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Abstract

Performance of a speech recogniser improves with increased training data size but collecting a
large matched training dataset is difficult. This thesis aims to investigate the use of generative
adversarial networks for acoustic data generation given an initial small training data set.
We build the basic generation approach for phone units and context windows. Two data
generation schemes are developed and compared, which are based on conditional GANs
and unconditional GANs separately. We show that both schemes can generate high-quality
data, which have the similar distribution as the real acoustic data. However, after re-training
the acoustic model by the augmented data, no performance improvements are achieved.
Based on the evaluation results, we believe that the generated data contain some unnatural
variations, which hinders the acoustic model from learning a correct distribution. To address
this problem, several plans are proposed for the future work.
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Chapter 1

Introduction

1.1 Motivation

Deep neural networks (DNNs) based acoustic modelling has achieved a great success for
automatic speech recognition (ASR) tasks in recent years, where a large amount of training
data is required[1–3]. It has been shown that the performance of a speech recognition system
is highly related to its training dataset size [4]. A larger training dataset tends to contain more
pattern variations, which contributes to a robust parameter estimation and avoids overfitting
problem. However, collecting a large matched acoustic data set could be very difficult.
On the one hand, the scenarios in which an ASR system will be adopted may have some
acoustic properties, such as background noise, microphone type and speaker’s individual
characteristics, which are very different from those of the training data. Such differences
may lead to a significantly degraded performance for DNNs based ASR system [5]. This
means that the acoustic data are best to be collected under different environments, which is
especially difficult for some low resource languages. On the other hand, training deep neural
networks as a classifier requires well-labelled data, while manually transcribing acoustic data
is very expensive and sometimes involves privacy issues.

One approach to address this problem is data augmentation, which is a common strategy
to increase data quantity in neural networks based pattern recognition tasks [6–9]. In speech
recognition, data perturbation based augmentation scheme has been investigated a lot, where
new data are produced by perturbing original data in a certain way. For example, the work in
[10, 11] try to increase data quantity by adding simulated noise to the original clean speech
data, which can minimise the gap between the training dataset and noisy speech. Other
methods, such as vocal tract length perturbation (VTLP), elastic spectral distortion and speed
perturbation[12, 9, 13, 14], are widely used for low resource speech recognition tasks. These
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methods try to synthesise data by distorting the original speech spectra, which effectively
increase the pattern variations for sparse data.

The advantage of the above data perturbation methods is that they can artificially produce
labelled data without the need of collecting additional real examples, and they all achieved
decent improvements in related datasets. However, these data perturbation methods also
have several limitations, which are listed as follows. Firstly, these methods perturb data
according to certain designed rules. Although these rules could potentially mimic certain
speech distortions, the variations in the real world, such as speaker’s age, gender and accent,
can be more complicated [9]. Secondly, the quantity of data that they can generate is
determined by the number of noise or distortion type that can be applied. In order to
overcome these problems, a Generative Adversarial Networks (GANs) based augmentation
method is proposed in this work, which has the potential to learn real pattern variations from
data itself.

GAN is a powerful framework of training generative models through an adversarial
process [15]. It can be used to learn a target distribution in a fully unsupervised fashion,
which has achieved impressive results in the computer vision area [16, 17]. In speech area,
this technique is mainly used in tasks, such as speech synthesis [18, 19], voice conversion
[20, 21] as well as speech enhancement [22], while limited work has been done for speech
recognition tasks. The work in this thesis aims to utilise GANs to generate high-quality
acoustic data and then boost speech recogniser’s performance with the augmented training
data set.

1.2 Thesis contribution

In this thesis, the use of GANs for speech recognition data augmentation given an initial
small training set is investigated. Firstly, we propose the methods for GAN based acoustic
data generation, in which separate GANs are trained for each phonetic unit and the basic
generation unit is the frame level acoustic feature.

Next, we have a thorough review of GANs and its variations. Based on these work, we
design several robust GAN architectures, which are capable of generating acoustic data in a
rather stable way.

Furthermore, two generation schemes for acoustic training set are developed. One is
based on conditional GANs, which generates label preserved data directly. Another is based
on unconditioned GANs, which is combined with a semi-supervised learning scheme to
generate transcribed training sets. We show that both schemes can produce feature maps
with the similar distribution as the real data.
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The basic acoustic model used in this work is context dependent DNN-HMMs. The
feature maps used for training the acoustic models are augmented by the simulated data
generated by GANs. Several evaluation metrics are designed for measuring the system
performance from different angles. Although the desired performance gains have not been
observed, we carry out a detailed analysis on the experimental results and point out the
potential problems in this project. The improvements which can be made in future work are
also presented.

1.3 Thesis organization

The rest of this thesis is organised as follows. Chapter 2 briefly introduces the background
knowledge for GANs, speech features and acoustic models. The related work on speech data
augmentation is also reviewed in this chapter. Chapter 3 presents the methodology for GAN
based speech data augmentation, and several preliminary experiments are included. The
quality of the generated data, as well as the performance of the re-trained acoustic models,
are evaluated in chapter 4, and chapter 5 gives the conclusion and future work.





Chapter 2

Background

2.1 Generative Adversarial Network (GAN)

2.1.1 Vanilla GAN

Generative Adversarial Network was first proposed by Goodfellow et al.in 2014 [15] as a
promising framework of training generative models. This framework can be viewed as a
game between two players:

• The first player is a generator, G, which takes a simple distribution (normally a standard
multivariate Gaussian noise) as input and then transforms it to a distribution on the
space of true samples, such as images.

• The second player is a discriminator, D, whose input is a sample either taken from the
true distribution or synthesised by a generator and output is the probability that this
sample is real.

In this game, both players aim to minimise their own loss until reaching a point at which
neither player can improve itself unilaterally. Ultimately, a powerful generator can be
obtained, which is capable of producing samples that the discriminator cannot classify them
between real and fake.

More specifically, the training process for GANs is to solve a minimax problem with the
following cross entropy:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.1)

where G denotes the generator, D denotes the discriminator, pdata is the true data distribution,
pz(z) is the prior distribution on input noise z which is then mapped to the space of model
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distribution pg represented by G(z) and D(x) is the probability that x sampled from the
true distribution. Moreover, both G and D are represented by multilayer perceptrons with
parameter θg and θd respectively.

In practice, as suggested by [15], equation 2.1 is not an appropriate loss function for
training G because it cannot provide sufficient gradient in the early stage, where log(1−
D(G(z))) tend to saturate. Instead, the generator can be trained by minimising a non-
saturating loss −Ez∼pz(z)[log(D(G(z)))], which still leads to the same solution but provide
much stronger gradient at the beginning. In addition, the training should alternate between
k steps of optimising discriminator D and one step of optimising generator G. Ideally, the
global optimum of the system can be reached when pdata = pg, which is proved as follows.

