
Optimising spoken dialogue systems using Gaussian
process reinforcement learning for a large action set

Thomas F. W. Nicholson

Department of engineering

University of Cambridge

M.Phil in Machine Learning, Speech and Language Technology

The dissertation is submitted for the degree of Master of Philosophy

Pembroke College 11th August, 2016

1

MPhil thesis MLSALT

Abstract

In dialogue management for statistical dialogue systems we seek to learn a policy that
can select the optimal action for the system to perform. This dissertation looks at how by
defining kernels over the action space we allow the extension of policy optimisation to very
large action sets. As well as defining a general form for performing reinforcement learning
in any domain over which a kernel can be defined, we look at the specific case of using tree
kernels for system actions, perform experimental justification of the approach, and report some
provisional, though disappointing, dialogue performance.

Page 3

MPhil thesis MLSALT

Contents

Introduction 5

Background 6
Modular Composition of Dialogue Systems . 6

Speech Recognition . 6
Semantic Decoding . 6
Ontology . 6
Dialogue Management . 7
Natural Language Generation . 9
Speech synthesis . 9

Policy Optimisation . 9
Reinforcement learning . 11
Gaussian process regression . 13

Kernels . 13
Sparse representative points . 14

Related Work 16

Method 20
Convolution Kernels . 20

Action as strings . 20
Actions as trees . 20

Tree Kernels . 21
Weighted Tree Kernel . 24

Reducing action selection complexity . 25
Clustering of actions . 26

Cold Start . 27
Resultant dialog manager architecture . 28
Abstracted view . 28
Experimental Setup . 29

Results 30
Kernel values . 30
Feature space embedding . 30
Smoothness of Q-value . 33
Hierarchical representation . 34
Dialogue success . 35
Condintionedness . 39

Future work 40
Active learning . 40
Improvements to action space decomposition . 41
Hyperparameter tuning . 42
Changes to kernels . 42
Extensions to other domains . 43
Performance improvements . 43

Conclusion 44

Appendices 48

Page 4

MPhil thesis MLSALT

Introduction
Spoken Dialogue Systems (SDS) allow users to interact with an automated system using spoken
natural language as the medium of communication. Such an interaction style has been present in
science fiction for decades, and has recently found commercial success, and could become one of the
most pervasive interaction styles in the post-mobile era. SDS are alluring because they represent a
very familiar interaction style, and can appear as natural as interacting with a truly intelligent agent.

SDS are typically multi-component systems in which each component solves a hard machine learn-
ing problem, before passing the output along to the next component in a pipeline process. In
order for SDS to become the pervasive interaction styles that some envisage, each of the com-
ponents will have to yield significant improvements. It is one particular component that forms
the focus of this work, that of policy optimisation in which the system learns how to select the
action to be performed next. This action may be informing the user of, or making a request for
more information or may be external to the user, as in booking an item or phoning a certain contact.

Currently this learning of action select is performed on a much smaller hand-engineered represen-
tative subset of all possible actions which are then transformed using a hard-coded function into
the actual system action that is to be performed. The presence of hand-coded features and fea-
ture mappings represents not just an aesthetically displeasing imperfection, but is also a barrier
to scalability. If a system wishes to be deployed to a new domain, or have its domain expanded
or use multiple ontologies, then the hand-engineered part of the system has to be either rewritten
or expanded. If instead learning could take place over the original actions then a system could be
instantly applied to any number of possible new domains simply by automatically optimising the
policy of the SDS.

This work focuses on investigating the necessary steps to allow Gaussian process-based reinforce-
ment to be performed on an action set, independent of size, given only a kernel function, and
attempts to show the feasibility allowing a SDS to optimise the selection of a potentially very large
number of original actions with an appropriately defined kernel. All practical implementation was
performed within the Cambridge University Engineering Department dialogue systems tool kit,
cued-pydial. Reinforcement learning over a large action set has been a lively area of research for
decades, and the problems to be overcome are extremely challenging.

Page 5

MPhil thesis MLSALT

Background
Modular Composition of Dialogue Systems
A SDS is typically a modular system consisting of the sub-components shown below in fig. 1. This
modular design allows individual components to be researched and experimented on in isolation,
removing the possibility of confounding effects of system-level interactions.

Figure 1: High level components of a SDS

Speech Recognition

Either initialising the interaction episode themselves, or being prompted by the system the user
makes a spoken natural language query to the system. This waveform data is interpreted by the
automatic speech recognition system, which is able to convert the user’s utterance into written text.
Currently ASR do not perform perfect recognition of speech, particularly in noisy environments in
which SDSs are typically used, meaning that errors can still be present in the transcribed speech.
To get around this problem SDS ASR modules will output an n-best list of multiple hypotheses
representing a number of possible transcriptions of the user’s speech.

Semantic Decoding

The natural language hypotheses of the ASR unit are passed on to the semantic decoding mod-
ule, also termed the natural language understanding (NLU) module. This modules processes the
current hypothesis set, possibly in the context of what has been said before, and produces a machine-
readable representation of the users intention. Such a conversion is shown in fig. 2 where a free-form
natural language query is converted into a structured, machine readable semantic representation of
the user’s intention.

Figure 2: Conversion of ASR hypothesis to internal intention format

Ontology

The ontology defines the domain of the SDS, and consists of two elements. First is a record of
entities about which we wish to perform queries on, which typically takes the form of a structured
database. Second are the properties available to a particular domain, which will consist of a list of
requestable and informable slots, which are a list of database columns which the user can request

Page 6

MPhil thesis MLSALT

information about, and inform the system about respectively. These two together define the set of
possible master actions.

An ontology can be seen as defining the entities and related properties that the system can under-
stand and talk about. This is important in task-orientated dialog systems in which it is assumed
that the user has a desire to perform a particular task that the system must fulfill. The ontology
defines the domain and possible tasks that can be performed in it.

An overview of permissible actions is contained in appendix A, it is recommended that the reader
briefly familiarise themselves with the anatomy of system actions.

Dialogue Management

The user intent representation forms the input of the dialog management module which has the
responsibility of selecting the system response. The internal structure of this module is shown in
fig. 4. The user intent representation from the NLU is first passed to the belief tracker. The re-
sponsibility of the belief tracker is to take the system form of the user intent and convert it to a
probabilistic representation of the system’s belief about the user’s intention throughout a dialogue
episode [53]. The belief tracker can utilise information from previous turns, and so updates its on-
going hypothesis as each new user intent arrives. The belief state is represented in the cued-pydial
system as a dictionary of slots to slot values. The names of slots, and their number of possible
enclosed values is extracted from the ontology. A slot can represent a distribution over the value of
a particular goal (what a user intends to do), the probability of a particular method being employed
by the user (how the user intends to do it), and a distribution over requested slots (what info user
has asked for). The correct modeling of the belief state over time is a lively area of research [19],
however for this work only the baseline focus tracker is used. There has been work on moving
away from explicit distributions over ontology-extracted slots towards implicit distributed repre-
sentations as produced from a neural network [20], and to show how the proposed approach could
work in such a system, we treat the focus tracker belief state as a fixed length vector representation).

The belief state acts as input to the policy optimiser which is responsible for learning how to best
select the next system action. From the ontology the set of all possible actions are extracted, which
is termed the master action set. The master action set includes all inform responses for requested
entity information, all possible select actions requesting user-clarification on pair-wise alternatives
for a particular slot, confirm actions for each slot-name-value combination, and an inform action
for each entity in the ontology. For the TableTop (TT) domain this dissertation will examine, this
results in a master action set size of 5025, mostly consisting of select actions requesting clarification
on ambiguous slot values. The TT domain is relatively small, and other SDS domains will have
numbers of actions orders of magnitude larger.

In the current system, in order to reduce the number of different actions that need to be enumerated,
the master action set is projected down into summary action space by the summary action function
to produce the summary action set which is of size on the order of tens. For the tabletop domain,
all summary actions are:

• request_〈requestable-slot〉
• confirm_〈requestable-slot〉
• select_〈requestable-slot〉
• inform
• inform_byname
• inform_alternatives
• inform_requested

Page 7

MPhil thesis MLSALT

where 〈requestable-slot〉 is one of area, food, and pricerange.
The policy optimiser evaluates all possible summary actions against the current belief state and se-
lects the action that it believes is the “best” action (i.e. that most swiftly leads to the user achieving
their goal) to perform given the beliefs it holds about the user’s intentions.

Once a summary action has been selected, it is passed to the summary action function which looks
inside the belief state to decide how to project back into master actions space. An example of the
construction of a master action is shown in fig. 3. Here the policy manager has selected the sum-
mary action select_food which prompts the user to select between which food is intended given
current ambiguity over slot values. This summary action and the current belief state are passed
to the summary action function. Given hand written rules it can be ascertained that a select
method over food requires that the user is asked to select between the two slot values under the
food slot that have greatest uncertainty, here these are indian and chinese which allow the
master action to be constructed.

Figure 3: Transformation of summary action into master action space. We view a reduced belief
state, viewing only a proportion of the food slot values

This flow of information within the dialogue manager is shown in fig. 4. The above data flow
shows the two shortcomings of the summary action mapping approach. Firstly specific rules are
required to be written for each action type. In the situation above the summary action function
was hand-coded to recognise that select action requires the disambiguation between slots. For
any new action type that is added to the system, additional rules will have to be added as to how
the belief state is to be interpreted. Secondly, the summary action function relies on the belief
state being explicitly interpretable which is the case for the slot-name slot-value format adopted
by the currently used belief state tracker, but may not be the case for, e.g. neural network and
other distributed representation schemes. Removing the need for the summary action function, and
therefore removing the above obstacles to scalability and applicability of new methods is necessary
for the advancement of SDS.

Page 8

MPhil thesis MLSALT

Figure 4: Dataflow within summary action-based dialogue manager. Note the complexity involved
in calculating the action, and how the system in not well de-coupled

In contrast to other components in SDS which are supervised learning problems, dialog management
is an exploratory problem without a fixed set of training data, a very different approach to the
optimisation of other modules.

Natural Language Generation

The system action decided by the dialogue management module forms the input of the natural
language generation (NLG) module. In this unit, the machine-representation of the action the
system wishes to perform is converted to a human-understandable natural-language textual format.

Speech synthesis

Once a natural language format of the system action has been constructed it is passed to the speech
synthesis module. This module takes the textual natural language of NLG and converts it to its
audialised form, this waveform can then be played to the user.

Policy Optimisation
Of the above modules, dialogue management is of direct interest to our problem, specifically the
learning of a policy, π that selects the best system action, a, from the set of all possible actions A
to perform given a system belief state, s:

π(s) = argmax
a∈A

Eπ(R(s, a))

Here R(s, a) =
�t=0

k r(st, at) is a sum over all time-steps, where r(st, at) is a measure of the
immediate utility of taking action at in state st, and R(s, a) therefore measures longterm, overall
utility of choosing to perform action a when in state s. Because we know that a dialogue system
proceeds in a given number of steps (i.e. it is episodic), k is known, and so we do not need a
discounted measure of expected utility.
For dialogue systems a sensible method of assigning utility to an action is whether it leads to suc-
cessful completion of the dialogue in as few steps as possible, and is therefore only measurable at
the end of dialogue episode. The expectation over the policy Eπ(·)(R(s, a)) can be understood as
saying: given we take action a now, what will the accumulated utility be assuming we keep taking
actions decided upon by policy π.

