx)

]
}

≤ L ≤ log
[
p(xxx)

] (4.3)

Here r(yyy|xxx,zzzT) is another approximation we made to approximate the true reverse model
q(yyy|xxx,zzzT) =

∫
q(yyy,zT |xxx)dy, and it’s called the inverse model. For this project we assume

it has a Markov structure: r(zzz0, ...,zzzT−1|xxx,zzzT) = ∏
T
t=1 rt(zzzt−1|xxx,zzzt). Thus we can further

rewrite the ELBO as:

log p(xxx)≥ Eq
[

log p(xxx,zzzT)− logq(zzz0, ...,zzzT |xxx)+ logr(zzz0, ...,zzzt−1|xxx,zzzT)
]

= Eq
[

log
[p(xxx,zzzT)

q(zzz0|xxx)
]
+

T

∑
t=1

log
[rt(zzzt−1|xxx,zzzt)

qt(zzzt |xxx,zzzt−1)

]] (4.4)

If we want to optimize this lower bound, we can specify qt and rt in some parametric
form and then optimize 4.4 w.r.t. the parameters. A typical example is to use neural networks
to represent these two models.

4.1.2 ELBO of general MCMC variational inference

In many cases, the lower bound in equation 4.4 cannot be computed analytically. However
we can obtain its Monte Carlo estimate without bias using the following algorithm.

Algorithm 1 MCMC lower bound estimate

1: Require: Model with joint distribution p(xxx,zzz)
2: Require: Number of iterations T
3: Require: Transition operator qt(zzzt |xxx,zzzt−1)
4: Require: Inverse model rt(zzzt−1|zzzt ,xxx)
5: Require: Step size ε and mass matrix M
6: Draw an initial random zzz0 ∼ p(zzz0|xxx)
7: Calculate the initial lower bound as L = log p(xxx,zzz0)− logq(zzz0|xxx)
8: for t = 1 : T do
9: Perform random transition zzzt ∼ qt(zzzt |xxx,zzzt−1)

10: Calculate the ratio αt =
p(xxx,zzzt)rt(zzzt−1|xxx,zzzt)

p(xxx,zzzt−1)qt(zzzt |xxx,zzzt−1)

11: Update L = L+ logαt

12: return L

To optimize the above lower bound, we need to obtain its unbiased gradients w.r.t. model
parameters. Here we encounter the same problem where we need to apply backpropagation

4.1 Combining variational inference with MCMC 17

through random sampling processes qt(zzzt |xxx,zzzt−1), which is not feasible unless we utilize the
reparameterization trick mentioned in the SGVB estimator of the VAE in section 2.1.4: first
we draw a set of primitive random variables uuut from distribution p(uuut), and then transform
uuut into zzzt with transformation zzzt = gθ (uuut ,xxx) which ensures that zzzt follows the distribution
qt(zzzt |xxx,zzzt−1).

Once we obtain the gradients, we can optimize the lower bound using any stochastic
gradient-based optimization algorithm as shown in algorithm 2.

Algorithm 2 Markov Chain Variational Inference (MCVI)

1: Require: Forward model qθ (zzz) and backward model rθ (zzz0, ...,zzzt−1|zzzT)
2: Require: Parameter θ

3: Require: Stochastic estimate L(θ) of the lower bound from algorithm 1
4: while not converged do
5: Obtain unbiased estimate ĝ with Eq[ĝ] = ∇θLaux(θ) by differentiating L(θ)
6: Update θ using gradient ĝ and a stochastic optimization algorithm
7: return final optimized variational parameters θ

4.1.3 ELBO of Hamiltonian variational inference

Hamiltonian Monte Carlo (HMC) is one of the most efficient MCMC method and thus we
will choose HMC as the MCMC algorithm to incorporate it into the auxiliary ELBO in
equation 4.4. A momentum variable vvv is introduced to make the HMC sampler operate. The
algorithm for calculating the auxiliary ELBO is shown in algorithm 3.

Algorithm 3 Hamiltonian variational inference (HVI)

1: Require: Unnormalized log posterior log p(xxx,zzz)
2: Require: Number of iterations T
3: Require: Momentum initial distribution qt(vvv

′
t |xxx) and inverse model rt(vvvt |zzzt ,xxx)

4: Require: Step size ε and mass matrix M
5: Draw an initial random zzz0 ∼ p(zzz0|xxx)
6: Calculate the initial lower bound as L = log p(xxx,zzz0)− logq(zzz0|xxx)
7: for t = 1 : T do
8: Draw initial momentum vvv

′
t ∼ qt(vvv

′
t |xxx)

9: Pass (zzzt−1,vvv
′
t) to HMC sampler and obtain (zzzt ,vvvt)

10: Calculate the ratio αt =
p(xxx,zzzt)rt(vvvt |xxx,zzzt)

p(xxx,zzzt−1)qt(vvv
′
t |xxx)

11: Update L = L+ logαt

12: return L

18 Methodology

We can see that the way we calculate the auxiliary ELBO is by sampling from the transisi-
ton qt and then evaluate the inverse model rt at those samples. Adding the ratio αt through
multiple iterations t = 1 : T will result in L = L+ log

[p(xxx,zzz1)r1(vvv1|xxx,zzz1)

p(xxx,zzz0)q1(vvv
′
1|xxx,zzzt−0)

p(xxx,zzz2)r2(vvv2|xxx,zzz2)

p(xxx,zzz1)q2(vvv
′
2|xxx,zzz1)

...
]

where the intimidate p(xxx,zzzt) terms will be cancelled out.
The ELBO is then optimized w.r.t. θ where θ represents the parameters of the forward

model qθ (zzz) and inverse model rθ (zzz0, ...zzzt−1|zzzT). Note that in this case, since the transi-
tion from (zzzt−1,vvv

′
t) to (zzzt ,vvvt) is deterministic, we have q(vvvt ,zzzt |zzzt−1,xxx) = q(vvv

′
t |zzzt−1,xxx) and

r(vvv
′
t ,zzzt−1|zzzt ,xxx) = r(vvvt |zzzt ,xxx). The gradient of the auxiliary ELBO is obtained with the help of

the reparameterization trick.
HVI also requires the unnormalized log posterior log p(xxx,zzz), which in many cases can

be obtained by adding the log prior p(zzz) with log likelihood p(xxx|zzz). In addition, we found
that in practice one HMC iteration is enough for a large performance improvement without
introducing too much computation overhead.