Theoretical results

According to equation 2.1, when G is fixed, the cross entropy loss for D given an arbitrary
sample x can be expressed as:

Loss(D) =−pdata(x) logD(x)− pg(x) log[1−D(x)]. (2.2)

By taking the derivative of equation 2.2 with respect to D(x) and making it equal to zero, we
can obtain the optimal discriminator D∗(x):

D∗(x) =
pdata(x)

pdata(x)+ pg(x)
(2.3)

Then we can substitute above result into equation 2.1 and the loss function for generator now
becomes1:

Loss(G) = Ex∼pdata(x)[logD∗(x)]+Ez∼pz(z)[log(1−D∗(G(z)))]

= Ex∼pdata(x)[logD∗(x)]+Ex∼pg [log(1−D∗(x))]

= Ex∼pdata(x)[log
pdata(x)

pdata(x)+ pg(x)
]+Ex∼pg[log(

pg(x)
pdata(x)+ pg(x)

)]

= Ex∼pdata(x)[log
pdata(x)

1
2(pdata(x)+ pg(x))

]+Ex∼pg[log(
pg(x)

1
2(pdata(x)+ pg(x))

)]− log4

(2.4)

1This loss function is in the original minmax game form rather than the non-saturation form, which is only
used for analysis purpose
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Looking at the formula for Kullback–Leibler divergence (KL divergence) and Jensen-
Shannon divergence (JS divergence)

KL(p1||p2) = Ex∼p1 log
p1

p2
(2.5)

JS(p1||p2) =
1
2

KL(p1||
p1 + p2

2
)+

1
2

KL(p2||
p1 + p2

2
) (2.6)

we can find that equation 2.4 actually measure the JS divergence between the true distribution
pdata and the model’s distribution pg:

Loss(G) = 2JSD(pdata||pg)− log4 (2.7)

Since Jensen-Shannon divergence between two distributions is always non-negative and
equals zero only when two distributions are the same, we now prove that the global optimum
can be achieved only if pdata = pg. Note that when the support of the data distribution and
the support of the model’s distribution have no intersection, which is a common case in the
early learning stage, the JS divergence between them is always equal to log2 [23]. If we
then use the optimal discriminator in 2.3, the loss in equation 2.7 will always be zero. This
reminds us that the discriminator should not be optimised too far ahead of the generator
otherwise it cannot provide a usable gradient for training G.

To address the above problem, the work Wasserstein GAN (WGAN) [23] proposed to use
the training criteria that minimising the Earth-Mover or Wasserstein distance between pdata

and pg. The corresponding loss functions are changed into Loss(D) =−Ex∼pdata(x)[D
∗(x)]+

Ez∼pz(z)[D
∗(G(z))] and Loss(G) =−Ez∼pz(z)[D

∗(G(z))] respectively. This method success-
fully avoids the above gradient vanishing problem but also has the drawback that it should
enforce a Lipschitz constraint on discriminator. In further research [24], it shows that the
non-saturating loss function proposed in the original paper [15] could be more stable in
practice.

2.1.2 Spectral normalization

A major problem of GANs framework is that its training process is hard to be stabilised. As
discussed in section 2.1.1, during training, the performance of the discriminator needs to
be carefully controlled so that the generator model can be optimised properly. Normalizing
the discriminator could be very useful to alleviate this problem and one successful approach
is called spectral normalization (SN) [25]. When optimising discriminators, this work
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suggests dividing each weight matrix by their spectral norm (max singular value), which can
effectively control the Lipschitz constant of the discriminator. By restricting the space that
the discriminator can be selected from, the training process of GANs will be more stable. The
authors of SN also point out that this approach can lead to discriminators of higher rank and
is much computational cheaper compared to other regularization methods, such as gradient
penalty [26]. Furthermore, in Google’s work [24], they prove that spectral normalization can
improve GAN’s performance consistently over different datasets.

2.1.3 Deep convolutional GAN

Apart from restricting the discriminator, the problem that GAN is unstable to train can
also be alleviated by modifying the generator and discriminator architecture. The work
in [17] combined the GAN idea with the deep convolutional networks, which is called
deep convolutional GAN (DCGAN). Both the generator and discriminator networks now
contain five convolutional layers. In addition, instead of using deterministic spatial pooling
functions, such as max pooling, they proposed to use strided convolutions to downsampling
or upsampling features. They proved that this structure configuration can effectively stabilise
the training process for GAN across a range of datasets. In this work, we will utilise the idea
of DCGAN combined with spectral normalization technique for data generation.

2.1.4 Conditional GAN (CGAN)

Fig. 2.1 A simple structure of conditional GAN
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For the unconditional version GANs, it is impossible to control the mode of the data
being generated because they are mapped from low dimensional random noise. The work
conditional generative adversarial nets [27] introduced a method which can direct the data
generation process. They proposed to condition both the discriminator and generator on
additional information, where the conditions could be the class labels or some part of the
data. This structure extends the application of GANs, which makes GAN useful for the tasks
such as data augmentation, image transfer, etc. A simple structure of conditional GAN is
illustrated in figure 2.1, where y is an embedding of the conditions, x is the input samples
for the discriminator and z is the input noise for the generator. Similar to equation 2.1, the
corresponding objective function for this networks is defined as:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))] (2.8)

This conditional version GAN is also heavily used in this work.

2.2 Speech recognition

2.2.1 Mel-scaled filter banks

Normally in ASR tasks, a speech signal is often represented by multiple fixed duration feature
vectors, which describes the short-term speech spectrum. Each vector corresponds to a fixed
length window of the speech (frame). The Mel-scaled log filter bank (FBANK) features,
which are computed by doing filter-bank analysis, are often utilised for acoustic models
based on deep neural networks [28]. Mel filter banks are filter banks where the consecutive
triangular filters are used. They are equally spaced along the mel-scale in frequency domain,
where mel-scale for a frequency f is defined as:

Mel( f ) = 2595log10(1+
f

700
) (2.9)

This scaling simulates the way that human ear works, which has better resolution at low
frequencies and less at high frequencies. To implement it, the Fourier transformation needs
to be applied to each frame of the speech and the corresponding power spectrum should be
calculated. The filter banks can be calculated subsequently to capture the energy at each
critical band.
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2.2.2 Deep neural networks based acoustic modelling

In speech recognition, most systems are based on hidden Markov acoustic models (HMM).
The conventional HMMs use Gaussian mixture models (GMM) to represent the state output
probability p(x|s), which is the likelihood of feature x from HMM emitting state s. The
acoustic models using deep neural networks (DNN) to replace GMM has been proposed
in recent years and shown much higher speech recognition accuracy [1, 2], which is called
DNN-HMMs model. In this model, the posterior probability p(s|x) produced by DNN is
converted to a pseudo likelihood p(x|s) based on the Bayes rule, which is defined as:

p(x|s) ∝
p(s|x)
p(s)

(2.10)

where p(s) is the training data prior and can be calculated from training samples. The
standard HMM transition structure is retained and the Viterbi algorithm is used for decoding.

2.3 Related Work on Acoustic Data Augmentation

2.3.1 Vocal tract length perturbation (VTLP)

VTLP is a mature speech data augmentation scheme which generates new samples through
perturbing the speech spectra of initial training audio. It was first proposed in work [12], in
which a warping factor α is randomly selected from [0.9, 1.1] to warp the frequency axis for
each utterance in training set. The vocal length tract of the speaker is thus changed, which
leads to a new version of the original utterance with distorted speech spectra.