Page 9

MPhil thesis MLSALT

Figure 5: POMDP formulation of SDS policy optimisation

Due to speech understanding errors, and potential misunderstandings of the user, we cannot exactly
track the current state of the user’s intentions, and therefore we can represent graphically the above
formulation as in fig. 5. The user’s goals are st, the output of the NLU is ot the system action
selected is at and the immediate utility rt. The belief state can therefore be understood to be
a distribution over all possible user intentions. Arrows represent causal factors, unshaded shapes
represent observed variables, and shaded shapes represent hidden variables.
This formulation is recognisable as a partially observable Markov decision process (POMDP) which
is formalised as a 7-tuple 1:

(S,A, PT (·|·, ·), r(·, ·),O, PO(·|·), h0)

where:

• S is the set of all states (st ∈ S), which represents all possible discrete intentions of the user.
This is the user’s true intention.

• A is the set of master actions (at ∈ A)
• PT (st+1|st, at−1) defines the probability of transitioning to hidden state st+1 given we were in
ht and performed action at, this models how the user’s intention responds to system actions

• r(s, a) is the immediate reward for performing action a in state s, which for SDS will looks
something like r(s, a) = Rsuccess for actions that directly cause the completion of a dialogue,
and r(s, a) = −Rpenalty for all other actions.

• S is the set of all observable states (st ∈ S), which is the output of the NLU.
• PO(ot|st) is the defines an observation probability distribution which models how observed

states are produced given a hidden state. This models how a user articulates their intention,
how this is decoded by ASR and encoded by the NLU. For the general POMDP problem the
probability will also be conditioned on the action taken at time t−1, however for our problem
the belief state is not directly conditional on the system action taken at the previous step.

Policy optimisation in POMDPs is intractable [22], and while there exist approximate policy op-
timisation methods making assumptions specific to the SDS problem (see [40], [54]) they require
the hand-factorisation of the hidden state inducing bias. However, once we notice that our belief
state bt is a distribution over the discrete hidden state st of the POMDP given the observation
bt = P (st|ot, bt−1), we can reformulate our problem as a Markov decision process (MDP) with
continuous states, which is illustrated in fig. 6.

1As explained above for the SDS problem there is no need for a discounting factor γ

Page 10

MPhil thesis MLSALT

Figure 6: Graphical representation of the MDP problem. Rewards depend on the current belief
state, the action and the resultant belief state.

All variables are now observed and our sequence of system belief state forms the respective bt val-
ues; rewards are now dependent on the state and action and are Rsuccess for actions that result in
successful completion of the dialogue, and −Rpenalty for all non-terminus-inducing actions; at are
the system actions.

Reinforcement learning
With the formulation of SDS policy optimisation as an MDP, we can now introduce reinforcement
learning (RL) to learn a policy that selects actions so as to maximise expected reward. We define
our deterministic action selection policy to be: a = π(b), where a is a discrete action and b is the
belief state.

In RL we use training information to learn how to evaluate actions rather than learning directly
how to predict correct actions. By learning functions that approximate the expected long-term
reward of being in a certain belief state, or taking a certain action in a state, we can define a policy
so as to maximise our estimates of the long term reward, allowing both successful exploration and
exploitation of our state space while implicitly learning to control the environment.

We fist define the total reward an agent receives at and after time t:

Rt =
∞�

k=0

γkrt+k+1

This says that we total up all subsequent rewards, down-weighting all future rewards by using the
exponential discounting factor γk, where 0 ≤ γ ≤ 1 which penalises rewards futher in the future
the lower γ is. Discounting assures that for infinite window MDPs we have a finite total reward,
but as explained above, can be ignore for our problem.
Given this notion of long-term reward, we can define the value of a state, b, under a given policy π:

Page 11

MPhil thesis MLSALT

V π(b) = Eπ

�
n�

k=0

rt+k+1

�

=

�

b�
p(b�|b, π(b)) [r(b, π(b)) + V π(b�)] db�

Which is the Bellman equation for value function V π for a fixed horizon of length n. The Bellman
equation relates the value of a state with the value of its successor states by averaging over all pos-
sible future possibilities of reward weighted by their probability. Note that we integrate over states
since they are continuous, for the discrete case this would be replaced with a summation over states.

We can also look at the Q-function that maps a state action pair to the respective expected long-
term reward under a given policy:

Qπ(b, a) =

�

b�
p(b�|b, a) [r(b, a) +Qπ(b�, π(b�))] ds�

We can then use the Q-function to define our policy:

π(b) = argmax
a

Q(b, a)

The defined policy amounts to choosing the action that maximises long-term expected reward from
a state. We can do this without requiring an explicit environment model as would be necessary
when only using the value function.

There are many ways of learning the Q-function [49] with temporal difference (TD) learning making
up an important subclass of approaches. In TD for learning the Q-function, our approximation is
sequentially adjusted using the update:

Q(bt, at) ← Q(bt, at) + α [rt+1 + γQ(bt+1, at+1)−Q(bt, at)]

Essentially at each update the Q-function estimate for a particular state action pair (bt, at) is ad-
justed so that it greater resembles the target value of rt+1 + γQ(bt+1, at+1) which is the immediate
reward plus the discounted future award. The rate at which adjustment occurs is controlled by the
α parameter, analogous to a learning rate. For GPSARSA α = 1.

Now we have a rule of how to update our Q-function estimates, we can derive an online, exploratory
learning algorithm:

Algorithm 1 SARSA on-policy algorithm
1: procedure Sarsa
2: Q(b, a) randomly initialised ∀b, ∀a
3: while not finished do � Typically iterate for a fixed number of episodes
4: bt ← belief state tracker output
5: at ← �-greedy policy decision from Q
6: for t in episode do
7: perform at observe rt+1 and bt+1

8: at+1 ← �-greedy policy decision from Q
9: Q(bt, at) ← Q(bt, at) + α [rt+1 + γQ(bt+1, at+1)−Q(bt, at)]

10: bt ← bt+1

11: at ← at+1

Page 12

MPhil thesis MLSALT

The �-greedy policy decision is defined as:

π(b) =

�
argmaxa Q(b, a), with probability 1− �

randomly sample an a, otherwise

Which balances the needs of exploitation (using the accrued knowledge) versus exploration (trying
actions/ state pairs that have not yet been explored).

The SARSA algorithm as it is presented above stores an explicit value for each (b, a), however this is
only possible for small finite state and action spaces. Instead we apply function approximation, and
treat learning the TD-updated values of the Q-function as a regression problem so we can generalise
to unseen areas of state-action space.

Gaussian process regression
In the problem of regression we seek to learn a mapping f : X → Y which takes a point from some
input space and maps to a point in some output space. Returning to Q-function approximation we
see that we can treat this as a function Q : B ×A → R mapping from belief state-action pairs to
a real which represents the expected reward.

By using Gaussian processes [41] we can define a distribution over functions which is uniquely
defined by its prior mean function and covariance function:

f(x) ∼ GP(m(x), k(x,x�))

where

m(x) = E(f(x))
k(x,x�) = E [(f(x)−m(x))(x� −f(x�))]

and in which we define any finite subset of the target random variables to be from joint a Gaussian
distribution. For the rest of this discussion we assume that m(x) = 0, ∀x ∈ X .

Kernels

In the real world observations have noise. For the SDS’s reward this noise is introduced by the
system being unsure if successful completion has occurred, due to either incorrect user feedback
or inaccurate automatic evaluation. We therefore assume that each observation has a component
of additive noise, y = f(x) + �, and we assume each � is independent and identically distributed
Gaussian with mean 0 and variance σ2. Let us define X∗ to be a set of unseen datapoints for which
we wish to predict the target values Y∗ = f(X∗) given that we have seen the training examples
Y = f(X) + � by the definition of GPs we have the joint distribution to be:

�
f(X)
f(X∗)

�
∼ N

�
0,

�
K(X,X) + σ2I K(X,X∗)
K(X∗,X) K(X∗,X∗)

��

where K(X,X∗) denotes the matrix of the covariances between each repsective point in X and X∗.
We can now simply construct the conditional distribution of the desired test targets given the test
and training input, and the training target values:

f(X∗)|X∗,X, f(X) ∼ N (µ,Σ)

Page 13

MPhil thesis MLSALT

where

µ = K(X∗,X)
�
K(X,X) + σ2I

�−1
f(X) (1)

Σ = K(X∗,X∗)−K(X∗,X)
�
K(X,X) + σ2I

�−1
K(X,X∗) (2)

The covariance function k(·, ·), also termed the kernel controls the modeling behaviour of the
Gaussian process and many exist for different scenarios[41]. In the current dialog system a squared
exponential (SE) kernel is used, where:

k(b, b�) = σ2 (b− b�)2

�

which has been shown [29] to be able to approximate any arbitrary continuous function2. The pa-
rameters σ and � control the functions deviation from its mean and length between major changes
in its direction respectively. This is the kernel that is used on the belief state in the current dialog
system. The SE kernel can not be used on summary actions, since they form a discrete domain,
and instead the Kroenecker delta function is used:

k(a, a�) =

�
1, if a = a�

0, otherwise

In order to combine the two kernel values, we multiply them together:

k((b, a), (b�, a�)) = k(b,b�)k(a, a�)

Essentially this amounts to AND ing their values: the resulting value will only be large if both
values are large. However when using the Kroenecker delta function the multiplication serves as a
switch so that when calculating the mean of the resultant Gaussian distribution µ and Σ, we con-
struct an estimate that is a linear smoothing of all belief states that were encountered for a specific
action. This is equivalent to having a separate GP over each summary action, and no “transfer of
knowledge” is possible between state-action examples that have different actions, and the approach
quickly becomes impractical as the size of the action set increases.

Sparse representative points

The calculation of the mean and covariance is typically dominated by the inversion Gram matrix
K(X,X) which is an operation that is O(n3) where n is the number of training points. This
soon becomes infeasible, and so we enforce a sparsity inducing constraint whereby we only add an
additional point to a dictionary of representative points if it is suitably distinct from other points
in the dictionary. This allows us to maintain a representative set of points of size m which we use
to approximate our test points. This reduces Gram matrix inversion to O(m3), where m << n. In
addition, since we add a single datapoint, x to our GP dictionary, X at the time, we can utilise the
incremental matrix inversion identity:

�
K k
k� k

�−1

=

�
I kk−1

0 I

� �
K− kk−1k� 0

0 K(x,x)

� �
I 0

k−1k� 0

�

where K = K(X,X) + σ2I, k = K(X,x) and k = k(x,x). This has the advantage that only
k(x, x) needs to be inverted, which amounts to division of a real, and therefore drastically reduces
computation time.