The distributions are parameterized with neural networks so that we can explicitly
optimize the weights and biases with backpropagation. For the subsequent experiments, we
tested two types of neural networks: fully-connected neural networks and convolutional
neural networks.

A graphical representation of the fully-connected configuration is shown in Figure 4.1.
As we can see, the initial distribution q(zzz0|xxx), the forward model qt(vvv

′
t |xxx), the inverse

model rt(vvvt |xxx,zzzt) and the decoder p(xxx|zzzt) are all parameterized with fully-connected neural
networks.

Similarly, a graphical representation of the convolutional configuration is shown in Figure
4.2 where the yellow layers represent convolutional/deconvolutional layers.

4.1 Combining variational inference with MCMC 19

Fig. 4.1 Graphical representation of HVI model with fully-connected networks.

Fig. 4.2 Graphical representation of HVI model with convolutional networks, yellow layers represent
convolutional/deconvolutional layers

20 Methodology

4.1.4 ELBO of Riemann manifold Hamiltonian variational inference

The ELBO of Riemann manifold Hamiltonian variational inference is calculated in a similar
way as the ELBO of Hamiltonian variational inference except for some minor modifications.
The algorithm is shown in algorithm 4.

Algorithm 4 Riemann manifold Hamiltonian variational inference (RMHVI)

1: Require: Unnormalized log posterior log p(xxx,zzz)
2: Require: Number of iterations T
3: Require: Inverse model rt(vvvt |zzzt ,xxx)
4: Require: Step size ε

5: Draw an initial random zzz0 ∼ p(zzz0|xxx)
6: Calculate the initial Fisher information matrix G(zzz000)
7: Sample initial momentum vvv

′
1 from N (0,G(zzz000))

8: Calculate the initial lower bound as L = log p(xxx,zzz0)− logq(zzz0|xxx)
9: for t = 1 : T do

10: Pass (zzzt−1,vvv
′
t) to manifold HMC sampler and obtain (zzzt ,vvvt)

11: Calculate the ratio αt =
p(xxx,zzzt)rt(vvvt |xxx,zzzt)

p(xxx,zzzt−1)qt(vvv
′
t |xxx,zzzt−1)

12: Update L = L+ logαt

13: return L

A graphical representation of the system architecture is shown in Figure 4.3. As we can
see from the figure, the most significant difference from HVI is that we do not need to optimize
the parameters for the momentum initial distribution model qt(vvv

′
t |xxx). The forward model is

replaced by a module that calculates G(zzz0). The momentum is drawn from a multivariate
Gaussian with zero mean and a covariance matrix defined by the Fisher information matrix
G(zzz) instead. Here G(zzz) plays the same role as the diagonal covariance matrix does in HVI.
The difference is that G(zzz) automatically adapts to the natural geometric structure of the
density model p(θ) in Riemannian manifold, and it should yield more effective transitions in
the overall algorithm.

In statistics, the Fisher information matrix measures the amount of information that an
observable random variable xxx carries about an unknown parameter θ of a distribution that
models xxx. More specifically, it is the variance of the score, where score is the gradient of the
log-likelihood with respect to θ . It can be shown that the first moment (mean) is zero. In this
case, the variance can be written as:

4.1 Combining variational inference with MCMC 21

Fig. 4.3 Graphical representation of RMHVI model with fully-connected networks.

G(θ) = E[(
∂

∂θ
log f (XXX ;θ))2|θ]

=
∫
(

∂

∂θ
f (xxx;θ))2 f (xxx;θ)dxxx

(4.5)

If the integration in equation 4.5 is intractable, we can use the Monte Carlo estimate of it:

G(θ)≈ 1
N ∑[(

∂

∂θ
log f (xxx;θ))2|θ] (4.6)

where xxx is sampled from the conditional distribution p(xxx|θ).
In our experiment setting, θ is the latent variable zzz and xxx is the output of the neural

decoder. Following the procedure described above, we can obtain the Fisher information
matrix G(zzz) as follows:

1. Pass zzz through the decoder and obtain a set of logits that represent the probabilities
of particular pixels taking the value 1 (black), which can be viewed as a multivariate
Bernoulli distribution. For MNIST dataset, the size of this distribution has dimension
28×28 = 784.

2. Take n samples yyy from the multivariate Bernoulli distribution.

3. Calculate the gradients of yyy w.r.t. zzz: ∂yyy
∂ zzz .

22 Methodology

4. Calculate the mean of the square of the gradients.

Once we get G(zzz), we can use it to calculate the Hamiltonian. Unlike in HMC, the manifold
version of Hamiltonian has a different expression:

H(qqq, ppp) =−L(qqq)+ 1
2

log((2π)D|G(qqq)|)+ 1
2

pppT G(qqq)−1 ppp (4.7)

In this case, the joint density is no longer factorizable and therefore the log-likelihood does
not correspond to a separable Hamiltonian. The dynamics are defined by the Hamilton’s
equation:

dqqq
dt

=
∂H
∂ ppp

= G(qqq)−1 ppp (4.8)

d ppp
dt

=−∂H
∂qqq

=
∂L(qqq)

∂qqq
− 1

2
Tr[G(qqq)−1 ∂G(qqq)

∂qqq
]+

1
2

pppT G(qqq)−1 ∂G(qqq)
∂qqq

G(qqq)−1 ppp (4.9)

With the modified Hamilton’s equations, we can derive the generalized leapfrog algorithm
[9] as shown below in algorithm 5. Note that here we omit the Metropolis-Hastings step that
is typically used with HMC.