In the work [9], a modified version of VTLP was suggested in which the warping factor
α of the speaker is first calculated and then a deterministic perturbation is applied by using
the following factors to warp the frequency axis of original data:

α → [α ±∆, ...,α ± k∆, ...,α ±K∆]

k = 1, ...,K
(2.11)

where, ∆ is a fixed length shift along the α axis and 2K is the number of replicas of the
original data. Both of the above VTLP schemes achieved performance improvements in
many ASR tasks.
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2.3.2 Speed perturbation

Speed perturbation technique, which was proposed in [14], is a speech data augmentation
method which produces additional training set by changing the speed of the original audio
signal. In [14], a time warped signal is produced by a factor α . The original audio signal x(t)
is then converted to x(αt). After applying Fourier transform, this is equivalent to produce
shifts in the frequency domain. However, compared to VTLP, speed perturbation also changes
the duration of the original signal, which affects the number of frames in the utterance. The
work [14] shows that speed perturbation can yield better performance than traditional VTLP
methods. In this thesis, this method is used as the baseline, where the speed factors 0.9 and
1.1 are used to produce two replicas of the original data.





Chapter 3

Methodology

3.1 GANs for speech data generation

As described in section 2.1, Generative Adversarial Networks are a powerful framework
to estimate generative models, which are capable of reproducing a target data distribution.
However, this framework cannot be adopted in speech directly. The issue is that speech
recognition tasks involve variable length utterances and requires accurate variable length
word labels while GANs usually generate fixed length output (e.g. images). To address
this problem, we perform frame level speech data generation rather than utterance level. In
addition, in order to match the input vectors of a DNN acoustic model, each output vector
from a GAN generator is an extended frame obtained by stacking a window of neighbouring
acoustic frames. Thus, the basic data unit generated by GANs is a fixed size feature map
on speech spectrum, and the length of each frame is 10ms. In our experiments, a 40 × 16
dimension feature map is used as the data input for the GAN discriminator and the output for
the GAN generator, where each frame is represented by a 40 dimension FBANK feature and
expanded with 6 and 9 neighbouring frames in each side separately. The reason why setting
the context width to 16 is that the proposed GAN has a deep convolutional structure, in which
the strided convolutions (discriminator) and fractional-strided convolutions (generator)1 are
used to down sample and up sample the feature map by a factor of 2 [17]. Since three such
layers will be used in both generator and discriminator, it is convenient to set each dimension
of the feature map to an integer multiple of 8 (23). Note that the final feature map size used
for acoustic model training is 40 × 13, in which the number of context frames in both sides
are balanced to the same value (-6, +6). The last three frames of the generated data will be
discarded in this stage.

1’strided’ means that the stride of convolution is 2
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Furthermore, we propose to use separate GANs for each phone so that the phone labels
of the generated data are known. The number of unique phones used in our experiments is
48, which means 48 GANs will be trained. This set of GANs is referred as ’GANs array’
in following sections. However, in order to train an acoustic model by augmented data, the
state labels of the generated samples should also be known. It is impossible to train separate
GANs for each state especially under triphone system. One method to solve this problem
is using conditional GANs. When training acoustic models for triphone system, we could
construct decision trees to cluster the triphone states [29]. The tied triphone states tend to
have similar characteristics, which means that they can be treated as one ’class’ from the
generation perspective. Thus, we can condition each GAN on the tied triphone states so that
the state labels of the generated data can be controlled from the input. In this work, 808
tied triphone states are used, including three silence states. Considering each phone have a
separate GAN, a mapping system is developed to map the true state label to the GAN label.
Take phone ’aa’ as an example, the corresponding mapping system is shown in figure 3.1.
Note that all the tied states are represented in the form ’phone_HMM-state_label’, and this is
also used in chapter 4. This scheme has the advantages that each class can have sufficient
training samples and the generated data can be used directly for later on acoustic model
training. Another scheme is using the unconditional GANs to generate samples from random
Gaussian noise directly. A semi-supervised learning strategy is implemented to deal with the
unlabelled fake samples.

Fig. 3.1 Processing tied-triphone state labels belonging to phone ’aa’
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3.2 GANs architectures

In this section, three GANs architectures are proposed, including one unconditional GAN
and two conditional GANs. They are described in figure 3.2, 3.6 and 3.10 respectively.
In these figures, FC stands for fully connected layers, ConvTrans stands for transposed
convolutional layers and Conv stands for convolutional layers. Note that the parameters of
each layer are indicated in the bracket behind them. For example, FC(100, 5120) means
that the input and output size of the fully connected layer is 100 and 5120. Conv(3,1,1)
means that the layer uses 3 × 3 convolution kernel with stride 1 and 1 zero-padding. The
batch normalization layers and ReLU functions are applied in Generator networks, while
the spectral normalization layers and leaky ReLU functions are applied in discriminator
networks. The slopes of all leaky ReLU functions are set to 0.1. More details are described
in the following sections.

3.2.1 Unconditional GANs

The structure configuration of GAN is vitally important, which determines whether this
model can be optimised properly. Figure 3.2 shows the architecture of the unconditional
GANs used in this work, which has a deep convolutional structure combined with spectral
normalization layers. This architecture was first proposed in paper [25], which is called
SNDCGAN. The benefits of this architecture have been described in chapter 2.

For the generator part, the input noise with dimensionality 100 is sampled from a
Gaussian distribution. A fully connected layer is used to transfer the noise to a vector with
dimensionality 5120, which is then mapped to a tensor with size 5×2×512. Afterwards, four
transposed convolutional layers are used to generate the feature maps, in which three of them
have stride 2. The discriminator part has a similar structure. It takes feature maps (40×16×1)
as inputs and then uses seven convolution layers plus one fully connected layer to classify
them, where three of the convolutional layers have stride 2. The non-saturation loss function
is used, which can be written as Loss(D) = −Ex∼pdata[log(D(x))]−Ex̂∼pg[log(1−D(x̂))]
and Loss(G) = −Ex̂∼pg[log(D(x̂))] respectively. Based on the analysis in section 2.1, we
can easily obtain that the global optimum of the losses for discriminator and generator are
log(4) and log(2) separately 2. Therefore, in an ideal situation, the costs of generator and
discriminator should converge to these two values during training (approximately 1.386 and
0.693 respectively).

2By substituting equation 2.3 into these two loss functions and set pdata = pg.
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Fig. 3.2 Proposed GAN architecture: SNDCGAN
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Preliminary experiments on MNIST

To check whether this structure can be trained in a steady way, we carried out a preliminary
experiment on MNIST database, which contains a collection of handwriting digits [30].
The output shape of the generator and input shape of the discriminator were changed to
32×32×1 to match the MNIST samples size. It has to be admitted that the models working
on MNIST data set don’t mean that they can work on the acoustic data set properly because
the acoustic feature map is more complicated. Nevertheless, this experiment can provide
a basic assessment of the proposed model configurations and helps to filter the bad model
settings in the early stage.

Fig. 3.3 SNDCGAN: training curve

Figure 3.3 plots the cross entropy losses of the discriminator and generator in each
training iteration, where the discriminator is updated once followed by updating the generator
once. The step ratio between discriminator and generator is important, and in this case, the
best setting is D : G = 1 : 1. The number of epochs of training is 20 and each epoch has
930 training iterations. The reason why plotting the training curve in iteration level rather
than epoch level is that we can inspect the convergence of the loss more precisely, which
effectively reflects the stability of the training process. In figure 3.3, it can be observed that
both D loss and G loss are converged to the desired global optimum, which proves that the
training process is stable. In addition, the generated fake samples and the real samples are
compared in figure 3.4. Most of the fake handwriting digits are clear and recognizable, and
only a few of them are distorted in an unnatural way. Furthermore, almost all the digits are
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generated with rich variations. This indicates that the diversity of the generated samples are
ensured.