2assuming smoothness of the target function

Page 14

MPhil thesis MLSALT

Given the resultant Gaussian distribution at a certain point we can choose to either select the
mean or draw a sample. In this work we choose the sampling based approach, this encourages
exploration, particularly when the belief state does not change between turns and the same action
would be repeated multiple times otherwise.
The Bayesian treatment of modeling afforded by the GP approach has two notable benefits:

1. robustness to overfitting

2. quantification of uncertainty

Robustness to overfitting is a quality due to “Bayesian/ automatic Occam’s Razor” [42]. This al-
lows a model to be trained in limited-data environments and yet to maintain good generalisation
to unseen examples. This is particularly important in dialog systems, where training data is either
limited, or non-existent in which case live-interactions with real users is necessary. Performing train-
ing on real-world users is expensive and so we want to minimise the number of training examples
needed to make a robust model estimate.

The quantification of uncertainty is due to GPs providing a Gaussian distribution over values rather
than a point estimate. Using the variance of the resulting distribution we can quantify the models
uncertainty about the predicted value. This is highly useful to reinforcement learning, since when
performing an random action under �-greedy exploration, we can now select the action with the
highest variance to perform. This approach allows our RL algorithm to actively explore in areas
in which we are least confident about, and therefore could potentially harbour the best potential
improvements. Such approaches in which the model suggests potential candidates to learn from is
termed active learning. As well as choosing the most uncertain regions, there exist other methods
of selecting a certain point to evaluate called acquisition functions [44], which afford different ex-
ploration strategies.

Using a GP to approximate the Q-function in SARSA leads to the GPSARSA algorithm introduced
in [14], and formalised for the SDS domain in [15]. High level pseudo-code is provided below in
algorithm 2:

Algorithm 2 GPSARSA
1: procedure Sarsa
2: Define GP prior for Q-function
3: for d in dialogues do
4: bt ← initial belief tracker estimate
5: at ← �-greedy policy decision from Q
6: for t in turns of d do
7: perform action at, observe rt+1 and bt+1

8: at+1 ← �-greedy policy decision from Q
9: if (bt, at) is representative then

10: update GP posterior estimate of Q according to ((bt, at), rt+1)

11: bt ← bt+1

12: at ← at+1

Page 15

MPhil thesis MLSALT

Related Work
The desire to move to performing policy optimisation in the full action space progresses the work in
[16] in which the authors showed how it was possible to perform GPSARSA in the full belief space.
However this work still used the summary action space.

Recent work in [48] examined how to user recurrent neural networks (RNNs) to perform policy op-
timisation in master action space. They propose a Policy Network which consists of an RNN with
its output layer divided into partitions that predict a certain part of the system action. A depiction
of the system is shown fig. 7. The belief state is fed into the RNN which outputs a distribution over
intentions, a distribution over informable slots, and a probability that each particular requestable
slot is present. The RNN therefore outputs a “stub” of an action consisting of an intention and the
contained slot names. The values for the respective slot values are attained by examining the slot
values in the system belief state and verifying them agains items in the ontology.

Figure 7: Neural dialogue management using RNNs

The training of this system proceeds in two phases. In the first phase the model is trained on
supervised training data obtained from a Wizard of Oz experiment, and in the second phase the
model parameters are optimised using the RL natural gradient method.

While showing promising performance, and the ability to adapt to mismatch domain it suffers from
a number of drawbacks. Firstly, the need for training data restricts the ability to roll solutions
out to multiple domains, additionally although only a small number (≈ 100) training examples are
needed for the small problem attempted, requirements may be greater for larger domains. Secondly,
there is still the need to explicitly examine the belief state in the construction of the master action.
This may not be possible if the belief state is a non-interpretable structure such as a RNN hidden
state. Finally, the structure of the output is fixed, so that if a new intention, requestable slot, or
informable slot the model must be retrained from scratch. This inability to adapt to changes in
structure of the dialogue domain is a consequence of the parametric approach taken.

Outside of the field of SDS, some work has been done on RL with large and infinite action sets.

In [39], the authors identify the selection of the optimal action as the impediment to performing RL
in large action spaces. The authors generalise the notion of value functions V (b) and state-action

Page 16

MPhil thesis MLSALT

functions Q(b, a) to a set of functions to provide the generalised Bellman equation:

X∗
u(b) = max

a∈u
R(b, a) + γP (b�|b, a)max

u
X∗

u(b
�) (3)

where u ∈ u1, . . . ,n, ui ⊆ A is a set of actions, which each action potentially occurring in more
than one action set ui, and X∗

u is the generalised value function. The above equation defines the
generalised value function value to be the maximum discounted reward achievable by selecting an
action a from a subset of actions u. It can be seen that by setting u = A we arrive at the common
value function that performs a maximisation over all possible actions, and by having each action
subset ui consist of a different unique action we arrive at the Q-function. The authors show how it
is possible to formulate the optimisation of the Bellman equation as a linear program (LP), how-
ever the solution requires summation over all possible state values, as well as there a constraint
existing for each B × U , which can be prohibitively large for large discrete states, and intractable
for continuous action spaces such as the SDS policy optimisation problem. The authors go on to
provide a specific instantiation of the generalised value function, termed the H-function, in which
each action is envisioned to be at the vertex of a hypercube3, and each action consists of the set
of vertices on a face of the hypercube. Each dimension of the hypercube now partitions the data
into two (possibly not disjoint) sets, and by comparison of the resultant H-function values between
all pairs of sets along each dimension, we can find highest valued action by taking the union of all
the highest-valued action sets. A hypercube with |A| vertices has log2 |A| dimensions, and so the
search for the optimal action has had its temporal performance reduced from O(|A|) to O(log2 |A|).
While this is a considerable improvement, the LP solution is not suitable for large/ infinite state
spaces.

The decomposition of the action space as introduced above is a common theme in dealing with large
action spaces. In [13], the authors also use binary splits of the action space, by assigning error-
correcting output codes [11] (ECOC). ECOC is a multi-class classification approach that assigns to
each output label {y : y ∈ Y} a binary code of length C = γ log2(|Y|)4. The task is then to predict
the code, rather than directly predicting the for a particular label. This reduces a classification
problem with |Y | classes to a set of C separate binary classification problems, the outputs of which
form what the system predicts the binary representation the guessed class will be. The actual
predicted class can then be outputted by finding the action that is closest to the predicted binary
representation under the Hamming distance. The authors use Rollout Classification Policy Itera-
tion[24] (RCPI), policy iteration approach that generate training examples by using Monte-Carlo
(MC). These examples are then used to train a policy that directly classifies the optimal action in a
particular state, thereby posing policy optimisation as a classification task. The contribution of [13]
is to view the prediction of each bit in ECOC as a separate MDP and solve using RCIP. The au-
thors apply the approach to problems with action space sizes up to O(100) and small discrete action
spaces (250 states) and a 2d continuous state space. It is not clear how such an MC based approach
would scale up to larger state spaces, and whether the ECOC-based approach would generalise well
in situations where every possible action is not seen. The MC-based approach is particularly poor
for systems that may wish to interact with real-world users, since multiple dialogue runs would be
infeasible.

More recent work on large, discrete action sets has centered around deep reinforcement learning
[31]. In [18] the authors look at the specific problem of dialog systems where the state space consists
of textual strings, and actions consist of direct text responses to the current state. The action space
is therefore an unbounded discrete space. They propose a deep reinforcement relevance network
(DRRN). The DRRN consists of two separate DNNs, which map the state and action strings into

3Actions can appear more than once if the number of actions is not consistent with that needed to form a
hypercube

4The γ integer coefficient causes the representation length to be longer than the minimum required to represent
all actions uniquely, thus introducing redundancy

Page 17

MPhil thesis MLSALT

fixed length vector representations respectively. A dot product between these two representations
then forms the system’s approximation of the Q-function for that particular state-action pair. Al-
though it is promising to extend Deep-Q learning to unbounded spaces, the work still relies on a
small number of possible target actions that can be evaluated against the current system state. In
addition, the use of neural networks with point-estimated parameters discounts usage in low-data
environments.

By using the actor-critic method [3], and therefore modeling Q(b, a) and π explicitly, [12] con-
struct the Wolperting architecture. In this approach the discrete actions are first embedded in a
multidimensional state space Rn using knowledge available a priori. A function is then defined
fθπ : B → Rn that maps a state to a proto-action in the action space, corresponding to the ac-
tor. A k-nearest neighbour search is then performed over all actions (an approximation of which
is possible in time logarithmic in the number of actions [36]) to select the k actions Ak that most
resemble the predicted proto-action. The Wolperting algorithm then scores these actions using
the critic, QθQ : B × A → R, and chooses the action that maximises the Q-value at the current
state: â = maxa∈Ak

QθQ(b, a). fθπ and QθQ) are optimised using Deep Deterministic Policy Gradi-
ent [26]. This is an interesting approach that leverages the benefits Deep-Q learning in continuous
actions spaces. However it is unclear how a dialog action can be embedded into a continuous space,
this approach also suffers from the drawbacks of using parametric models in low-data environments.

Continuisation of discrete action problems under an actor-critic framework using neural network
approximation is also used in [51], which employs continuous adaptation of ACLA[52]. A real valued
action is outputted by the actor, and this is then rounded to the nearest whole number which is
taken as the discrete action. This approach can only be applied to discrete action spaces that have
an ordinal interpretation, which is not usable in a dialog system’s action space.

Although not directly applicable to our domain, more work has been done on RL in infinite (“large”)
continuous actions spaces and some work is briefly reviewed here.

[38] extend ideas due to [8] of decreasing action space complexity at the cost of state space com-
plexity for discretised-continuous-action discrete-space problems. The state space is augmented so
that action selection itself becomes an MDP. For a particular state bi to which all possible actions
are associated, we choose from one of two actions, each action leads to a new state b1i and b2i re-
spectively, to each of which is associated half of all the actions. This decision process is repeated
until all actions have been whittled down to a single action that becomes the action to perform at
bi in the original MDP. This formulation constructs a new MDP where the states form a binary
search tree at each state in the original MDP which recursively partition the original actions, and
induced actions correspond to binary decisions about which half of the remaining actions to exam-
ine. This strategy decreases an O(|A|) sweep of all actions to a log(|A|) search in a binary tree of
height log2(|A|). While an impressive reduction in action selection complexity, only applications to
discretized continuous action-space problems are presented where the partitioning of actions follows
from splitting around the median value. It is hard to see how this idea can be directly applied to
discrete actions.

CACLA [50] extends ALCA[52], which uses a tabular representation for the actor and critic, to the
continuous case by using a function approximator for the actor and critic. The use of the Wire Fit-
ting algorithm due to [1] enables a set of actions and associated Q-values to be predicted. However
such a tabular-based approach is inappropriate for large action space

[25] extend the actor-critic approach by using sequential Monte-Carlo (SMC) sampling to maintain
a finite set of sample actions, thereby constructing their policy. Initially their method promotes
exploration by drawing samples from a prior, but over time the policy actions are drawn to regions
that have proven to yield high rewards. SMC sampling-based action selection processes are only

Page 18

MPhil thesis MLSALT

possible in continuous actions spaces where there is a notion of a continuous neighbourhood around
points that can be explored. This is not possible in a discrete actions space where there is no notion
of similarity between actions.