Algorithm 5 RMHMC with Generalised Leapfrog
1: Initialize current qqq
2: for IterationNum = 1 to NumSamples do
3: Sample new momentum ppp1

4: Calculate current H(qqq, ppp1)
5: qqq1=current qqq
6: for n = 1 to N (leapfrog steps) do
7: // Update the momentum with fixed point iterations
8: p̂pp0 = pppn

9: for i = 1 to NumOfFixedPointSteps do
10: p̂ppi = pppn − ε

2∇qqqH(qqqn, p̂ppi−1)

11: pppn+ 1
2 = p̂ppi

12: // Update the parameters with fixed point iterations
13: q̂qq0 = qqqn

14: for i = 1 to NumOfFixedPointSteps do
15: q̂qqi = qqqn + ε

2∇pppH(qqqn, pppn+ 1
2)+ ε

2∇pppH(q̂qqi−1, pppn+ 1
2)

16: qqqn+1 = q̂qqi

17: // Update the momentum exactly
18: pppn+1 = pppn+1 − ε

2∇qqqH(qqqn+1, pppn+ 1
2)

4.1 Combining variational inference with MCMC 23

Speed ELBO

VAE fast worst

HVI: moderate moderate

RMHVI slow best

Table 4.1 Comparison between fully-connected HVI and vanilla VAE for MNIST.

4.1.5 Theoretic comparison between models

In theory, a general comparison between three models is shown in Table 4.1. VAE is the
fastest model to be trained because we do not need any leapfrog steps. HVI is mk times more
expensive than VAE where m is the number of MCMC iterations and k is the number of
leapfrog steps. RMHVI is the slowest because it not only has k leapfrog steps, within each
leapfrog step we also need to computer the Fisher information matrix G(zzz) by computing the
gradient of n samples. Moreover, we need to compute this G(zzz) multiple times because there
are multiple fixed point iterations within in each leapfrog step as shown in algorithm 5.

RMHVI should be able to give the highest ELBO because RMHMC converges faster
than HMC. If given the same number of leapfrog steps, The samples we get from RMHMC
is more likely to fall into the high-density regions of the target posterior. HVI should be able
to outperform vanilla VAE because of the additional complexity of the approximation to the
true posterior distribution.

The actual model performance is tested in the next chapter through extensive experiments.

Chapter 5

Experiments

5.1 Hamiltonian variational inference (HVI)

5.1.1 Fully-connected neural network configuration

To test the performance of the HVI algorithm, we replace the inference network (encoder) in
VAE with HVI as describe in algorithm 3. We first use fully-connected neural networks to
parameterize the internal models.

• The initial distribution q(zzz0|xxx) is parameterized with a fully-connected neural network
with two hidden layers, softplus activations and 300 hidden units in each hidden layer.
The output are mean and diagonal covariance of a Gaussian. The default dimension of
output variable (zzz) is 20.

• The forward model qt(vvv
′
t |xxx) is parameterized using a shallow fully-connected network

with one hidden layer that has 300 hidden units, softplus activations and a Gaussian
output variable that only contain the diagonal covariance because the mean is zero.

• Similarly, the inverse model rt(vvvt |xxx,zzzt) is parameterized using a shallow fully-connected
network with one hidden layer that has 300 hidden units, softplus activations and out-
puts mean and diagonal covariance of a Gaussian.

• The decoder is parameterized using a shallow fully-connected network with one hidden
layer that has 400 hidden units and relu activations, and an output layer with 784 (varies
depending on the dataset) output size and sigmoid activations.

26 Experiments

(a) Before binarization (b) After binarization

Fig. 5.1 Comparison of MNIST image before and after binarization.

5.1.1.1 MNIST experiments

The MNIST dataset is a large dataset of handwritten digits which is commonly used for
training image processing systems. It contains 60,000 training images and 10,000 testing
images. Each image has a size of 28×28 and pixel values are in greyscale. For the subsequent
experiments we discard the labels that come with images because we are not interested in
classification task.

5.1.1.1.1 Data preparation
First the data in MNIST is binarized by sampling from a multivariate Bernoulli distribution
where the parameter p for each pixel is determined by the greyscale value of the original
image. This binarized version of MNIST is then used as the target when computing the
reconstruction loss. A comparison of images before and after binarization is shown in Figure
5.1. Those images can be re-binarized every epoch to prevent overfiting issue.

5.1.1.1.2 Implementation details
The models are trained using mini-batches of size 64. Algorithm 3 gives the ELBO for each
individual image xxx. To avoid having to loop through every image, the code is vectorized so
that we can compute the ELBO for all the training images in a batch in parallel.

The gradients within each HMC leapfrog step are computed using the torch.autograd
libraries. The gradients of each tensor variable in PyTorch are accumulated during forward
pass and need to be manually zero out. This is something that is different from TensorFlow
that we need to pay attention to. An Adam [6] optimizer with adaptive learning rate is used.
The initial learning rate is set to be 0.003 and it is multiplied by 0.95 for every 10 epochs.

5.1 Hamiltonian variational inference (HVI) 27

Model type
ELBO of different data type

Training Testing Log-likelihood

VAE -118.51 -121.26 -

HVI+fully-connected:
1 leapfrog step -102.45 -104.96 -101.24
4 leapfrog steps -103.34 -104.52 -103.97
8 leapfrog steps -101.54 -104.10 -103.60

Table 5.1 Comparison between fully-connected HVI and vanilla VAE for MNIST.

(a) Training data (b) Testing data

Fig. 5.2 Comparison of ELBO between different models.

Apart from the neural networks mentioned in section 5.1.1, the optimizer also tries to
optimizer the step size ε , so that the step size can be different for each individual dimension
of the position vector zzz. We can see in the experiments that by optimizing the step size ε

we can achieve a better performance when compared with using a fixed step size. The step
size for each dimension is clamped between [0.001, 0.5] for numeric stability and also to
control the numeric error of leapfrog integrator. If the step size is too big, the Hamiltonian
will fluctuate by a large margin and the leapfrog approximation becomes highly inaccurate,
whereas if the step size is too small, we can not fully utilize the dynamics of HMC sampler.