(a) Fake samples: 20 epoches (b) Real samples

Fig. 3.4 SNDCGAN: samples

3.2.2 Conditional GAN: Condition + SNDCGAN

In the original CGAN paper [27], a simple multilayer perceptron(MLP) structure was used
for both generator and discriminator, and the authors point out that this is only used for
proving their theory. As shown in figure 3.5, the quality of the MNIST samples generated by
the original structure is rather low, which means that a more sophisticated CGAN structure is
needed for producing usable samples.

Fig. 3.5 Samples presented in CGAN paper

The first plan is conditioning the SNDCGAN described in section 3.2.1 on the state labels
directly, which is referred as ’Condition + SNDCGAN’. The corresponding architecture
is displayed in figure 3.6, where N is the number of classes. The loss functions for D
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and G become Loss(D) =−Ex∼pdata[log(D(x|y))]−Ex̂∼pg [log(1−D(x̂|y))] and Loss(G) =

−Ex̂∼pg[log(D(x̂|y))], where y is the conditioned state label.

Fig. 3.6 Proposed CGAN structure 1: Condition + SNDCGAN.

Since the convolution layers are used, the data in networks are not flattened but presented
by tensors with the shape (hight ×weight × channel). Thus, the way to appending the addi-
tional information to the input of the discriminator and the generator is not as straightforward
as the way for MLP. For the generator, the label information is encoded into a one-hot vector
and then transferred by a fully connected layer to a vector with dimensionality 2560. This
vector is then mapped to a tensor with shape 5× 2× 256. In the meantime, the similar
operations are done for the input noise, which generate another tensor with shape 5×2×256.
These two tensors will be concatenated to form a new tensor with shape 5×2×512 before
being sent into the first ConvTrans layer. For the discriminator part, the labels are encoded
into a tensor with shape 40× 16×N, where one of the channels is full of 1 and the rest
channels are all 0. This form of encoding can be thought as an analogue to the one-hot
embedding in a higher dimensional space. Next, two convolution layers are used to transfer
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the encoded labels into a tensor with size 20×8×64, and the same operations are done for
the input feature maps. The two 20×8×64 tensors will be concatenated before being sent
to the next convolution layer. For a better understanding, the details of the above steps are
illustrated in figure 3.7.

(a) Generator

(b) Discriminator

Fig. 3.7 Appending label information to the input layer of SNDCGAN

Preliminary experiments on MNIST

The ’Condition + SNDCGAN’ structure was tested on MNIST database following the similar
procedure in section 3.2.1. The number of classes, N, was set to 10 in this experiment. The
corresponding training curve is plotted in figure 3.8. Both discriminator’s loss and generator’s
loss have the tendency to converge. However, the generator’s loss keeps fluctuating in a
relatively large range, which indicates that the training of the generator is not very stable.
The potential cause could be that the space we encoding the labels is very sparse especially
for the discriminator part, which makes the optimisation difficult. In addition, this issue
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could be amplified when using this structure on acoustic data because more classes will be
involved.

Fig. 3.8 Condition + SNDCGAN: training curve

Figure 3.9(a) shows the generated fake samples, where each row is conditioned on one
label. It is clear that the generated fake samples still have rather high quality compared to the
samples in figure 3.5. This proves that the SNDCGAN architecture is reliable.

(a) Fake samples: 20 epoches (b) Real samples

Fig. 3.9 Condition + SNDCGAN: samples

3.2.3 Conditional GAN: SNDCGAN + Classifier

In this section, another conditional GAN architecture is proposed, which is referred as
’SNDCGAN + Classifier’. Instead of conditioning the discriminator on the label information,
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we introduce an additional classifier to restrict the mode of the samples generated from the

Fig. 3.10 Proposed CGAN structure 2: SNDCGAN + Classifier

conditioned generator. For the generator part, the one-hot label is now appended to the input
noise directly, which form a new vector with dimensionality 100+N, where N is the number
of classes. For the discriminator part, the original unconditioned structure is used. For the
classifier part, a simple MLP structure is used, which contains five hidden layers with 500
hidden units in each layer. The classifier is fully trained by real data. The standard cross
entropy training criteria are applied for discriminator and classifier. The loss function for the
generator is slightly special, which is defined as

Loss(G) =−Ex̂∼pg[log(D(x̂|y))]+λ ×Loss(C(x̂|y)) (3.1)
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To minimize this loss, the generator should not only try to fool the discriminator but also try to
ensure the class of the generated samples are corresponding to its conditions. The parameter
λ controls the weight of the classifier’s loss (or called misclassification penalty). In this task,
λ was set to 0.01 so that the samples with relative high Loss(C) can still be generated. In other
words, we do not want the generated samples are too naive. In addition, the training step ratio
between discriminator, generator and classifier is tuned to D : G : C = 1 : 1 : 1. Compared to
the structure proposed in section 3.2.2, the arrangements in this section significantly simplify
the model structure for each part, which could contribute to the model optimisation.

Preliminary experiments on MNIST

The preliminary experiment for ’SNDCGAN + Classifier’ architecture was also carried out
on MNIST database. The corresponding training curve as well as the generated samples are
displayed in figure 3.11 and 3.12 respectively. It can be seen that this structure leads to a better
property of convergence compared to the former architecture ’Condition + SNDCGAN’. The
diversity and quality of the generated samples are also relatively high. Since this structure
configuration outperforms the ’Condition + SNDCGAN’ structure, we will stick to using
’SNDCGAN + Classifier’ architecture for following data augmentation tasks.

Fig. 3.11 SNDCGAN + Classifier: training curve
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(a) Fake samples: 20 epoches (b) Real samples

Fig. 3.12 SNDCGAN + Classifier: samples

3.3 Data augmentation by conditional GANs array

The data augmentation scheme with conditional GANs array is presented in this section. The
nice property of conditional GAN is that the labels of the generated data can be controlled.
Thus, no extra transcribing work is needed in this scheme. The quality of the generated data
can be tested by the original model trained by the initial data. The generated data and initial
data can be merged directly because both of them have the frame level hard labels (or the
reference alignment for initial speech data). The standard cross entropy training criteria and
the stochastic gradient descent (SGD) algorithm will be used to re-train the acoustic model.
The details of the pipeline are presented in algorithm 3.1, and the architecture is illustrated in
figure 3.13.

Algorithm 1 Training Acoustic Model with conditional GANs array
1: Pre-train an acoustic model by the original training data set.
2: Train separate GANs for each phone unit (GANs array) by the original training data

set. Each GAN is also conditioned on the tied triphone states so that the labels of the
generated data can be controlled.

3: Test the quality of the generated data based on the pre-trained acoustic model.
4: Use the well-trained GANs array to generate fake data.

Option 1: Generate same amount of data for each phone.
Option 2: The amount of data for each phone and state are generated according to their
prior distribution on real data.