The actor-critic method has previously been attempted in SDS, but it was found to be prohibitively
slow[23].

Given the acclaimed successes of Deep-Q learning [30] [45], promising work on Bayesian approaches
to neural nets [4] is very welcome. The authors cite as specific motivation the desire to quantify
uncertainty in estimates for use in active learning approaches to RL. With the development of this
emerging approach the neural network approaches outlines above could be adapted to our limited-
data environment.

Another relevant area of RL is hierarchical reinforcement learning [2]. In hierarchical-RL we seek
to decompose our action set into an action hierarchy. In this hierarchy, actions higher up act as
macros for, and get expanded to, (possibly sequences of) actions lower down the hierarchy. This has
been used for decomposing the action domain to in policy decision [9]. In the MAXQ approach to
hierarchical RL[10], a hierarchical structure is constructed in which an internal Max node represents
a separate policy that is used to select from it’s actions. This system of separate policy decisions
is similar to [38] in which also composes action selection into a series of separate MDP, however in
MAXQ we do not transition to a state that represents a subset of actions, we transition to a state
that represents a sequence of actions.

Hierarchical RL is an interesting approach to action decomposition, however in all work up to now
the hierarchy of action macros is typically defined by a human programmer, and this represents a
barrier to rapid deployment to new domains.

Page 19

MPhil thesis MLSALT

Method
One possible approach to performing GPSARSA to the full master action space is simply extend
the current approach of using the Kroenecker and placing a separate GP over each action. This
can work for the summary action function, since each summary action will be seen multiple times
during training corresponding to different master actions, therefore introducing transfer of learning.
However it is unlikely that we will see particular master action more than once, and it is very likely
that we will never see most of them. It is therefore necessary to introduce some notion of similarity
between master actions, so that when sampling a new point in our GP, correlations from multiple
previous master actions contribute.

The common “goto” kernels (e.g.[41] the squared exponential, polynomial, Matérn class, Ornstein-
Uhlenbeck) are all unsuitable due to taking a fixed vector of real numbers of input. Instead there
exists a class of convolution kernels [17].

Convolution Kernels
Convolution kernels construct a kernel value over discrete structured sets by summing a product of
subcomponents between them, therefore forming a convolution[17].

Action as strings

Kernels can be defined over strings, trees and other discrete structures. It is immediately obvious
how a master action can be viewed as a string of lexical entities, e.g.

inform(area=“south”, food=“indian”, name=“raj”, pricerange=“expensive”)

becomes

[“inform��, “area��, “south��, “food��, “indian��, “name��, “raj��, “pricerange��, “expensive��]

A string kernel [27][7] can then be used to test similarity with another action by counting the co-
occurrence of (possibly skipped) n-grams. This has a number of drawbacks. Firstly we throw away
information about generality of certain classes of terms. The intention is the most informative
element of the string, followed by the slot names, but under the string kernel n-grams formed
of slot-values will be given equal importance as more discriminative element types. In addition
forming n-grams in the induced string leads to some strange n-grams that do not convey useful
information about similarity between actions. An example from above is the n-gram is [“indian”,
“name”], which does not convey information useful in the comparison of similarity of actions. It
could be possible to enforce rules on the constructed n-grams so that they weight instances that
convey more information about intentions and slot names, and also obey slot boundaries, although
such a system is likely to consist of hand-crafted rules based on the position of lexical entities in
the string. However there is a different view actions that allows another kernel to be adopted that
automatically addresses the latter drawback, and is easily extended so that it abates the former.

Actions as trees

In fig. 8 we see two examples of how actions can be construed as trees. By viewing master actions
in this hierarchical manner, we automatically impart items nearer the top, i.e. intentions and slot
names, with greater importance. We also see how we capture the nested nature of actions, so
that slot values are only associated with the respective slot name. Using this formulation we can
now introduce tree kernels as a method of calculating similarity between actions. In the below
implementations, we assume that a tree is represented as a TreeNode which has an element field

Page 20

MPhil thesis MLSALT

that represents the partial action stored at this node, and a children field that contains a list of
all the children of a node. Leaf nodes have an empty list as children.

Figure 8: Example of how trees are formed from actions

Tree Kernels

Tree kernels [6][32] have been successfully applied in the natural language processing (NLP) com-
munity in areas as diverse as semantic role labeling [35], entity relation extraction [55] and question
and answer classification [34].

The tree kernel operates by counting the number of common subcomponents between two trees.
There are broadly two types of subcomponents that can be extracted[33]. The first are subtrees
in which all subcomponents must contain a leaf node, an example of which is shown in fig. 9, the
extraction algorithm used is shown in algorithm 3. This algorithm visits every node in the tree,
adding the tree rooted at that node as a subtree, and is there of time complexity O(n), where n is
the number of nodes in the tree.

Figure 9: Example of subtrees extracted from an action

Algorithm 3 Subtree extraction algorithm
1: function subtree(root)
2: subtrees = [root.element]
3: for c in root.children do
4: subtrees += subset(c)

return subtrees

The second are subset trees, which remove the constraint that trees must contain leaf nodes, and are
therefore the generalisation of subtrees, an example of extracted subset trees is shown in fig. 10, the
algorithm for producing subset trees is shown in algorithm 4. This algorithm visits every node and
performs work bounded by the height of the tree since our trees are balanced, and is therefore of
complexity O(n log(n)). The spacial complexity of the subset and subtree approach is exponential

Page 21

MPhil thesis MLSALT

in the number of nodes in the tree. This is not a problem for the limited depth trees that we use here.

The algorithm provided here is slightly different as presented in the literature in that all paths to
leaf nodes are always of a constant length (see fig. 11 for the set of unbalanced subset trees that are
ignored under implementation). This greatly reduces the number of resultant subset trees, while
not impacting the expressibility of the approach: since our trees of a fixed format, the omitted
subset trees do not convey more information than combinations of the included subset trees.

Other works specifies both strict and non-strict trees, a strict tree being one that contains more than
one node. This is typically performed to limit the feature space size. However due to the limited
size of our trees and potential data sparsity issues, only non-strict subcomponents are examined in
this work.

All trees have a lexical ordering enforced across children, with any ties being broken by grandchil-
dren.

Figure 10: Example of subset trees extracted from an action

Algorithm 4 Subset tree extraction algorithm
1: function tree_to_depth(root, depth)
2: if depth = 1 then � A depth of 1 corresponds to a tree consisting of a single node
3: root.children = []
4: else
5: for c in root.children do
6: tree_to_depth(c, depth−1)
7: function subsettree(root)
8: subsettrees = []
9: for d in {1 to depth(root)} do � depth() returns height of tree from provided node

10: subsettrees += tree_to_depth(copy(root), d)
11: for c in root.children do
12: subsettrees += subsettrees(c)

return subsettrees

Page 22

MPhil thesis MLSALT

Figure 11: Subset trees omitted from this implementation

The above functions represent our feature function φ(x), and is an injective function mapping a tree
into a high sparse space, Rm which is of dimension equal to the number of possible components with
the value at each element representing the quantity of the respective component. The calculation
of the kernel value between two actions x and x� can then be calculated as:

k(x, x�) = φ(x)�φ(x�)

performed on the semi-ring (R,⊕,⊗), where:

a⊕ b = a+ b

a⊗ b = min(a, b)

This has runtime complexity O(m), i.e. linear in the size of the feature space. Using sparse data
structures 5 reduces this to O(lk) where l and k are the number of non-zero entries in x and x�

respectively. An even more performant implementation is given in [33]. In this version the raw
list of components (rather than their counts) is used and sorted at construction time, to count the
number of common subcomponents the routine in algorithm 5 is used. This reduces the complexity
of kernel calculation to O(l + x). A native C implementation of this algorithm yielded a large
performance improvement.

5e.g. csc_matrix from scipy

Page 23

MPhil thesis MLSALT

Algorithm 5 Fast kernel calculation
1: function fast_dot(x, x�)
2: count = 0
3: i = 0, i� = 0
4: while i < length(x) and i� < length(x�) do
5: if x[i] = x�[i�] then � Have matching subcomponents
6: count+=1
7: i+=1
8: i� +=1
9: else if x[i] < x�[i�] then

10: i+=1
11: else
12: i� +=1

return count

Profiling showed that the existing implementation calculation of the dot product in the SE kernel
6 was performed using a vanilla for loop (due to the way in which the belief kernel is structured)
had become a major performance bottleneck. Reformatting the belief kernel as a contiguous vector,
having sorted slots corresponding to goal beliefs, and using numpy.dot afforded a massive speed
up.

Initial experiments showed that the feature extraction as presented performed poorly. Examining
the resultant kernel value pairs of actions showed that the mapping was not assigning enough
importance to intentions. Similarity of intentions equates to matching a single node in the tree,
and equal importance is placed on a matched slot value as for an intention, as shown in fig. 12. It
can be seen that although two select actions should be more similar than a select and a inform the
current kernel assigns a kernel value of 1 to the former, and 3 to the latter.

Weighted Tree Kernel

In order to mitigate this issue weightings are applied at each level in the tree, this leads to the
procedure shown in algorithm 6. Instead of incrementing a counter, the weight associated with the
level of the subcomponent is added to the kernel value. The example shown in fig. 12 is the worst
offending case, and this can be mitigated by using the weights [3, 1, 0.5] for the intention, slot
name, and slot value layer respectively.

Figure 12: Non-weighted kernel emphasizes slot names and values over intentions

6(x− x�)�(x− x�)

Page 24

MPhil thesis MLSALT

Algorithm 6 Weighted ast kernel calculation
1: function fast_dot(x, x�, w)
2: count = 0
3: i = 0, i� = 0
4: while i < length(x) and i� < length(x�) do
5: if x[i] = x�[i�] then � Have matching subcomponents
6: count+=w[i] � Weighting is applied here
7: i+=1
8: i� +=1
9: else if x[i] < x�[i�] then

10: i+=1
11: else
12: i� +=1

return count

Reducing action selection complexity
Using the above kernels it is possible to put a single GP over the entire action space. However this
introduces the problem of costly action selection. Every time the SDS system must select an action
it must sequentially scan over the entire action space in order to find the the action that maximises
the Q-function. Each action must be scored against each point in the dictionary, meaning that
the complexity grows as O(|A||D|) where D represents the dictionary. This computational load is
prohibitively large, particularly as the dictionary grows and renders the problem intractable for all
but the smallest of toy examples.

As a first step towards improving the temporal performance, a separate GP used for each intention,
with each GP being defined over the belief space. When performing action selection each intention
GP is evaluated at the current belief state in turn, and then only the actions consisting of the
intention with the highest score are evaluated, so our policy selection criterion becomes:

π(b) = argmax
a∈Aj

Q(b, a)

in which
Aj = argmax

Ai

X∗
Ai
(b)

where we have borrowed the notion of a generalised value function from [39](see eq. (3) in related
work section above). A visualisation of this approach is provided in fig. 13. Each GP i models the
maximum Q-value of the contained actions. A single GP is placed over the entire action set, i.e.
there is not a separate GP for each subset of actions. This allows a transfer of knowledge between
actions that do not share the same intention. When performing an update for a certain belief and
performed action pair, the example point is added to the dictionary for the relevant intention GP,
and also to the dictionary for the GP over all actions.