5.1.1.1.3 Results
The results of HVI model is compared with a vanilla VAE. To make the results comparable,
the VAE’s encoder and decoder architecture are the same as the q(zzz0|xxx) and p(xxx|zzzt) in the
HVI.

28 Experiments

Model type
ELBO of different data type

Training Testing

HVI+fully-connected:
5 dimension -126.99 -128.13
10 dimension -105.78 -106.98
20 dimension -101.54 -104.10

Table 5.2 Comparison between different latent variable size with 8 leapfrog steps.

The model is trained for 50 epochs and the resulting ELBO values in log scale are shown
in Table 5.1 and Figure 5.2. The “log likelihood” column is estimated with importance
sampling by Monte Carlo estimate of Ep(zzz|xxx)p(xxx). Following algorithm 3, we can estimate
this marginal as:

Ep(zzz|xxx)p(xxx) =
∫

p(xxx)p(zzz|xxx)dzzz =
∫

p(xxx,zzz)dzzz =
∫

p(xxx,zzz1)r(vvv1|zzz1,xxx)dzzz1dvvv1

=
∫ p(xxx,zzz1)r(vvv1|zzz1,xxx)

q(zzz0|xxx)q(vvv′1|xxx)
q(zzz0|xxx)q(vvv′1|xxx)dzzz0dvvv′1

(5.1)

where w = p(xxx,zzz1)r(vvv1|zzz1,xxx)
q(zzz0|xxx)q(vvv′1|xxx)

is the importance weight of samples. To estimate the marginal, we
calculate the average of the weight w with 1000 zzz0 and vvv1 sampled from q(zzz0|xxx) and q(vvv′1|xxx).

As shown in the Table 5.1, HVI gives much better result compared with VAE. As the
number of leapfrog steps increases, the time for training an HVI model also increases, but
the performance gets better. The major computation bottleneck is the gradient calculations
within each leapfrog step.

We also explored the impact of hidden variable size. We tested three different latent
variable dimensions: 5, 10, 20 for HVI model with 8 leapfrog steps. The results are shown in
Table 5.2 and Figure 5.3. A large latent space is able to retain more information compared
with a smaller latent space, thus we observe that a latent variable zzz with 20 dimensions
gives the best result among the three. The difference between 20 and 10 dimensions is very
minimum, indicating that sometimes we can sacrifice performance for memory usage when
the latter is very critical.

Another thing we explored is the effect of optimizing step size ε . We use HVI model with
1 leapfrog step to explore the effect of optimizing step size ε versus if it is fixed at 0.01 for
all the dimensions. The results are shown in Figure 5.4. We can see if ε is optimized, we are
able to converge to the highest ELBO faster. However, the final ELBO values between two
models are almost identical. This is because in the leapfrog algorithm, we need to multiply ε

5.1 Hamiltonian variational inference (HVI) 29

(a) Training data (b) Testing data

Fig. 5.3 Comparison of ELBO between different latent variable size with 8 leapfrog steps.

(a) Training data (b) Testing data

Fig. 5.4 Comparison of ELBO between models with fixed/optimized step size with 1 leapfrog step.

with 1
M as shown in the equation below. If we optimize the ε

M term jointly, it has the similar
effect of only optimizing ε . Although in principle they are not exactly the same because M
also determines the distribution where we need to sample the initial momentum from.

θ(t + ε) = θ(t)+ ε
ppp(t + ε

2)

MMM
(5.2)

To further compare the model performance, we sample from a multivariate unit Gaussian
which has the same dimension as zzzt and pass it through the trained decoder network. The
resulting images are shown in Figure 5.5. As we can see, all four images are not very clear
but the first image is obviously more blurred than the remaining three images. The difference
between the second, third and fourth images are not significant, which is an expected behavior
since their difference in ELBO value is not big.

30 Experiments

(a) VAE (b) HVI with 1 leapfrog steps

(c) HVI with 4 leapfrog steps (d) HVI with 8 leapfrog steps

Fig. 5.5 Comparison of generated images between different models.

5.1 Hamiltonian variational inference (HVI) 31

5.1.2 Convolutional neural network configuration

Convolutional neural networks (CNN) are more powerful than fully-connected neural net-
works in particular for computer vision and image processing domain. In this section we will
explore the performance of HVI model with convolutional/deconvolutional layers.

• The initial distribution q(zzz0|xxx) is parameterized with three convolutional layers fol-
lowed by two fully-connected layers. The convolutional layers have 5× 5 filters,
[16,32,32] feature maps, stride of 2 and softplus activations. There is also a padding of
2 for each convolutional layer. The fully-connected layers have 300 hidden units in the
hidden layer and softplus activations. The output are mean and diagonal covariance of
a Gaussian. The default dimension of output variable (zzz) is 20.

• The forward model qt(vvv
′
t |xxx) is the same as in section 5.1.1. It is parameterized using

a shallow fully-connected network with one hidden layer that has 300 hidden units,
softplus activations and a Gaussian output variable that only contain the diagonal
covariance because the mean is zero.

• The inverse model rt(vvvt |xxx,zzzt) also remains the same as in section 5.1.1. It is parameter-
ized using a shallow fully-connected network with one hidden layer that has 300 hidden
units, softplus activations and outputs mean and diagonal covariance of a Gaussian.

• The decoder architecture mirrors the inference model q(zzz0|xxx). It has two fully-
connected layers followed by three deconvolutional layers. To make the output size of
each deconvolutional layer the same as convolutional layers of the inference model, an
output padding of 1 is also added for the second and third deconvolutional layers. This
architecture is similar to [2].

5.1.2.1 MNIST experiments

5.1.2.1.1 Data preparation
Again the data in MNIST is binarized by sampling from a multivariate Bernoulli distribution.

5.1.2.1.2 Implementation details
The models are trained using mini-batches of size 64. PyTorch does not have automatic
padding functions like “VALID” or “SAME” in TensorFlow, which means the padding size
need to be manually decided. The output size of convolutional layers are [14x14,7x7,4x4],
and the output size of deconvolutional layers are [7x7,14x14,28x28].