5: Merge the generated data and the initial training data set, and re-train the acoustic model.
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Fig. 3.13 Data augmentation pipeline with conditional GAN
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3.4 Data augmentation by unconditional GANs array

This section introduces the data augmentation scheme with unconditional GANs array. The
advantage of this scheme is that the data generated by unconditional GANs tend to have more
variations, which is proved in section 4.3. However, the issue is that the true labels of the
generated data are unknown because they are generated completely from random noise. To
solve this problem, a semi-supervised learning strategy will be implemented, which assigns
labels to the generated data by the original acoustic model (pre-trained on initial data). In
detail, the pre-trained acoustic model can be utilised to classify the generated data. Since the
phone level label is known (one GAN per phone), the classification range can be restricted to
the states belonging to this specific phone, in which the original acoustic model should have
relatively high accuracy (71.4% on TIMIT test set). Take the ’aa’ GAN as an example, during
generation, the amount of data need to be generated for each ’aa’ state will be calculated
first. Then the ’aa’ data will be generated batch by batch by the well-trained GAN, where
each batch of data should be classified by the pre-trained acoustic model. Once the amount
of a certain state’s data has reached the requirement, the following data which are classified
into this state will be thrown out. The generation process for phone ’aa’ will stop until all
the states belonging to ’aa’ has sufficient data. The details of the pipeline are presented in
algorithm 3.2, and the architecture is illustrated in figure 3.14.

Algorithm 2 Training Acoustic Model with unconditional GANs array
1: Pre-train an acoustic model by the original training data set.
2: Train separate GANs for each phone unit (GANs array) by the original training data set.
3: Use the well-trained GANs array to generate fake data.

Option 1: Generate same amount of data for each phone.
Option 2: The amount of data for each phone and state are generated according to their
prior distribution on real data.

4: Classify the generated data by the pre-trained acoustic model within the restricted states
range. Then assign corresponding labels to the generated data.

5: Merge the generated data and the initial training data set, and re-train the acoustic model.
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Fig. 3.14 Data augmentation pipeline with unconditional GAN





Chapter 4

Experiments and Results

4.1 Experimental setup

The experiments in this work are carried out based on TIMIT dataset, which is a small speech
corpus designed for the development and evaluation of automatic speech recognition systems
[31]. It contains 6300 sentences spoken by 630 speakers of eight major dialects of American
English with time-aligned transcriptions in phone level. The sampling frequency of the
speech waveform is 16KHz. In addition, the corpus initially contains a training set and a test
set, which are balanced for the dialectal and phonic coverage. In our experiments, we further
split the original training set into 3 hours new training set and 0.15 hours cross-validation
(CV) set data. The CV set data are mainly used for testing the frame level accuracy of the
trained acoustic model. The test set is the original one, which contains 1.14 hours data.

In our experiments, context-dependent deep neural networks based hidden Markov
models (DNN-HMM) are built with an extended version of HTK 3.5 [32]. No language
model is used, which reduces the accuracy but allows a clear focus on the acoustic model.
Decision trees based states clustering is implemented and totally 808 tied triphone states are
produced, including 3 silence states. The architecture of the DNN models is a multilayer
perceptron which contains 5 hidden layers with 500 neurons in each layer. The models are
trained with cross-entropy criteria, and the stochastic gradient descent (SGD) based back
propagation algorithm is used for optimisation. The initial learning rate for SGD is set to
0.0005, while the wight decay and momentum are set to 0.001 and 0.5 respectively. The
same hyper-parameters are used for all the experiments.

For generative adversarial networks, all the models are implemented with PyTorch [33].
The model structures presented in section 3.2.1 (Unconditional GAN) and 3.2.3 (Conditional
GAN) are used, which has been verified on MNISIT dataset [30] with slight differences
on sample shape. The non-saturation loss functions mentioned in section 2.1.1 are used.



30 Experiments and Results

The Adam solver is used for optimising both discriminator and generator (and classifier for
CGAN), and the corresponding hyper-parameters are listed below:

• Learning rate α: 0.0002

• The first order momentum β1: 0

• The second order momentum β2: 0.9

• Batch size: 64

• Dimension of input latent noise: 100

In each training iteration, the training step ratio for unconditional GAN is set to D : G = 1 : 1,
and for conditional GAN is D : G : C = 1 : 1 : 1. The training will stop when both average G
loss and D loss have less than 0.001 changes in next epoch.

4.2 Evaluation metrics

The experiments in this chapter can be split into two parts. The first part is training GANs with
the original data set, and the second part is re-training acoustic model with the augmented
data. It is necessary to evaluate the system performance in each step.

4.2.1 Evaluation of GANs

A reliable GAN framework is the foundation for all the following experiments. Thus, in
order to achieve a comprehensive evaluation on it, several evaluation metrics are used. Firstly,
the stability of the training process for GAN models can be assessed by its training curve
where the losses of the generator and discriminator in each iteration are plotted. The rate
of convergence can be observed from this graph as well, which has been illustrated in the
preliminary experiments in section 3.2.

The performance of GANs is also determined by the quality of the generated data, which
is hard to be measured. In image area, the reliability of GANs can be roughly assessed
by human subjective feelings. Other evaluation metrics, such as Inception score (IS) and
Frechet Inception Distance (FID), are established based on the so-called inception models
trained with ImageNet dataset [34, 35]. They can be used to measure the quality of the
synthesised images in a quantitative way, although they will also introduce some mismatches
between evaluation results and human feelings. However, none of the above methods can be
adopted in this task directly because the synthesised data in this work are in speech spectrum
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level. Instead, we utilise the pre-trained acoustic model to assess the performance of GANs.
In general, this is realised by sending a batch of generated samples into the pre-trained
model and then inspecting their average posterior probabilities (posteriors computed by the
pre-trained model) as well as the classification results. We assume that the generated data
should have the similar distribution as the real data. Thus, the test results should be similar
to the evaluation output achieved from the test set data.

The evaluation strategies for unconditional GANs and conditional GANs are different.
For unconditional GANs, the phone labels of the samples are known (separate GAN for
each phone) but the state labels of the generated samples are unknown. In order to ensure
the diversity of the generated samples, the posterior distribution over the triphone states of
the target phone should have high entropy while the posterior distribution in phone level
should have low entropy. In other words, for a well-trained unconditional GAN, most of
the generated samples should be classified into the target phone but their variability over
triphone states should be high. For conditional GANs, since the state label of each sample
is known, we only need to consider their state-level classification results, which should be
similar to the results obtained from the test set data.

4.2.2 Evaluation of re-trained acoustic model

The performances of re-trained acoustic models are evaluated by recognising the TIMIT test
set, for which the phone level transcriptions are available. The standard decoding pipeline in
HTK is used. The HTK toolkit is also used to produce the optimal alignment based on the
reference transcriptions using dynamic programming. Then the phone error rate (PER) can
be calculated by the following equation,

Phone Error Rate =
D+S+ I

N
×100% (4.1)

where D denotes the number of deletion errors, S denotes the number of substitution errors, I
refers to the number of insertion errors and N is the number of total labels. Apart from PER,
the training set and cross-validation set frame level accuracies are also useful for measuring
the classification performance of the DNN acoustic models, which have a certain correlation
with the final PER.
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4.2.3 Baseline method: Speed perturbation

The speed perturbation (SP) method is also implemented [14], which is used as the baseline
speech data augmentation method. In this experiment, the speed of the original audio signal
in TIMIT is changed with factors 0.9 and 1.1 separately. By combining them with the audio
data with original speed, a 9-hours training set can be produced. The model performance
after using this method is displayed in table 4.1. It is apparent that this method does improve
the mode performance. Compared to the original model, both the training set and CV set
frame level accuracies are increased and a relative 3.7% PER reduction is achieved.