Figure 13: Placing a GP over each intention

Page 25

MPhil thesis MLSALT

This method follows the approach of previous works outlined above, but uses specific domain knowl-
edge to split the action space up. Dividing the action space on intention still results extremely large
action sets, with complexity now being O(max(|Ai)||D|). The action set size per intention for the
selected problem is shown in the table below:

inform select request confirm
660 4207 4 149

Although we have a reduction in the maximum number of required action evaluations from 5025×
6000 = 3× 108 to 4207 × 6000 = 2.5 × 108, this is still prohibitively large, and so further devision
of the action space is needed. One approach considered was to continue to divide actions based on
domain knowledge, i.e. further split the action subsets according to slot names. The approach was
discarded as it relies on a fixed action domain. Instead an approach agnostic to the specific domain
was investigated.

Clustering of actions

By embedding our actions in a feature space it is now possible to perform clustering. kernalised
K-means [21] had been previously used as a method of visualising action similarity under different
kernels (see below), and to speed the development process this approach was adapted to allow hi-
erarchical clustering of the actions.

Kernalised k-means is essentially k-means performed in feature space, φ(x). The hierarchical exten-
sion proposed here recursively clusters each successive clusters, and the high level algorithm is given
in algorithm 7. The intention is to construct a hierarchy of actions in which sizes of base clusters
are within a certain range. The algorithm first clusters all actions, and then recursively clusters
each sub-cluster until they are below a predefined size (max_size). The algorithm then iterates over
all clusters and if any are below a certain size, the constituent actions are reassigned to the closest
cluster. The maximum and minimum cluster sizes are set to 50 and 10 respectively. The number
of sub-clusters at each level is predetermined, and for our experiments was set to 2. Proceeding in
this way, we form a hierarchical clustering of actions based on the defined kernel similarity.

Algorithm 7 Hierarchical kernalised k-means
1: function kernalised_kmeans(actions, k)
2: means = randomly select k actions’ feature representation
3: while not converged do
4: assign actions to closest mean to create clusters
5: update means

return clusters
6: function hkkmeans(actions, cardinality, min_size, max_size) clusters = ker-

nalised_kmeans(actions, cardinality)
7: for c in clusters do
8: if size(c) > max_size then
9: c = kernalised_kmeans(c, cardinality)

10: for cluster in all clusters do
11: if size(cluster) < min_size then
12: for c in clusters do
13: reassign c to closest cluster

Using the induced structure it was possible to create a binary decision tree, in which at each node
there is a separate GP over each subset of actions for each child. This structure is shown in fig. 14.
Again each edge has its own separate GP, and actions at the leaf nodes share a single GP over all
actions. Selection of the subset of actions over which to perform action no amounts to traversing

Page 26

MPhil thesis MLSALT

this binary decision tree, choosing the branch which has the highest X ∗
A�
(b) as modeled by the

respective GP. When updating the GPs with a state-action-reward example, all GPs on the path
to the base cluster containing the respective action have their dictionaries updated accordingly.

Figure 14: Topology of a hierarchical approach to action space modeling

Using this hierarchical clustering greatly reduces the computational complexity of the problem.
In an ideal world the induced tree would be perfectly balanced, and each binary decision would
split the action set into two equal halves, and the tree would have height log |A|. This would lead
to computational complexity of |D| log(|A|) + max_size, where max_size = 100 for experiments
undertaken here. Under this method, the problem of action selection was rendered tractable, and
full length experiments were possible.

Cold Start
Having made action selection tractable for interesting cases it was possible to perform full-scale
tests. However initial results were extremely poor (see results section). Examination showed that
at the beginning of a training run when the Q-value is zero over all actions and intermediate GPs in

Page 27

MPhil thesis MLSALT

the hierarchy, action selection devolves to random guessing resulting in a very sub-optimal decision
being chosen. This causes the model to only learn what are the wrong actions to perform, and all
GPs predict a negative Q-value for all states. Essentially the search space is too large at first for
any progress to be made, resulting in a cold start problem.

Resultant dialog manager architecture
By performing policy optimisation directly in the master action space we arrive at a dialog manager
architecture as shown in fig. 15.

Figure 15: Dataflow within master aciton-based dialogue manager

Contrasting this to fig. 4 we see how this approach has greatly reduced the number of components
and has eliminated hand crafted components.

Abstracted view
Taking a step back from the details of implementation, the approach taken in this dissertation can
be seen to enable reinforcement learning to be performed on a belief space and action space given
just two appropriate kernels. Our generalised, kernalised RL solution can be applied to any problem
that can be specified as:

(B,A, KB, KA, R,⊗)

where:

• B is the state space
• A is the actions space
• KB : B × B → R is the kernel on the state space.
• KA : A×A → R is the kernel on the action space.
• R is the reward function
• ⊗ is the method of combination of the two kernel values.

It can be seen that the this work allows us to perform GPSARSA-based reinforcement learning over
any combination of state and action space, providing we have suitable kernels.

Page 28

MPhil thesis MLSALT

Experimental Setup
Experimentation was performed within the cued-PyDial system. The standard setup for experi-
ments was: use of the focus belief tracker, the number of maximums turns to a dialogue was
limited to 26, a squared-exponential kernel for the belief state, and a simulated user with a seman-
tic error rate of 15%.

Only the [confirm, inform, request, select] intentions are predicted, initially bye was included, but
the system learned to maximise the reward by predicting bye as the first action, thereby cutting
the dialogue to a single step and resulting in a reward of -1.

Due to the necessity of operating directly in feature space actions that inform the user of alternatives
are not employed for both the master and summary action spaces.

Page 29

MPhil thesis MLSALT

Results
Kernel values

re
qu

es
t(

fo
od

)

se
le

ct
(f

oo
d=

“c
hi

ne
se

”,f
oo

d=
“m

al
ay

si
an

”)

in
fo

rm
(n

am
e=

“c
ur

ry
qu

ee
n”

,p
os

tc
od

e=
“c

.b
1,

2
b.

d”
)

in
fo

rm
(a

re
a=

“c
en

tr
e”

,fo
od

=
“c

hi
ne

se
”,n

am
e=

“c
ha

rl
ie

ch
an

”,p
ri
ce

ra
ng

e=
“c

he
ap

”)

in
fo

rm
(a

re
a=

“n
or

th
”,f

oo
d=

“c
hi

ne
se

”,n
am

e=
“t

he
ho

tp
ot

”,p
ri
ce

ra
ng

e=
“e

xp
en

si
ve

”)

co
nfi

rm
(f

oo
d=

“c
hi

ne
se

”)

request(food) 7.0 1.0 0.0 1.0 1.0 1.0
select(food=“chinese”,food=“malaysian”) 1.0 14.0 0.0 2.5 2.5 2.5

inform(name=“curry quee”,postcode=“c.b 1, 2 b.d”) 0.0 0.0 15.0 4.0 4.0 0.0
inform(area=“centre",food=“chinese",name=“charlie chan",pricerange=“cheap") 1.0 2.5 4.0 19.0 8.5 2.5

inform(area=“north",food=“chinese",name=“the hotpot",pricerange=“expensive") 1.0 2.5 4.0 8.5 19.0 2.5
confirm(food=“chinese") 1.0 2.5 0.0 2.5 2.5 11.5

In order to test if the kernel does define a reproducing kernel Hilbert space (RKHS), covariance
matrices were constructed for random subsets of the actions for both the weighted and unweighted
variants. The resultant matrices were positive semi-definite (PSD), and it is therefore assumed that
the provided kernel is valid, and does define a RKHS. This is important as it means that resultant
Gram matrices will be well-conditioned.

Feature space embedding
For the master action space used we have resulting feature space dimensions of 6157 and 11182 for
the subtree and subset tree approaches respectively. The subset tree space is larger because the
subset tree components form a superset of subtree components. Histograms showing the log the
distribution of component frequencies are shown in fig. 16 and fig. 17. The subtree components are

Page 30

MPhil thesis MLSALT

more evenly distributed. This is because the subset tree decomposition contains a lot more singleton
trees corresponding to nodes in the intention and slot name layer. Both distributions are incredibly
skewed with a few components occurring a great many times, these correspond to the slot values in
the subtree space, and individual slot names, slot values and intentions for the subset tree space.
Unweighted tree kernels will ascribe more importance to more commonly occurring subcomponents,
and for this domain unweighted kernels would place great importance on both the slot values and
intentions. However weighting kernels allows us to shift importance away from components that
merely have greater relative frequency.

� �� �� �� �� ��� ���

����������������������

��
�

��
�

��
�

��
�

��
�

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�
��

Figure 16: Log frequency distribution of subtree
components

����������������������
��

�

��
�

��
�

��
�

��
�

��
�

�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
�
��

Figure 17: Log frequency distribution of subset
tree components

In order to visualise the induced feature space, a representative subset of feature-space-embedded
actions was chosen. SVD was used to reduce the sparse feature space to a dense representation
of dimension 50. tSNE[28] was then used to reduce the dimension of the space to 2. Running
tSNE directly on the full feature space caused erratic data representation, it seems in high, sparse
dimensions tSNE is unable to locate useful distances between examples.

In fig. 18 we see the 2-dimensional representation of the subset-tree induced tree kernel. Actions
can clearly be seen to be grouped by intention, which makes sense due to the weighing placed on
sub-components that contain the intention node.

The two disparate inform regions consist of actions which, respectively, inform the user of an entity
that meets their constraints (e.g. inform(area="south", food="indian", name="raj", pricerange="expensive")
and inform the user of a requested piece of information (e.g. inform(name="raj", postcode="cb2
1rf")). The proposed tree kernel can therefore be seen to be able to assign similarity based also
on structure at the slot-name level. Other perceivable sub-regions were also found to be caused by
similarity at the slot-name level. Slot-value appears to not have a significant effect on similarity,
which is to be expected due to their low relative weighting.

Similar visualisations were performed using subset tree kernels with weights [1, 9, 1] and [1, 1,
9] putting greater relative weighting on middle and bottom layer tree structure respectively, and
results are shown in fig. 19 and fig. 20. We see that even when there is relatively little weighting
on the intention layer actions appear in broadly similar areas of reduced feature space. This is
because although not explicitly matching on the name of the intention, similarity is implicitly
assigned by matching the common sub-structures that exist between actions sharing an intention.
For the mid-weighted kernel of fig. 19 we see that confirm and select actions are assigned to an
almost indistinguishable region of reduced feature space, but are present in three clusters. These
clusters correspond to the informable slots “cuisine”, “location” and “pricerange”. When slot names

Page 31

MPhil thesis MLSALT

are over-emphasised select and confirm actions become indiscernible. When the bottom layer of an
action tree is epmhasised, as in fig. 18, we see that all actions of a different intention are embedded
in broadly similar space. All actions share similar slot-values and the discernibility of actions on
intention becomes impossible.