32 Experiments

Similar to the settings in the fully-connected configuration, an Adam optimizer with
adaptive learning rate is used to optimize both the neural networks and the step size ε . The
initial learning rate is set to be 0.0002 and it is multiplied by 0.95 for every 10 epochs. The
step size for each dimension is clamped between [0.001, 0.5].

5.1.2.1.3 Results
The results of HVI model is compared with a convolutional VAE whose encoder and decoder
has the same architecture as q(zzz0|xxx) and p(xxx|zzzt). Such special VAE has been explored by
papers like [11] where the convolutional VAE was used to train on ImageNet.

The results are obtained by training for 300 epochs and are shown in Table 5.3 and
Figure 5.6. We can see HVI model outperforms VAE by a large margin, but the difference of
between three HVI models is very minimum. Using 4 leapfrog steps gives the best result,
which is not expected. This could be because the step size ε is a bit too big so that the
leapfrog approximation which is used to discretize Hamilton’s equations dose not perform
well when there are too many steps. The samples gradually wander off the correct trajectory
as the number of leapfrog steps increases. A simpler explanation is that their difference
is so small that we cannot say HVI with 4 leapfrog steps is necessarily the best due to the
stochastic nature of the training process.

We also explored the impact of latent space dimension. As shown in Table 5.4 and
Figure 5.7, we observe the same trend as we observed in the fully-connected neural network
configuration. A latent space with 20 dimensions gives the best results.

After training, we draw random samples from a unit Gaussian and pass them through the
trained decoder to generate a set of images. A comparison between different models is shown
in Figure 5.8. All four models are able to generate images that are much clearer than images
in Figure 5.5, indicating that convolutional neural networks do a better job in capturing
high-level features of images compared with fully-connected neural networks. In addition,
if we compare these four images in Figure 5.8, we can see the first image generated by
convolutional VAE is more blurred than the remaining three images, especially when we look
at the boundaries between the digits and background, where the boundaries of convolutional
HVI models tend to be sharper.

5.1 Hamiltonian variational inference (HVI) 33

(a) Training data (b) Testing data

(c) Training data, a closer look (d) Testing data, a closer look

Fig. 5.6 Comparison of ELBO between different models with convolutional layers.

(a) Training data (b) Testing data

Fig. 5.7 Comparison of ELBO between different latent variable size with 8 leapfrog steps.

34 Experiments

(a) convolutional VAE (b) convolutional HVI with 1 leapfrog step

(c) convolutional HVI with 4 leapfrog steps (d) convolutional HVI with 8 leapfrog steps

Fig. 5.8 Comparison of generated images between different models.

5.1 Hamiltonian variational inference (HVI) 35

Model type
ELBO of different data type

Training Testing Log-likelihood

VAE -105.17 -110.78 -

HVI+fully-connected:
1 leapfrog steps -86.49 -88.34 -88.36
4 leapfrog steps -86.29 -88.21 -88.19
8 leapfrog steps -86.29 -88.23 -88.30

Table 5.3 Comparison between convolutional HVI and convolutional VAE.

Model type
ELBO of different data type

Training Testing

HVI+convolutional :
5 dimension -105.08 -112.87
10 dimension -89.04 -94.04
20 dimension -86.29 -88.23

Table 5.4 Comparison between different latent variable size with 8 leapfrog steps.

5.1.2.2 CIFAR-10 experiments

The CIFAR-10 dataset is also a collection of images that are commonly used in machine
learning community. It consists of 60000 32×32 colour images in 10 classes, with 6000
images for each class. Some sample images can be seen in Figure 5.9. The major difference
between CIFAR-10 and MNIST is that each image in CIFAR-10 has 3 channels representing
color coding in RGB, whereas images in MNIST only have one channel. The CIFAR-10
dataset is a good dataset for testing whether the HVI model we initially developed for MNIST
generalizes well to other datasets.

5.1.2.2.1 Data preparation
The data is downloaded directly from the torchvision package of PyTorch. The output of
torchvision datasets are PILImage images of range [0, 1] which means they are already
normalized. For the subsequent experiments, we will use these normalized images as the
targets during supervised training.

36 Experiments

Fig. 5.9 Sample images from CIFAR-10 dataset.

5.1.2.2.2 Implementation details
To generate CIFAR-10 images we need to modify the convolutional and deconvolutional
architecture that we used for MNIST dataset. The architecture is described below.

• The initial distribution q(zzz0|xxx) is parameterized with four (instead of three) convolu-
tional layers followed by two fully-connected layers. The convolutional layers have
3×3 filters, [16,32,32,16] feature maps, stride of [1,2,1,2] and relu activations. There
is a padding of 1 for each convolutional layer. The fully-connected layers have 512
hidden units in the hidden layer and relu activations. The output are mean and diagonal
covariance of a Gaussian. We also added batch normalization after every convolutional
and fully-connected layer. The default dimension of output variable (zzz) is increased
from 20 to 40. We increase the number of convolutional layers and reduce the size of
filter so that we can capture more details in the image since CIFAR-10 images are more
sophisticated than MNIST images. The dimension of latent space is also increased
because we have more information to encode.

• The forward model qt(vvv
′
t |xxx) and the inverse model rt(vvvt |xxx,zzzt) have the same archi-

tecture as before except that we increased the number of hidden units from 300 to
512.

• The decoder architecture mirrors the inference model q(zzz0|xxx). It has two fully-
connected layers followed by four deconvolutional layers. Each layer is followed
by a batch normalization operation. An output padding of 1 is also added for the first

5.1 Hamiltonian variational inference (HVI) 37

and third deconvolutional layers. The output of the last layer is passed through sigmoid
activations.

There are two choices for the likelihood function p(xxx|zzz): the first one is a multivariate
Bernoulli whose probabilities are computed from zzz with a neural network:

log p(xxx|zzz) =
D

∑
i=1

xi logyi +(1− x) · log(1− yi) (5.3)

where yyy is the output from the decoder which has the same size as the target. For CIFAR-10
images, this size is 32×32×3= 3072 (in comparison, for MNIST image it is 28×28= 784).
This is the choice we used for the previous MNIST experiments.