Table 4.1 Baseline: speed perturbation method

Data Hours
Frame level acc

PER
Training set CV set

Original 3 69.67 50.27 25.17
SP + Original 9 70.60 51.28 24.23

4.3 Experiments for training GANs

The first part of the work is training GANs by initial TIMIT training set, where 48 context
independent phones are used. Since each phone has a separate GAN, the training set is
divided into 48 subsets according to the phoneme of the data. When training conditional
GANs, the state level labels should also be provided. In the following subsections, the
performance of the trained conditional and unconditional GANs are assessed respectively.
An extra evaluation on single GAN system is carried out, where one single conditional GAN
is trained for all the phones.

4.3.1 Conditional GANs array

For conditional GANs, the architecture presented in section 3.2.3 is used. Since each phone
has a different number of tied states in triphone system, the number of classes that each GAN
conditioned on is different as well. In addition, the amount of training data for each phone is
also different. Thus, the performance of each GAN should be inspected separately. However,
it is not feasible to plot all of them in this section. Instead, we choose one vowel ’aa’ and one
consonant ’m’ as typical cases to illustrate the evaluation results.

Firstly, the training curve for ’aa’ CGANs and ’m’ CGANs are plotted in figure 4.1. Both
of them have a very stable learning process, where the D loss and G loss converges rapidly
within 5000 iterations.
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(a) CGAN for ’aa’: training curve (b) CGAN for ’m’: training curve

Fig. 4.1 CGANs’ training curve: ’aa’ and ’m’

Next, the quality of the generated data is evaluated in two phases. Ten thousand samples
are generated for each tied state first. These samples are then tested by the original acoustic
model. In the first phase, the average posteriors of these samples over 808 states are computed.
The top 10 average posteriors and their corresponding states can be plotted. Figure 4.2 shows
the part of the results for such plots, including the data for state ’aa_s2_1’, ’aa_s3_1’,
’aa_s4_1’, ’m_s2_1’, ’m_s3_1’ and ’m_s4_1’. It can be observed that the target phone-state
always achieves the highest average posterior and the other relative high posterior states tend
to have the similar characteristics of the target phone state. This indicates that the generated
feature maps are close to the real distribution.

In the second phase, the corresponding top1, top3 and top5 classification accuracies
for the generated samples are computed. The same classification procedure for test set is
also applied. If the generated dataset has the similar distribution as the real dataset, the
classification results for them should be similar as well. Table 4.2 and table 4.3 display
the classification results for part of the states belonging to phone ’aa’ and phone ’m’. It is
clear that the original model’s classification accuracies for the generated data are rather high,
which means that most of the generated data are reliable. Nevertheless, the generated data of
many states, such as ’aa_s3_1’, ’m_s3_3’, achieve more than twice of the top1 accuracies for
the corresponding test set data, which indicates that the generated data may lack variations.
Two potential factors may cause this problem. One is that both GANs and the original
acoustic model may overfit the training set to a certain extent. In this situation, the generated
data could be similar to the training data, and the original acoustic model has much higher
classification accuracy for them. The other factor could be that the objective function for
conditional GANs generator, which is equation 3.1, may encourage the model to generate
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(a) Average posteriors top10 (state: aa_s2_1) (b) Average posteriors top10 (state: aa_s3_1)

(c) Average posteriors top10 (state: aa_s4_1) (d) Average posteriors top10 (state: m_s2_1)

(e) Average posteriors top10 (state: m_s3_1) (f) Average posteriors top10 (state: m_s4_1)

Fig. 4.2 Fidelity test for fake feature maps generated by CGANs: ’aa’ and ’m’
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samples which can be easily classified. This is because the naive samples can lead to a lower
classifier’s loss.

To further investigate the distribution of the generated data, a 3-hours simulated acoustic
dataset is produced, where the amount of data generated for each state is according to the
prior distribution of the original dataset. The cross entropy losses for the generated dataset as
well as the TIMIT subsets, including training set, CV set and test set, are computed by the
pre-trained acoustic model. The corresponding results are displayed in the form of box plot
in figure 4.3. It is clear that the losses for CV set and test set have similar distribution and
they achieve the highest average losses. The average loss for the training set is the lowest
because the pre-trained acoustic model is trained based on this dataset. The average loss for
the generated dataset is lower than that for the test set but higher than that for the training
set. The variance of the generated data’s losses is also situated between them. This indicates
that the GANs generative model does learn some variations rather than simply replicate the
original training set, although the real data may contain more variations which have not been
captured by either the acoustic model or GANs.

Table 4.2 Classification accuracies for CGANs’ samples and TIMIT test set (phone: ’aa’ )

Tied states
Generated samples Test set

%top1 %top3 %top5 %top1 %top3 %top5
aa_s2_1 10.3 27.4 41.1 13.6 37.8 51.1
aa_s2_2 56.2 79.6 86.8 30.9 56.4 67.2
aa_s2_3 65.9 95.4 97.3 40.9 75.5 83.9
aa_s3_1 67.7 93.7 96.1 23.6 55.7 72.8
aa_s3_2 59.4 93.2 97.8 26.1 53.9 68.4
aa_s3_3 69.3 91.1 95.7 29.6 50.2 61.5
aa_s4_1 51.3 67.3 73.5 47.1 75.7 83.3
aa_s4_2 31.8 65.4 77.8 43.7 82.6 85.4
aa_s4_3 60.4 85.2 91.1 21.5 38.9 52.2

4.3.2 Unconditional GANs array

For unconditional GANs array, the architecture presented in section 3.2.1 is used. The similar
evaluation procedure for conditional GANs array is applied, where the GANs for phone ’aa’
and ’m’ are selected as typical cases to illustrate the evaluation results.

Firstly, the training curves for unconditional GANs (for phone ’aa’ and ’m’) are plotted
in figure 4.4. Compared to the conditional GANs, the convergence speed for unconditional
GANs is slightly faster. Especially for phone ’m’, the D loss and G loss only have small
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Table 4.3 Classification accuracies for CGANs’ samples and TIMIT test set (phone: ’m’ )

Tied states
Generated samples Test set

%top1 %top3 %top5 %top1 %top3 %top5
m_s2_1 73.3 94.2 96.4 31.3 65.3 76.0
m_s2_2 70.1 94.9 97.3 62.1 85.9 92.2
m_s2_3 39.8 63.7 73.8 24.1 51.8 58.9
m_s3_1 57.1 78.7 87.5 42.8 68.5 78.1
m_s3_2 27.1 67.1 80.9 25.6 63.6 82.4
m_s3_3 73.2 88.8 93.2 33.8 58.9 71.5
m_s4_1 49.5 75.9 84.4 38.1 65.7 76.3
m_s4_2 37.2 69.7 83.4 39.4 67.6 79.4
m_s4_3 70.3 86.6 93.6 45.3 68.8 80.5

Fig. 4.3 Cross entropy losses for each TIMIT sub-dataset & fake dataset generated by
conditional GANs
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fluctuations in the first 2000 iterations. This reveals that training unconditional GANs is
much easier.