�� �� �� �� � �� �� �� ��
��

��

��

��

�

��

��

��

��

������

�������

�������

������

Figure 18: 2D visualisation of feature space induced by default subset tree kernel weightings. Actions
are coloured by intention

�� �� �� �� � �� �� �� ��
��

��

��

��

�

��

��

��

��

������

�������

�������

������

Figure 19: 2D visualisation of feature space induced by subset tree kernel with greater weight placed
at slot-name level. Actions are coloured by intention

Page 32

MPhil thesis MLSALT

�� �� �� �� � �� �� �� ��
��

��

��

��

�

��

��

��

��

��

������

�������

�������

������

Figure 20: 2D visualisation of feature space induced by subset tree kernel with greater weight placed
at slot-value level. Actions are coloured by intention

In order to visually understand the result of hierarchical clustering we visualise actions by cluster
membership in fig. 21. Actions in similar reduced feature space are assigned to similar clusters, as
expected. There is, however, some anomalous cluster membership, indicating that some actions are
not assigned to the most representative clusters.

�� �� �� �� � �� �� �� ��
��

��

��

��

�

��

��

��

��

Figure 21: 2D visualisation of feature space induced by subset tree kernel with greater weight placed
at slot-value level. Actions are coloured by cluster membership

Smoothness of Q-value
The assumption underlying the use of a certain kernel function is that small changes in input space
will be reflected by small changes in the resultant value. In order to test verify that this assumption
holds for the proposed action space kernel, the trained GP of the full subtree kernel run was used
as a random belief state was held constant, and actions were slightly changed to see if the resultant

Page 33

MPhil thesis MLSALT

Q-values changed by a great amount. In this instance, “slightly changed” corresponds to changing
a single node in the tree.

The results of this experiment can be seen in fig. 22. The action confirm(pricerange=“cheap”)
was chosen as the base action, and corresponds to points consisting of a blue circle in fig. 22.
All actions that involve changing the slot-value of the base action to each of [moderate, expen-
sive, dontcare] were included as the “slightly changed” actions, with these points being repre-
sented as green triangles in the figure. The greatly changed actions are confirm(area=“east”),
inform(name=“kohinoor”,postcode=“c.b 1, 2 a.s”) (labeled in the figure as inform_postcode for
brevity), and inform(area=“centre”,food=“italian”,name=“ask”,pricerange=“cheap”) (labelled as in-
form_result) in the figure, an are marked by red squares.

The results clearly show that the Q-value is smooth respect to small changes in actions. When we
make a small change in the input space, as with the green triangles, we see only a very small change
affected in the outputted Q-function. However when we make larger changes in action space, we see
greatly different resultant Q-values. This shows that the necessary assumptions about continuity
between the kernel and the output are met, and our tree-based approach therefore appears to be a
suitable kernel for the target problem.

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
��
�
��
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��

�
�
�
��
��
��

�
�
�
��
��

��
��
�
�
��
�
�
��
�

��
��
��

�
�
�
�
��
�
�
�

��
��
��

�
��
�
�
��

��
�
�
�
�
��
�
��
�
�
��
�
�
�
�

�

�

�

�

�

�

�

�

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
��
�
��
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��

�
�
�
��
��
��

�
�
�
��
��

��
��
�
�
��
�
�
��
�

��
��
��

�
�
�
�
��
�
�
�

��
��
��

�
��
�
�
��

��
�
�
�
�
��
�
��
�
�
��
�
�
�
�

��

�

�

�

�

�

�

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
�
�
�
��
�
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��
�
�
��
�
��
��

�
�
�
��
��

��
��
�
�
��
�
�
�
�
��

�
�
�
��
��
��

�
�
�
��
��

��
��
�
�
��
�
�
��
�

��
��
��

�
�
�
�
��
�
�
�

��
��
��

�
��
�
�
��

��
�
�
�
�
��
�
��
�
�
��
�
�
�
�

��

�

�

�

�

�

�

Figure 22: Evaluating continuity of Q-value with respect to action

Hierarchical representation
Clustering actions, using the method described above, results in clusters that have the following
properties:
kernel type number of clusters mean cluster size hierarchy depth

subtree 90 55.8 66
subset tree 95 52.9 163

Page 34

MPhil thesis MLSALT

We see broadly similar clustering results between the two kernel types. However the subset tree va-
riety causes a hierarchy tree that is very tall, indicating that multiple internal decisions are needed.
This is due to the finer granularity induced by the by the subset tree kernel causing greater simi-
larities, and therefore less discriminability, between actions. Different random seed (which change
the randomly selected points that are chosen as initial clusters) did not seem to affect the eventual
clusters learned.

In order to check how able a model is to select the cluster that contains the best possible action,
a fully trained subset tree kernel model was used to see the hit rate. In all 100 policy decisions
the hierarchical model was not able to find the correct cluster, and the mean relative difference
between the actual best action and the one selected under our hierarchical decomposition was -
127%, showing a massive discrepancy between the actual overall best action and the action deemed
to be best under our hierarchical model.

Dialogue success
A dialogue episode is considered a successful if the user is able to successfully accomplish their
intended task. A typical measure of SDS performance is percentage of successful dialogues. Success
results under the simulated user are shown in fig. 23 and fig. 24. The results show that the system
is unable to improve over a very low baseline performance of a few percentage of successfully com-
pleted dialogues, a trend consistent between both kernel types.

The reward for the subtree kernel shows a downward trend as the number of dialogues increase.
Looking at the average number of turns per dialogue we see that an increase in the length of dialogue
episodes is the cause for the decrease in our reward. Looking at the actual sequence of dialogues
produced it was noted that the shorter dialogues towards the beginning of training are caused by
the system repeatedly selecting the same action and the episode being ended by the simulated user.
However as training progresses different (albeit also incorrect) actions are selected. This is can be
explained by realising that when the GP dictionary is “sparse” at the beginning of training, small
changes in the belief state caused by an incorrect action will not affect a large change in the predicted
Q-value, since there will be a more coarse-grained interaction between the few training points and
the test point. As the size of the dictionary grows interactions become more fine-grained, and small
changes in belief state can interact in greater ways with the larger set of test points in the dictionary.

The subset tree kernel, shows a slight improvement in dialogue success as the number of episodes
increase. This is also reflected in the progression of average reward over time which shows a slight
improvement. Not only is this due to the increase in average success, but we also see that it is caused
by a decrease in average dialogue length. This shows that the system is capable of improving the
correctness of system responses, and can achieve this in fewer turns.

The slight improvement in performance of the subset kernel can be understood by examining what
extra components are contained in subset tree components, but not subcomponents. Examining
again fig. 9 fig. 10 we see that subset tree components, also contain components corresponding
towards the top. These elements are clearly important for action selection, but correlations due to
them are ignored in the subtree kernel.

Looking at computational performance, we see results of how dictionary size changes over time, and
how policy decision time changes as a function of dictionary size. Both subtree and subset tree ker-
nels grow in size quicker than the summary action approach. There are a larger number of actions
for which the eventual kernel value KB(b, b�)×KA(a, a�) can take a different value when using con-
volution kernels, whereas for the summary action we are limited by the size of the summary action
set. Under the summary action set whole swathes of actions get bucketed together, whereas the

Page 35

MPhil thesis MLSALT

master action set treats them as distinct, and therefore different enough to include in the dictionary.

The subtree approach yields a slightly larger dictionary than the subset tree kernel. This is caused
by the greater number of components in subset tree kernels causing more non-zero action kernel
values, and therefore inducing more non-zero overall kernel values. The subtree kernel will instead
have an action kernel value of zero for a greater number of actions, causing the distance between a
prospective kernel entry and all entries in the dictionary to be below the sparsity threshold.

Computational performance can be seen to increase massively for both the subtree and subset tree
kernel. This would be prohibitively expensive for realtime usage. Profiling showed that the main
performance bottleneck for action selection are dot products involved in the calculation.

� ��� ��� ��� ��� ����

�

�

�

�

�

�
�����������

� ��� ��� ��� ��� ����

��

��

�

������

� ��� ��� ��� ��� ����

�

�

��

��

��

��
�����

�������������������

Figure 23: Dialogue successes, rewards and number of turns using subtree kernel. Error bars show
one standard deviation. It can be seen that success may be slightly downward trending and the
number of turns increase over time.

Page 36

MPhil thesis MLSALT

� ��� ��� ��� ��� ����

�

�

�

��
�����������

� ��� ��� ��� ��� ����

��

��

�

�
������

� ��� ��� ��� ��� ����

�

�

��

��

��
�����

�������������������

Figure 24: Dialogue successes, rewards and number of turns using subset tree kernel. Error bars
show one standard deviation. The subset kernel performs slightly better, with a slight upward trend
in success. This is due to the ability to model finer structure at the top of the tree

� ��� ��� ��� ��� ����

������

�

����

����

����

����

����

����

����

����

�
��
��
�
�
�
��
��
��
�

� ���� ���� ���� ����

���������������

�

��

��

��

�
�
���
�
��
�
�
��
��
�
��
��

�
��
�
�

Figure 25: Subtree kernel dictionary size growth over time, and action selection time against dic-
tionary size. Performance degrades to levels unacceptable for real-time systems.

Page 37

MPhil thesis MLSALT

� ��� ��� ��� ��� ����

������

�

����

����

����

����

����

����

����

�
��
��
�
�
�
��
��
��
�

� ���� ���� ���� ����

���������������

�

��

��

��

�
�
���
�
��
�
�
��
��
�
��
��

�
��
�
�

Figure 26: Subset tree kernel dictionary size growth over time, and action selection time against
dictionary size. Performance degrades to levels unacceptable for real-time systems

� ��� ��� ��� ��� ����

������

�

����

����

����

����

����

����

����

�
��
��
�
�
�
��
��
��
�

� ���� ���� ���� ����

���������������

�

�

�

�

�
�
���
�
��
�
�
��
��
�
��
��

�
��
�
�

Figure 27: Summary action approach dictionary size growth over time, and action selection time
against dictionary size

Page 38

MPhil thesis MLSALT

Condintionedness
For some predicted values in our model, the corresponding variance was negative. Investigations
were unable to pinpoint the cause, and it is assumed that the interplay between kernel param-
eters (both for the belief and action kernels) and the sparsification factor causes our GP to be
ill-conditioned. The belief kernel contains sorted sections that model only distribution shape, and
not the distribution at slot values. This could cause points that have very different belief states to
have identical belief kernel values, leading to ill-conditionedness. This is a very interesting lead into
what is going wrong in the implementation of the proposed idea.