Alternatively, we can use a multivariate Gaussian with a diagonal covariance to express
the likelihood function:

log p(xxx|zzz) = logN (xxx; µµµ,σσσ222III) (5.4)

where µµµ and σσσ222 are outputs from the decoder. Intuitively we are measuring the “distance” of
the target from the output, which is represented by a multivariate Gaussian.

The first choice is best for targets with binary data, like the binarized MNIST we used for
previous experiments. The second choice is better suited for continuous data like images.
However, for the subsequent experiments we will use the first choice as we discovered that it
already works pretty well during training in practice. To do that, we have sigmoid activations
at the end of the decoder ouput layer to squeeze the output into the range [0, 1].

To test the performance of our HVI model, we also implemented a VAE with the same
convolutional/deconvolutional architecture and their results are compared in the next section.

An Adam optimizer with adaptive learning rate is used to optimize both the neural
networks and the step size ε . The initial learning rate is set to be 0.0001 and it is multiplied
by 0.95 for every 10 epochs. The initial step size ε is set to be e−4.6 = 0.01 for every
dimension. The step size for each dimension is clamped between [0.001, 0.5].

5.1.2.2.3 Results
The results are obtained by training for 300 epochs. A comparison between convolutional
VAE and convolutional HVI is shown in Table 5.5 and Figure 5.10. Due to time constraint,
we only tested the convolutional HVI model with 4 leapfrog steps. From Figure 5.10 we
can’t see any huge difference between the ELBO, though convolutional HVI does give a
slightly better result as can be seen from Table 5.5.

After training, the trained decoders are used to generate 64 images and the results are
shown in Figure 5.11. As we can see, there is no significant difference between the images,

38 Experiments

Model type
ELBO of different data type

Training Testing Log-likelihood

VAE -1819.92 -1827.13 -

HVI+fully-connected:
4 leapfrog steps -1819.85 -1827.10 -1826.92

Table 5.5 Comparison between convolutional HVI and convolutional VAE.

(a) Training data (b) Testing data

Fig. 5.10 Comparison of CIFAR-10 ELBO between convolutional VAE and convolutional HVI.

5.1 Hamiltonian variational inference (HVI) 39

(a) convolutional VAE, 1st epoch (b) convolutional VAE, 300th epoch

(c) convolutional HVI, 1st epoch (d) convolutional HVI, 300th epoch

Fig. 5.11 Comparison of generated images between different models at different epoch.

though 5.11d does seem to have more details retained compared with Figure 5.11b. In
summary, HVI does not seem to have a clear advantage on CIFAR-10 dataset, we are able to
get a small improvement but need to sacrifice computation time, which can be not worthy
under certain circumstances.

40 Experiments

5.2 Riemannian Manifold Hamiltonian variational infer-
ence (RMHVI)

In this section we will attempt to implement Riemannian Manifold Hamiltonian variational
inference (RMHVI) and test it on the MNIST dataset.

5.2.1 Fully-connected neural network configuration

The most significant difference is that in RMHVI, we no longer need a forward model
qt(vvv

′
t |xxx). It is replaced by a function that calculates the Fisher information matrix G(zzz0). This

matrix has the same functionality as the diagonal covariance matrix from the forward model
does. We draw initial samples of the momentum variable vvv

′
t from a multivariate Gaussian

distribution N (0,G(zzz000)).
The overall architecture is shown in Figure 4.3.

• The initial distribution q(zzz0|xxx) is parameterized with a fully-connected neural network
with two hidden layers, softplus activations and 300 hidden units in each hidden layer.
The output are mean and diagonal covariance of a Gaussian. The default dimension of
output variable (zzz) is 20.

• The inverse model rt(vvvt |xxx,zzzt) is parameterized using a shallow fully-connected network
with one hidden layer that has 300 hidden units, softplus activations and outputs mean
and diagonal covariance of a Gaussian.

• The decoder is parameterized using a shallow fully-connected network with one hidden
layer that has 400 hidden units and relu activations, and an output layer with 784 output
size and sigmoid activations.

5.2.1.1 MNIST experiments

5.2.1.1.1 Data preparation
The data in MNIST is binarized by sampling from a multivariate Bernoulli distribution.

5.2.1.1.2 Implementation details
The number of fixed point iterations is typically set to be around 5 and 6 to achieve conver-
gence. For the second fixed point iteration (starting from state 14 of algorithm 5), we reduce
this number to 1 as it is very costly. When computing the Fisher information matrix G(zzz),
by default we draw 5 samples yyy from the multivariate Bernoulli distribution to calculate the

5.2 Riemannian Manifold Hamiltonian variational inference (RMHVI) 41

Model type
ELBO of different data type

Training Testing Log-likelihood

VAE -118.51 -121.26 -

HVI+fully-connected:
1 leapfrog step -102.45 -104.96 -101.24
RMHVI+fully-connected:
1 leapfrog step -108.73 -110.94 -110.35

Table 5.6 Comparison between VAE, HVI and RMHVI with 1 leapfrog step.

variance of the gradients, as we found that this is the major computation bottleneck during
training so we keep this number small for now. We have also decided to keep the matrix G(zzz)
as a diagonal matrix for now.

All the gradients are computed using the autograd package in PyTorch. Though we have
an explicit expression of the gradient of the Hamiltonian w.r.t. qqq as shown in equation 4.9,
we decide not to compute the trace of the matrix but to differentiate the Hamiltonian w.r.t. qqq
directly as this way is more efficient.

5.2.1.1.3 Results
The results are obtained by training for 50 epochs and are shown in Table 5.6 and Figure 5.12.
We can see that when using only 1 leapfrog step, RMHVI model is still able to outperform
vanilla VAE, but it’s worse than HVI model.