(a) GAN for ’aa’: training curve (b) GAN for ’m’: training curve

Fig. 4.4 Unconditional GANs’ training curve: ’aa’ and ’m’

Afterwards, the quality of the generated data is also inspected. For each phone, we
generate 10 thousand samples for which the state labels are unknown. Then the pre-trained
acoustic model is utilised to compute the average posteriors for these samples. The top 20
average posteriors and their corresponding states for fake ’aa’ data and fake ’m’ data are
plotted in figure 4.5(a) and 4.5(b) respectively. It can be observed that most of the states with
high posteriors belong to the target phone, which indicates that the distribution of the target
phone’s data has been learned by the GANs generator. In addition, no state get significantly
higher posteriors than other states, which means that the diversity of the generated data is
also high and the ’mode collapse’ 1 problem doesn’t happen. During the generation process,
we need to ensure all the triphone states can be generated.

To investigate the distribution of the generated dataset produced by unconditional GANs,
the same cross entropy loss test used in section 4.3.1 is applied. As mentioned in section
3.4, to generate a usable dataset by unconditional GANs, the pre-trained acoustic model
should be used to label the data. Then based on this manner, a 3-hours labelled dataset can be
generated. The corresponding evaluation results are plotted in figure 4.6. It can be seen that
more variations are created by the unconditional GANs scheme compared to the conditional
GANs. The reason could be that the conditions applied to CGANs limit the variety of the
generated data. The average loss for samples generated by unconditional GANs is still lower
than that for TIMIT test set.

1mode collapse problem is the common failure case for GANs where the generated samples have extremely
low variety
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(a) Average posteriors top20 (phone: aa)

(b) Average posteriors top20 (phone: m)

Fig. 4.5 Fidelity test for fake feature maps generated by unconditional GANs: ’aa’ and ’m’
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Fig. 4.6 Cross entropy losses for each TIMIT sub-dataset & fake dataset generated by CGANs
and Uncon GANs
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4.3.3 Single GAN for all the phones

We also considered training a single GAN to generate data for all the phones. This requires
the generator to be conditioned on 808 tied triphone states, which makes the training process
extremely difficult. As shown in table 4.4, the classification accuracies for samples generated
by single GAN is very strange (9 states for phone ’aa’, ’m’, ’n’ are picked). The accuracies are
either very high, which means the generated data are rather simple, or very low, which means
the generated data are completely wrong. Although different structures and hyperparameter
settings can be applied to improve the performance of single GAN system, the search space
for this is prohibitively expensive (training single GAN is very time-consuming) and the
expected performance still could be much lower than GANs array system.

Table 4.4 Classification accuracies for samples generated by single CGAN

Tied states
Generated data (single GAN)
%top1 %top3 %top5

aa_s2_1 100 100 100
aa_s3_1 78.2 100 100
aa_s4_1 100 100 100
m_s2_1 80.3 100 100
m_s3_1 100 100 100
m_s4_1 0 0 0
n_s2_1 0 0 0
n_s3_1 98.6 99.8 99.9
n_s4_1 16.8 90.2 98.8

Training an unconditional single GAN for all the phones could potentially work in the
generation part, while transcribing the generated data will become a big problem. The
pre-trained acoustic model has a rather low accuracy for classifying between all the triphone
states, which is lower than 50% on TIMIT test set. If we restrict the classification range to a
certain phone’s states, the corresponding accuracy could be increased to 71.4%. Due to the
above reasons, the GANs array system will be used for final data augmentation task.

4.4 Experiments with conditional GANs array

In this section, the augmented data produced by conditional GANs array are used to re-train
the acoustic model. For the experiments carried out under different settings, the same random
seed is applied to ensure their results are comparable. Firstly, two generation modes are
tested. One is ’uniform’ mode, where all the phones get the same amount of data. Another is
’prior’ mode, where the amount of data generated for each phone and state is according to
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the prior distribution in the original training set. Under each mode, three hours simulated
data are generated. Table 4.5 shows the performance of the acoustic models trained based on
these simulated data. The performances of the acoustic models trained purely by simulated
data are firstly investigated. The corresponding results are shown in the second and third line
of table 4.5, where the first line shows the performance of the original model. The model
under both modes achieves extremely high frame level accuracies for training set (over 99%)
while the frame level accuracies for CV set are very low. This reflects that the generated
data can be easily classified and the acoustic model trained based on these data cannot be
generalised to the real situation.

Furthermore, we combine the generated data with the original TIMIT training set to train
new acoustic models. The corresponding results are shown in the last two lines of table 4.5.
Compared to the original acoustic model, the new models’ frame level accuracies for the
training set are much higher while the accuracies for CV set are slightly lower. In terms of
the phone error rate (PER), the performances of the re-trained acoustic models are degraded
significantly after using the augmented data. This result reveals that some unnatural variations
are created in simulated data which direct the acoustic model to fit a wrong distribution. The
corresponding PER under ’prior’ mode is slightly lower than that under ’Uniform’ mode.
The reason could be that the target penalty for HMM states cannot be calculated correctly
under ’uniform’ mode. Target penalty is used for posteriors to log-likelihood conversions,
which is defined as:

log p(o(t)|Ck) = log p(Ck|o(t))+ log p(o(t))− log p(Ck) (4.2)

where o(t) is the input acoustic data, Ck is the ANN target and log p(o(t))− log p(Ck) is the
target penalty. The calculated log-likelihood is then used for decoding. Due to this fact, the
following experiments in this section will use ’prior’ mode to generate data.

Table 4.5 CGANs scheme: acoustic model performance under two data generation modes

Data Mode Hours
%Frame level acc

%PER
Training set CV set

Original 3 69.67 50.27 25.17
CGANs ’Uniform’ 3 99.59 10.07
CGANs ’Prior’ 3 99.62 12.08

CGANs + Original ’Uniform’ 6 86.32 48.32 26.25
CGANs + Original ’Prior’ 6 86.24 48.69 26.14

As discussed above, there are two potential problems for conditional GANs array. The
first problem is that it could generate many naive samples which can be easily classified,
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which has no contribution to improving acoustic model performance. Another problem is
that the generated data may contain many strange variations, which bias the acoustic model
to fit an incorrect distribution. To address these two problems, the generated samples are
filtered based on their posteriors over target states computed by pre-trained acoustic model.
The samples with too high or too low posteriors will be rejected because these samples are
either too simple or too strange. The same amount of simulated data, which is 3 hours, are
generated in each experiment and the corresponding results are shown in table 4.6 and 4.7.

In table 4.6, the acoustic models are trained by the generated data solely. The posteriors
range in the table refers to the range of data that will be retained. For instance, the range
’≥ 0.1’ means that the samples for which the posterior higher than 0.1 will be retained. It
can be observed that rejecting samples with too low posteriors can effectively increase the
model’s accuracy for CV set , which means the amount of the useful part of the data is
increased. By contrast, rejecting samples with too high posteriors cannot improve CV set
accuracy but do reduce the training set accuracy.