Page 39

MPhil thesis MLSALT

Future work
Active learning
The exploration of the action space only takes place due to random actions taken in the �-greedy
search and the variance in the Q-value estimate. A more rigorous form of estimation would be to
perform active learning, where the algorithm itself decides upon the exploratory action to take de-
pendent on some criterion. A simple possibility would be to simply choose the action whose Q-value
has the highest variance, proceeding in this way would decrease general uncertainty in the model
over time. Another possibility is looking at the spread of a Q-value estimate: if a particular action
has an average mean, but a high value it is possible that the large spread of this action could result
in an expected reward that is greater than an action with a higher mean but lower variance. This
notion of trading off the amount information provided by an action and the expected reward is pre-
sented in [22] as the “value of information” characteristic of a particular action. Such active learning
approaches, which maximise the utility of exploratory steps would be particularly advantageous in
large action spaces where initial (i.e. exploratory) steps are so important to forming a useful view
of the problem space. As we saw in our results, and to which seeding with the summary action
function was shown not to offer an improvement, quickly building up a set of useful representative
points is a problem yet to be overcome.

The current approach requires explicit feature space representation of actions when performing
clustering. The decision of cluster membership requires calculation of the distance between feature
space representation of our actions. This can in fact be performed purely in the induced reproducing
kernel Hilbert space. By normalising our kernel values so that they lie in the range [0, 1]:

K̄(x, x�) =
K(x, x�)�

K(x, x)K(x�, x�)

And then defining our distance as:

D(x, x�) = 1−K(x, x�)

We still have the problem of calculating a mean value for a particular cluster in order to ascertain
cluster membership. This can be mitigated in a number of ways. Firstly, instead of calculating
an explicit mean, the most representative point in a cluster can be chosen as the mean. This can
be selecting the point that has the minimum average pair-wise distance with all other actions in
a cluster. In order to calculate cluster membership a prospective point has its distance measured
against the representative point. Another possibility is to assign points to clusters that have mini-
mum average or maximum pair-wise distance. In this way there is no need to calculate a mean value
in features space, and all interactions between actions take place implicitly via the kernel function.

The changes to clustering suggested above negates the problem of explicitly representing an action
in feature space, but does nothing to remove the need to represent all actions explicitly, which may
become infeasible for larger domains. Action selection can therefore not be performed by iterating
over all actions (although we actually only evaluate the Q-function explicitly for a fixed-sized subset
of actions, we implicitly consider all actions due to the binary decisions made at internal nodes in
a decision hierarchy), and other methods must be explored.

One possibility is to explicitly predict an expected representation of the optimal action and then
search for a best matching tree. The prediction of the action can be easily adapted from other
approaches that employ the actor-critic method, in which we learn a model to predict an action,
and a scoring model that critiques these actions. However the search for a tree that matches our
representation still presents a major computational challenge. A generate-and-test schema could be
possible in which generations are create by making small incremental changes to a best-guess tree,

Page 40

MPhil thesis MLSALT

allowing exploration of our tree-space within a certain neighbourhood. It may also be possible to
learn how to generate trees from a certain representation. Work on recursive neural networks [47]
allows conversion of a tree to a fixed-length vector representation and minimises the trees recon-
struction error. By training recursive neural networks on our action trees to embed and unembed
a tree in a fixed dimensional space, and then constructing a discriminative model that learns to
predict an action’s fixed length representation we can use the recursive neural network to unembed
from the predicted tree representation.

Another possibility is to perform piece-wise construction of an action tree, where a series of deci-
sions constructs our action tree layer-by-layer. This approach is illustrated in fig. 28. We see three
consecutive decisions that build up a tree: first choose the intention, then choose the slot names,
and then choose the slot values. In this way a master action is not explicitly constructed until all
layer-wise decisions have been made removing all other intermediate master actions.

The current approach can be extended to be usable in this stepwise decision method. At each
decision step we maintain a GP over all decisions that can be made, and choose the decision that
has the highest score under the respective GP. Deconstructing an action space into a sequence of
construction decisions should be possible from the ontology, however any extensions to the ontology
will require the constructive rules and model to be redefined.

Figure 28: Layer-wise construction of a master action

Improvements to action space decomposition
The clustering approach taken in this work is a little unusual, and was shown to perform very
poorly. Although it was shown to produce sensible clusters that obey distances, and a kernalised
version is possible, it is not a standard clustering approach and was shown to induce clusters from
which it was hard to select the optimal action. More standard hierarchical clustering approaches[37]
may be preferable, and similar extensions to such approaches can be made so that they do not need
to operate directly in feature space.

Improvements to correctly predicting cluster membership could come by allowing an action to be
present in multiple clusters. This could be possible by both fuzzy-class membership, in which a class

Page 41

MPhil thesis MLSALT

can be assigned to multiple classes, with their membership-ness based on the distance to the cluster.
It could also be possible to add actions to action subset clusters during prediction time as it becomes
apparent that other actions are potentially more optimal. Such a system could be implemented as
a quick MC search over a subset of master action space. If actions with higher Q values are found,
then they can be added to the selected action subset. And if actions in a subset are found to repeat-
edly yield Q-values vastly dissimilar to other members of the cluster, such actions can be reassigned.

Although, as shown in the examination of continuity above, small changes in our actions don’t affect
large changes in the resultant Q-function, it may be more useful to measure action similarity by
eventual outputted Q-value. Therefore clustering by kernel value alone a priori may be sub-optimal,
and a system in which the resultant Q-value predictions are taken into account seem necessary. This
results in a chicken-and-egg situation in which it is necessary to perform policy optimisation before
being able to cluster, while also needing to cluster before policy optimisation.

Aside from hierarchical decomposition of the actions space, multi-classification actor-critic methods,
as outlined above, could discriminatively predict the subset actions to score.

Hyperparameter tuning

In this work we have used hand-tuned/ default values for the kernel hyperparameters, the length
scale and output variance of the belief kernel, and the weightings for each layer of the tree kernel. It
is unlikely that these are optimal, and so GP hyperparameter training[41] would offer an improve-
ment. This has been specifically applied to GPSARSA for dialogue management[5] and showed a
decent improvement over baselines.

In order to optimise tree kernel hyperparameters for GPSARSA a training corpus of belief-action
inputs to reward outputs are necessary. The negative log marginal likelihood of the training data
is then minimised with respect to the hyperparameters via the conjugate gradient method[43]. The
optimisation of SE kernel hyperparameters in this way is a well understood problem, and the deriva-
tive of the marginal log likelihood wit respect to the tree kernel weightings is also simple to derive.
However the hierarchical structure of the proposed solution causes introduces some problems. The
topology of the hierarchy and action membership are all dependent on the tree kernel weightings,
and is very much not differentiable. It would therefore be necessary to optimise hyper-parameters
given a certain clustering, and then update the clustering as hyper-parameter changes. This would
add greatly to computation time, and does not take into account cluster membership in the optim-
siation process. An approach that could optimise the resultant GP values and cluster membership
would be to perform Bayesian optimisation [46] over the hyper parameters, with the resultant neg-
ative log marginal likelihood of the data (under the clustering and GPs induced by a particular
hyperparameter setting) being the value to maximise.

Tuning of both the kernel hyperparamters and sparsity hyperparameters could resolve the issue
of negative variance for our GP samples. Manual tuning would be a good first step in exploring
whether this is the case, and more rigorous optimisation could lead to improvements in practical
performance.

Changes to kernels
Experimental results have shown that subset tree components are marginally superior to subtree
components. As discussed this is likely due to their ability to capture structure near the top of
the tree. Subtrees could be altered so that rather than having to contain leaf they have to contain
the root. This would allow the kernel to model the intention and slot names that are important to
action selection.

Page 42

MPhil thesis MLSALT

While the tree kernels proposed here form a RKHS, it is unclear whether they are suitable for the
dialogue problem. There seems to be limited scope for the transfer of knowledge between loosely
related training points. Talking about a North Indian restaurant should impart some information
about a South Indian restaurant, however the discrete nature of tree nodes means there must be
an exact match.

Embedding the nodes of trees in a fixed dimensional distributed representation would induce
smoother distance related to other entities. A kernel could then be constructed that took into
account the distance of tree nodes, rather than just equality. The formation of such a representa-
tion is difficult. Co-occurrence statistics of slot names in the ontology and in real world training
data could produce noisy estimates due to the small amounts of data involved.

The current multiplicative method of combination of kernel values for our state-action pairs could
be extended. This binary operator could become a parameterised function where lesser or greater
emphasis is placed on one kernel based on location in the belief and actions space. While increasing
expressibility, this approach decreases training ability, and more datapoints will need to be seen to
produce a model with strong generalisability qualities.

Extensions to other domains
The proposed approach need not be limited only to the chosen domain. The GPSARSA dual-kernel
approach investigated here can generalise to any belief and action space over which kernels can be
applied.

The tree kernels allow reinforcement learning to be performed in combinatorial domains. When
applied over actions, the approach here allows actions to be performed in any combinatorial space.
Such a space could consist of decision trees that define action decisions. Performing MDP in this
space would then allow for predicting complex structured actions at each time step, rather than a
single explicit action. A tree kernel over a belief state, on the other hand, could allow for optimi-
sation of decisions for automated theorem proving where the belief state is a proof tree and actions
are rewrite rules, with success being defined if the proof is verified. Other convolution kernels, such
as string kernels, could enable a natural language action space.

Tree kernels can be extended to infinite discrete dimensions by allowing trees of unbounded depth.
Due to the exponential space complexity of subcomponent calculation we can not allow subcompo-
nents to be calculated on the full unbounded tree. Instead subcomponents can be of a fixed depth so
that a template structure is moved around nodes of a tree. Exact action selection in an infinite space
would present a large obstacle, and only sub-optimal may be calculable in a reasonable amount of
time.
Examination of which domains work for the proposed solution would be an extremely interesting
line of research.

Performance improvements
Profiling shows that system to be prohibitively slow. This could be improved by making cluster
sizes smaller so that fewer actions need to be scored, however this would increase the problem of not
being able to locate the cluster that contains the highest scoring action. Profiling showed that dot-
products dominate action selection. Performing these calculations on the GP, or using vectorised
CPU instructions, could lead to improvements in throughput and latency. If massive deployment to
a centralised cluster, or to embedded devices was desired, it would be necessary to create a native
implementation of the system that would improve portability and performance.

Page 43

MPhil thesis MLSALT

Conclusion
We have seen how perform reinforcement learning in any state space and action space simply by
defining appropriate kernels and performing GPSARSA. The approach is automatically extensible
to the large action spaces by using a kernalized clustering algorithm which can operate implicitly
in the feature space through the kernel trick. This is a very general approach, and instigating its
efficacy in domains previously off-limits would push the frontier of reinforcement learning.

By viewing SDS actions as trees, we are able to utilise tree kernels to have been able to extend the
notion of fine-grained notions of similarities to discrete actions. This enables us to use a single GP
over all actions, replacing multiple separate GPs for each discrete action. Recursively clustering
the action space allows us to make sequential decisions that divide up the state space allow action
selection to become tractable, but the trainability of these structures is unknown.
The proposed approach was fully integrated into the cued-pydial system to produce a fully work-
ing prototype. Overall testing results proved negative, although some learning seems to be taking
place. Closer inspection by experimentation showed that the kernel seemed appropriate, and the
clustering approaches produced sensible divisions of actions. However the hierarchically-clustered
decision trees were unable to locate the optimal action, which was probably the cause of the poor
performance.