There are several possible explanations. 1) First, we are using a diagonal Fisher informa-
tion matrix G(zzz) which assumes independence between dimensions, however, in reality the
correlation between dimensions does exist, so our simplified assumption makes the matrix
G(zzz) inefficient in adapting to the natural geometric structure of the density model p(zzz) in
Riemannian manifold. 2) We are taking 5 samples yyy from the multivariate Bernoulli distribu-
tion when calculating G(zzz), which is a bit small for obtaining a Monte Carlo estimate of the
variance. However the number of samples n heavily influences the computation overhead,
thus if we set n too big, the computation overhead will undermine RMHMC’s benefits.

Two sets of generated images after 50 epochs are shown in Figure 5.13. Both images can
reconstruct the original MNIST images reasonably well, with the second image generated by
RMHVI looking slightly better than the first one generated by HVI. This contradicts the fact
that HVI gives a better ELBO value. Thus we have reason to believe that the reconstruction
error of RMHVI is not much worse than that of HVI, it might be even better.

42 Experiments

(a) Training data (b) Testing data

Fig. 5.12 Comparison of ELBO between different models, 1 leapfrog step.

(a) HVI with 1 leapfrog step (b) RMHVI with 1 leapfrog step

Fig. 5.13 Comparison of generated images between HVI and RMHVI.

5.2 Riemannian Manifold Hamiltonian variational inference (RMHVI) 43

(a) Training data (b) Testing data

Fig. 5.14 Comparison of negative reconstruction error between HVI and RMHVI.

To further compare the performance of HVI and RMHVI models and confirm our
hypothesis, we store the average negative reconstruction error log p(xxx|zzz) separately and
they are compared in Figure 5.14. As we can see there is no significant difference in
the reconstruction error, meaning that HVI is able to achieve a smaller KL-divergence:
−DKL(qφ (zzz|xxx(i))||pθ (zzz)), which leads to a higher ELBO value as we see in Figure 5.12.

L(θ ,φ ;xxx(i)) =−DKL(qφ (zzz|xxx(i))||pθ (zzz))+Eqφ (zzz|xxx)
[

log pθ (xxx(i)|zzz)
]

(5.5)

5.2.2 Convolutional neural network configuration

5.2.2.1 MNIST experiments

5.2.2.1.1 Implementation problems
In this section, we attempt to implement the RMHVI model with convolutional neural
network configuration. This is a failed attempt and we will explore the possible reasons. The
model architecture is shown in Figure 5.15.

The first thing we notice during implementation is that, if we use the default initialization
mechanism of convolutional neural networks in PyTorch, we encounter numerical errors
during training. The elements of Fisher information matrix G(zzz) become very small, the
mean of diagonal elements is around 6.67×10−6.

1) Therefore we switch to Xavier initialization, which is a method that automatically
determines the scale of initialization based on the number of input and output neurons. It
was first introduced in paper [4]. We use the xavier_normal_ function which initializes the
weights by sampling from a zero mean Gaussian with variance Var(www). The variance is

44 Experiments

Fig. 5.15 Graphical representation of RMHVI model with convolutional networks.

determined by the following expression:

Var(www) =
2

nin +nout
(5.6)

where nin is the number of input neurons and nout is the number of input neurons of the
next layer. Xavier initialization ensures the variance of ouput from a layer is the same as
the variance of input to this layer. After doing this, the mean of diagonal elements in G(zzz)
increases to around 3.78×10−4, which is still too small.

2) We then try to clamp the value of diagonal elements in G(zzz) into a reasonable range.
But the result is that all elements have the same value, which is the minimum value of
the range. This is undesired because it forces the Riemannian manifold to have the same
geometric structure everywhere, which is incorrect.

3) We also try to divide the diagonal elements by the minimum value among all the
elements, expecting all the elements to fall in a reasonable range while in the same time
remain the relative ratio among each other. But this could result in some massive elements.

4) Finally, we try to add a constant to all the diagonal elements. From the fully-connected
configuration we can obtain the mean of the diagonal elements, which is around 1.6. There-
fore we add this quantity to all the diagonal elements. This would have a similar result as in
solution 2), because now all the diagonal elements are around 1.6.

In summary, it is very difficult to obtain a reasonable G(zzz) to train the model. The
reason is straightforward: we have a much more complicated decoder, indicating that the
Riemannian manifold for p(xxx|zzz) has more geometric details that can be hard to grasp.

5.2 Riemannian Manifold Hamiltonian variational inference (RMHVI) 45

In comparison, when we use fully-connected neural networks as decoder, the underlying
Riemannian structure is much easier to be learned because we have fewer nonlinearities.

(All the detailed PyTorch implementation of the models mentioned in this chapter can be
found at: https://github.com/ericZYZ/HVI-RMHVI-for-VAE)

Chapter 6

Summary and Future Work

6.0.1 Summary

The dissertation addresses one important problem in machine learning, which is to approxi-
mate the intractable posterior when applying Bayesian inference. In particular, we use VAE
as the framework for testing the performance of different algorithms because the vanilla VAE
suffers from the over-simplified assumption of the latent space distribution. Naturally we can
use it as a baseline when comparing model performance.

We started by introducing this problem and the motivation of this dissertation in Chapter
1. Then in Chapter 2 we introduce the necessary background knowledge for our methodology.
There have been some existing methods in the current literature that aim to solve the same
issue in various angles, and they are briefly explained in Chapter 3. Chapter 4 and 5 describe
the model architecture, implementation details and the corresponding results.

To conclude, we have tested two frameworks: HVI and RMHVI. They follow the same
principle introduced in paper [16], which is to combine variational inference with MCMC
methods to enrich the posterior family for VAE. Two different neural network configurations
are implemented for HVI and they both outperform vanilla VAE for two different datasets.
We also discover the increase in leapfrog steps and latent variable dimensions are able to
improve HVI performance, but at the same time more computation time and memory usage
are needed. The fully-connected neural network configuration is successfully implemented
for the RMHVI model and it outperforms vanilla VAE as well. However it does not perform
as good as the HVI model, which can be due to various reasons detailed in section 5.2.1.1.3.
We also attempt to implement convolutional RMHVI model but failed to come up with a
workable solution mainly because the geometric structure of the convolutional decoder is
very complicated in Riemannian manifold.

48 Summary and Future Work

6.0.2 Future work

One obvious future work is to to explore more stable implementation of the convolutional
RMHVI model. We have outlined how we attempted to overcome the problem and the
possible reasons it failed in section 5.2.2. With more extensive experiments we may be able
to come up with a workable implementation.

So far we have been using Fisher information matrix as our Riemannian metric. However,
there can be other types of Riemannian metric as well. One possible extension of the
dissertation is to replace G(zzz) with different types of Riemannian metric and see whether the
performance of RMHVI improves.

Ideally, RMHVI should be able to outperform HVI, however in our experiment results we
see the opposite. One way to eliminate the potential engineering issues in the implementation
of the RMHVI model, we can first test it on some simpler problems like the Bayesian logistic
regression problem shown in paper [3]. Once we have proven the effectiveness of RMHVI in
such problems then we can test it on more complicated datasets like MNIST.

Another optimization can be made is the training speed. So far we have vectorized the
calculation of the ELBO in algorithm 3 and algorithm 4 for all the training images. However
there are certain places in the code where we did not fully vectorize. For example, during the
calculation of G(zzz) we need to use a for loop for n samples. Some of the limitations come
from PyTorch itself. If a different library is used we may be able to mitigate such issues and
make the training process faster.

References

[1] Burda, Y., Grosse, R. B., and Salakhutdinov, R. (2015). Importance weighted autoen-
coders. CoRR, abs/1509.00519.

[2] Dosovitskiy, A., Springenberg, J. T., and Brox, T. (2015). Learning to generate chairs
with convolutional neural networks. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1538–1546.

[3] Girolami, M. and Calderhead, B. (2011). Riemann manifold langevin and hamiltonian
monte carlo methods. Journal of the Royal Statistical Society Series B, 73(2):123–214.

[4] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics.

[5] Kingma, D. (2015). Slides in black box inference and learning workshop, nips’15,
montreal, canada.

[6] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

[7] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems 29, pages 4743–4751. Curran Associates, Inc.

[8] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. CoRR,
abs/1312.6114.

[9] Leimkuhler, B. J. and Reich, S. (2004). Simulating Hamiltonian dynamics. Cambridge
monographs on applied and computational mathematics. Cambridge Univ., Cambridge.

[10] Paisley, J. W., Blei, D. M., and Jordan, M. I. (2012). Variational bayesian inference
with stochastic search. In ICML. icml.cc / Omnipress.

[11] Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L. (2016).
Variational autoencoder for deep learning of images, labels and captions. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems 29, pages 2352–2360. Curran Associates, Inc.

50 References

[12] Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M., Wood, F., and Teh,
Y. W. (2018). Tighter variational bounds are not necessarily better. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pages 4274–4282.

[13] Rao, C. R. (1992). Information and the accuracy attainable in the estimation of statistical
parameters. In Springer Series in Statistics, pages 235–247. Springer New York.

[14] Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows.
In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages 1530–1538. JMLR.org.

[15] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages
1278–1286.

[16] Salimans, T., Kingma, D. P., and Welling, M. (2015). Markov chain monte carlo
and variational inference: Bridging the gap. In Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15,
pages 1218–1226. JMLR.org.

[17] Wikipedia contributors (2018a). Metric tensor — Wikipedia, the free encyclopedia.
[Online; accessed 11-August-2018].

[18] Wikipedia contributors (2018b). Riemannian manifold — Wikipedia, the free encyclo-
pedia. [Online; accessed 11-August-2018].

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Dissertation organization

	2 Background
	2.1 Variational Auto-Encoder
	2.1.1 Problem scenario
	2.1.2 Structure
	2.1.3 The variational lower bound
	2.1.4 The SGVB estimator

	2.2 Hamiltonian Monte Carlo
	2.2.1 Hamiltonian dynamics
	2.2.2 Proprieties of Hamiltonian dynamics
	2.2.3 Link to the target distribution
	2.2.4 The Hamiltonian Monte Carlo algorithm

	2.3 Riemannian Manifold Hamiltonian Monte Carlo
	2.3.1 Riemannian manifold
	2.3.2 Exploiting Riemannian manifold concepts in MCMC
	2.3.3 The Riemannian Manifold Hamiltonian Monte Carlo algorithm

	3 Related Work
	3.1 Importance Weighted Auto-Encoder
	3.2 Normalizing Flows
	3.2.1 Planar flow
	3.2.2 Radial flow
	3.2.3 Alternative flows

	3.3 Inverse Autoregressive Flow

	4 Methodology
	4.1 Combining variational inference with MCMC
	4.1.1 Basic idea
	4.1.2 ELBO of general MCMC variational inference
	4.1.3 ELBO of Hamiltonian variational inference
	4.1.4 ELBO of Riemann manifold Hamiltonian variational inference
	4.1.5 Theoretic comparison between models

	5 Experiments
	5.1 Hamiltonian variational inference (HVI)
	5.1.1 Fully-connected neural network configuration
	5.1.1.1 MNIST experiments
	5.1.1.1.1 Data preparation
	5.1.1.1.2 Implementation details
	5.1.1.1.3 Results

	5.1.2 Convolutional neural network configuration
	5.1.2.1 MNIST experiments
	5.1.2.1.1 Data preparation
	5.1.2.1.2 Implementation details
	5.1.2.1.3 Results

	5.1.2.2 CIFAR-10 experiments
	5.1.2.2.1 Data preparation
	5.1.2.2.2 Implementation details
	5.1.2.2.3 Results

	5.2 Riemannian Manifold Hamiltonian variational inference (RMHVI)
	5.2.1 Fully-connected neural network configuration
	5.2.1.1 MNIST experiments
	5.2.1.1.1 Data preparation
	5.2.1.1.2 Implementation details
	5.2.1.1.3 Results

	5.2.2 Convolutional neural network configuration
	5.2.2.1 MNIST experiments
	5.2.2.1.1 Implementation problems

	6 Summary and Future Work
	6.0.1 Summary
	6.0.2 Future work

	References