Reinforcement learning in large state and action spaces is a challenging and ongoing are of research.
Future work should explore data-efficient, computationally fast ways of predicting a subset of actions
in policy decision. Division of state space represents only one such method, and future work could
investigate the actor-critic method, and discriminative prediction of an action representation,

References
[1] Leemon C Baird and A Harry Klopf. “Reinforcement learning with high-dimensional, contin-

uous actions”. In: Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep. WL-TR-
93-1147 (1993).

[2] Andrew G Barto and Sridhar Mahadevan. “Recent advances in hierarchical reinforcement
learning”. In: Discrete Event Dynamic Systems 13.4 (2003), pp. 341–379.

[3] Andrew G Barto, Richard S Sutton, and Charles W Anderson. “Neuronlike adaptive elements
that can solve difficult learning control problems”. In: IEEE transactions on systems, man,
and cybernetics 5 (1983), pp. 834–846.

[4] Charles Blundell et al. “Weight uncertainty in neural networks”. In: arXiv preprint arXiv:1505.05424
(2015).

[5] Lu Chen, Pei-Hao Su, and Milica Gašic. “Hyper-parameter Optimisation of Gaussian Process
Reinforcement Learning for Statistical Dialogue Management”. In: 16th Annual Meeting of
the Special Interest Group on Discourse and Dialogue. 2015, p. 407.

[6] Michael Collins and Nigel Duffy. “Convolution kernels for natural language”. In: Advances in
neural information processing systems. 2001, pp. 625–632.

[7] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. “Rational kernels: Theory and algo-
rithms”. In: Journal of Machine Learning Research 5.Aug (2004), pp. 1035–1062.

[8] Daniela Pucci De Farias and Benjamin Van Roy. “On constraint sampling in the linear pro-
gramming approach to approximate dynamic programming”. In: Mathematics of operations
research 29.3 (2004), pp. 462–478.

[9] Thomas Dean and Shieu-Hong Lin. “Decomposition techniques for planning in stochastic
domains”. In: IJCAI. Vol. 2. Citeseer. 1995, p. 3.

[10] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value function
decomposition”. In: J. Artif. Intell. Res.(JAIR) 13 (2000), pp. 227–303.

Page 44

MPhil thesis MLSALT

[11] Thomas G. Dietterich and Ghulum Bakiri. “Solving multiclass learning problems via error-
correcting output codes”. In: Journal of artificial intelligence research 2 (1995), pp. 263–286.

[12] Gabriel Dulac-Arnold et al. “Deep Reinforcement Learning in Large Discrete Action Spaces”.
In: ().

[13] Gabriel Dulac-Arnold et al. “Fast reinforcement learning with large action sets using error-
correcting output codes for MDP factorization”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2012, pp. 180–194.

[14] Yaakov Engel, Shie Mannor, and Ron Meir. “Reinforcement learning with Gaussian pro-
cesses”. In: Proceedings of the 22nd international conference on Machine learning. ACM. 2005,
pp. 201–208.

[15] Milica Gašić and Steve Young. “Gaussian processes for POMDP-based dialogue manager
optimization”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 22.1
(2014), pp. 28–40.

[16] M Gašić et al. “Policy optimisation of POMDP-based dialogue systems without state space
compression”. In: Spoken Language Technology Workshop (SLT), 2012 IEEE. IEEE. 2012,
pp. 31–36.

[17] David Haussler. Convolution kernels on discrete structures. Tech. rep. Citeseer, 1999.
[18] Ji He et al. “Deep Reinforcement Learning with an Unbounded Action Space”. In: CoRR

abs/1511.04636 (2015). url: http://arxiv.org/abs/1511.04636.
[19] Matthew Henderson, Blaise Thomson, and Jason D Williams. “The third dialog state track-

ing challenge”. In: Spoken Language Technology Workshop (SLT), 2014 IEEE. IEEE. 2014,
pp. 324–329.

[20] Matthew Henderson, Blaise Thomson, and Steve Young. “Deep neural network approach for
the dialog state tracking challenge”. In: Proceedings of the SIGDIAL 2013 Conference. 2013,
pp. 467–471.

[21] Anil K Jain. “Data clustering: 50 years beyond K-means”. In: Pattern recognition letters 31.8
(2010), pp. 651–666.

[22] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Planning and acting
in partially observable stochastic domains”. In: Artificial intelligence 101.1 (1998), pp. 99–134.

[23] Dongho Kim. personal communication. July 27, 2016.
[24] Michail G Lagoudakis and Ronald Parr. “Reinforcement learning as classification: Leveraging

modern classifiers”. In: ICML. Vol. 3. 2003, pp. 424–431.
[25] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. “Reinforcement learning in con-

tinuous action spaces through sequential monte carlo methods”. In: Advances in neural infor-
mation processing systems. 2007, pp. 833–840.

[26] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015).

[27] Huma Lodhi et al. “Text classification using string kernels”. In: Journal of Machine Learning
Research 2.Feb (2002), pp. 419–444.

[28] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In: Journal of
Machine Learning Research 9.Nov (2008), pp. 2579–2605.

[29] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. “Universal kernels”. In: Journal of
Machine Learning Research 7.Dec (2006), pp. 2651–2667.

[30] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature
518.7540 (2015), pp. 529–533.

Page 45

MPhil thesis MLSALT

[31] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[32] Alessandro Moschitti. “Making Tree Kernels Practical for Natural Language Learning.” In:
EACL. Vol. 113. 120. 2006, p. 24.

[33] Alessandro Moschitti. “Making Tree Kernels Practical for Natural Language Learning.” In:
EACL. Vol. 113. 120. 2006, p. 24.

[34] Alessandro Moschitti and Roberto Basili. “A tree kernel approach to question and answer clas-
sification in question answering systems”. In: Proceedings of the 5th international conference
on Language Resources and Evaluation. Citeseer. 2006, pp. 1–510.

[35] Alessandro Moschitti, Daniele Pighin, and Roberto Basili. “Tree kernels for semantic role
labeling”. In: Computational Linguistics 34.2 (2008), pp. 193–224.

[36] Marius Muja and David G Lowe. “Scalable nearest neighbor algorithms for high dimensional
data”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.11 (2014),
pp. 2227–2240.

[37] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
[38] Jason Pazis and Michail G Lagoudakis. “Reinforcement learning in multidimensional con-

tinuous action spaces”. In: 2011 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL). IEEE. 2011, pp. 97–104.

[39] Jason Pazis and Ron Parr. “Generalized value functions for large action sets”. In: Proceedings
of the 28th International Conference on Machine Learning (ICML-11). 2011, pp. 1185–1192.

[40] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. “Point-based value iteration: An anytime
algorithm for POMDPs”. In: IJCAI. Vol. 3. 2003, pp. 1025–1032.

[41] Carl Edward Rasmussen. “Gaussian processes for machine learning”. In: (2006).
[42] Carl Edward Rasmussen and Zoubin Ghahramani. “Occam’s razor”. In: Advances in neural

information processing systems (2001), pp. 294–300.
[43] Carl Edward Rasmussen and Hannes Nickisch. “Gaussian processes for machine learning

(GPML) toolbox”. In: Journal of Machine Learning Research 11.Nov (2010), pp. 3011–3015.
[44] Bobak Shahriari et al. “Taking the human out of the loop: A review of bayesian optimization”.

In: Proceedings of the IEEE 104.1 (2016), pp. 148–175.
[45] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:

Nature 529.7587 (2016), pp. 484–489.
[46] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization of

machine learning algorithms”. In: Advances in neural information processing systems. 2012,
pp. 2951–2959.

[47] Richard Socher et al. “Parsing natural scenes and natural language with recursive neural
networks”. In: Proceedings of the 28th international conference on machine learning (ICML-
11). 2011, pp. 129–136.

[48] Pei-Hao Su et al. “Continuously Learning Neural Dialogue Management”. In: arXiv preprint
arXiv:1606.02689 (2016).

[49] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Vol. 1. 1.
MIT press Cambridge, 1998.

[50] Hado Van Hasselt and Marco A Wiering. “Reinforcement learning in continuous action spaces”.
In: 2007 IEEE International Symposium on Approximate Dynamic Programming and Rein-
forcement Learning. IEEE. 2007, pp. 272–279.

Page 46

MPhil thesis MLSALT

[51] Hado Van Hasselt and Marco A Wiering. “Using continuous action spaces to solve discrete
problems”. In: 2009 International Joint Conference on Neural Networks. IEEE. 2009, pp. 1149–
1156.

[52] Marco A Wiering and Hado Van Hasselt. “Two novel on-policy reinforcement learning algo-
rithms based on TD (λ)-methods”. In: 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning. IEEE. 2007, pp. 280–287.

[53] Jason D Williams. “Challenges and opportunities for state tracking in statistical spoken dialog
systems: Results from two public deployments”. In: IEEE Journal of Selected Topics in Signal
Processing 6.8 (2012), pp. 959–970.

[54] Jason D Williams and Steve Young. “Scaling POMDPs for spoken dialog management”. In:
IEEE Transactions on Audio, Speech, and Language Processing 15.7 (2007), pp. 2116–2129.

[55] Min Zhang et al. “A composite kernel to extract relations between entities with both flat and
structured features”. In: Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics.
Association for Computational Linguistics. 2006, pp. 825–832.

Page 47

MPhil thesis MLSALT

Appendices
Appendix A - CUED dialogue act specifications In the Cambridge University Engineering Depart-
ment Python Dialogue System (cued-pydial), the complete set of possible actions is uniquely defined
by the ontology. All actions take the form:

<intention>(<intention-args>)

Intentions define the overall meaning of an action. Some examples of some SDS intentions, and the
respective real-world actions they would be mapped to are shown below:

inform(. . .) → say: "The restaurant you’re looking for is . . . "

select(. . .) → say: "Did you mean . . . or . . . "

request(. . .) → say: "Can you tell me which . . . you’re looking for"

confirm(. . .) → say :"Did you mean . . . ?"

book(. . .) → Perform an online booking

The arguments for actions typically take the form of slot value-name pairs, of the form 〈slot-value〉
= 〈slot-name〉. Some concrete examples are: food=“indian”, area = “center”. Slot names correspond
to columns in the database of domain entities, and slot values the entry of a column for a particular
entity. The permissible slot names for a particular intention are defined in the ontology. For example
the ontology may define that [“sex”, “height”, “age”] are requstable slots, mean that user can request
information them. This allows the system to construct actions that inform the user for information
using these slot values, some examples would be:

inform(name=“tom”, phonenumber=“555-1234”)

Slots may be informable, meaning the user can provide information about the value of the slot,
and therefore that the system can request information about them. Some examples of actions
constructed using informable slots are:

request(height)

select(age=“32”, age=“18”)

Page 48

MPhil thesis MLSALT

Appendix B - profiling results

Figure 29: Profiling results of the system before massive performance work was undertaken. The
red path through the tree shows the dominance of action selection in runtime

Page 49

MPhil thesis MLSALT

Figure 30: Profiling results of the system after performance improvements. The colours along all
paths are more homogeneous showing that no single compute path is dominating, although the
branch corresponding to action selection still stands out

Page 50