Table 4.6 CGANs scheme (prior mode): performance of acoustic models trained purely by
filtered fake data

Data Posteriors range Hours
%Frame level acc

Training set CV set
CGANs no rejection 3 99.62 12.08
CGANs ≥ 0.1 3 99.94 15.59
CGANs ≥ 0.2 3 99.82 15.53
CGANs ≥ 0.3 3 99.76 15.54
CGANs ≤ 0.9 3 91.36 11.54
CGANs ≤ 0.8 3 98.93 10.23
CGANs ≤ 0.7 3 99.21 10.35

In table 4.7, the generated data are merged with the original data to re-train the acoustic
model. Compared to the evaluation results of the ’no rejection’ experiment in the second
line of table 4.7, rejecting low posteriors samples leads to a notable reduction in PER,
which is corresponding to the observations in table 4.6 (posters range: ≥ 0.1,≥ 0.2,≥
0.3). The experiment with posteriors range ’≥ 0.2’ leads to the lowest PER at 25.75. In
addition, rejecting samples which have larger than 0.9 posteriors can also improve the model
performance. By combining this two strategies, we carried out an additional experiment,
where the data with posteriors in range 0.2 to 0.9 are retained. The corresponding evaluation
results are shown in the last line of table 4.7. Although this setting achieves lowest PER
among all the filtering experiments, its performance is still worse than the original model
trained by the initial training set. Compared to the original model, under this setting, the
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Table 4.7 CGANs scheme (prior mode): performance of acoustic models trained by filtered
fake data plus original data

Data Posteriors range Hours
%Frame level acc

%PER
Training set CV set

Original 3 69.67 50.27 25.17
CGANs + Original no rejection 6 86.24 48.69 26.14
CGANs + Original ≥ 0.1 6 85.75 49.77 25.77
CGANs + Original ≥ 0.2 6 85.38 49.84 25.75
CGANs + Original ≥ 0.3 6 85.78 49.91 25.92
CGANs + Original ≤ 0.9 6 85.27 49.33 25.71
CGANs + Original ≤ 0.8 6 85.45 48.39 26.57
CGANs + Original ≤ 0.7 6 86.15 48.85 26.15
CGANs + Original 0.2−0.9 6 85.32 49.87 25.69

model’s accuracy for training set increases dramatically to 85.32% while the frame level
accuracy for CV set decreases to 49.87% and PER increases to 25.69%. This setting is
further compared with the speed perturbation method in table 4.8 and it is apparent that the
CGAN method doesn’t work.

Overall, the experiments in this section show that CGANs array cannot create useful
variations to improve the generalisation performance of the acoustic model. Instead, the
data with wrong variations created by CGANs make the acoustic model being optimised in
a wrong direction. In the meantime, we show that filtering generated data can improve the
data’s quality but they are still useless for data augmentation.

Table 4.8 CGANs scheme (prior mode): comparison with speed perturbation method

Data Hours
%Frame level acc

%PER
Training set CV set

Original 3 69.67 50.27 25.17
SP + Original 9 70.60 51.28 24.23

CGANs (0.2-0.9) + Original 6 85.32 49.87 25.69

4.5 Experiments with unconditional GANs array

In this section, the augmented dataset produced by unconditional GANs array are used to
re-train the acoustic model. Similarly, two data generation modes, including ’prior’ mode
and ’uniform’ mode, are used in the initial experiment and the corresponding results are
shown in table 4.9. The first line of the table shows the performance of the original model.
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The second and third line of the table shows the performance of the model trained purely
by generated samples, and we will focus on these two lines at first. Compared to the data
generated by conditional GANs, the data generated by unconditional GANs are less naive.
The training set frame level accuracies are situated at a reasonable level (for CGAN, the
corresponding accuracies are over 99%). However, the CV set frame level accuracies are
still very low, which indicates that the generated data contains certain patterns which are
unmatched with the real data.

The last two lines of table 4.9 show the performances of the models trained by the merged
dataset. According to the above analysis, it is not surprising that these models have higher
phone error rate than that of the original model. In addition, it can be seen that the training
data under ’prior’ mode lead to lower phone error rate, which proves that the fake data should
be generated according to the original data’s states distribution. In this section, the following
experiments will use ’prior’ mode to generate data.

Table 4.9 Uncon GANs scheme: acoustic model performance under two data generation
modes

Data Mode Hours
%Frame level acc

%PER
Training set CV set

Original 3 69.67 50.27 25.17
Uncon GANs ’Uniform’ 3 78.28 15.93
Uncon GANs ’Prior’ 3 74.34 15.13

Uncon GANs + Original ’Uniform’ 6 77.48 49.98 25.92
Uncon GANs + Original ’Prior’ 6 73.06 49.99 25.46

Similar to section 4.4, the filtering experiments are also carried out, where the samples
with too high or too low posteriors are rejected. Rejecting samples with too low posteriors is
especially useful for the scheme with unconditional GANs because the state labels of the
generated data are assigned by the pre-trained acoustic model. It is possible that the data
with low posteriors have the incorrect labels due to the misclassification of the pre-trained
acoustic model. Such data could hinder the acoustic model from learning a correct decision
boundary.

In table 4.10, the acoustic models are trained by the generated data solely. It can be
seen that the CV set accuracies increase gradually as more and more low posteriors samples
are rejected (2nd to 4th line in table 4.10). This proves that blocking samples with too low
posteriors can improve the effectiveness of the generated data. However, the corresponding
frame level accuracies for the training set are also increased, which reflects that many
marginal samples are also lost in this filtering process. As for rejecting samples with too high
posteriors, no gains are observed in this part. In table 4.11, the performances of the models
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Table 4.10 Uncon GANs scheme (prior mode): performance of acoustic models trained
purely by filtered fake data

Data Posteriors range Hours
%Frame level acc

Training set CV set
Uncon GANs no rejection 3 74.34 15.13
Uncon GANs ≥ 0.1 3 79.81 19.98
Uncon GANs ≥ 0.2 3 85.25 20.43
Uncon GANs ≥ 0.3 3 85.62 21.11
Uncon GANs ≤ 0.9 3 73.96 14.34
Uncon GANs ≤ 0.8 3 76.01 13.01
Uncon GANs ≤ 0.7 3 73.28 12.11

trained by the merged datasets are investigated. All the rejection settings lead to a slightly
worse performance with increased PER, and their influence on the accuracies for CV set are
all very small. This indicates that the incorrect parts of the generated samples are difficult to
be filtered out.

Table 4.11 Uncon GANs scheme (prior mode): performance of acoustic models trained by
filtered fake data plus original data

Data Posteriors range Hours
%Frame level acc

%PER
Training set CV set

Original 3 69.67 50.27 25.17
Uncon GANs + Original no rejection 6 73.06 49.99 25.46
Uncon GANs + Original ≥ 0.1 6 76.26 49.20 25.78
Uncon GANs + Original ≥ 0.2 6 76.25 50.03 25.63
Uncon GANs + Original ≥ 0.3 6 78.22 50.2 25.49
Uncon GANs + Original ≤ 0.9 6 74.42 49.10 25.48
Uncon GANs + Original ≤ 0.8 6 70.13 49.72 25.56
Uncon GANs + Original ≤ 0.7 6 75.28 49.47 25.57

Table 4.12 Uncon GANs scheme (prior mode): performance of acoustic models trained by
filtered fake data plus original data (entropy based filtering)

Data Rejection mode Hours
%Frame level acc

%PER
Training set CV set

Uncon GANs + Original no rejection 6 73.06 49.99 25.46
Uncon GANs + Original ent ≤1 6 74.26 49.47 25.79
Uncon GANs + Original cv max ent 6 76.73 48.95 25.84
Uncon GANs + Original cv min ent 6 74.75 49.92 25.64
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An additional entropy based rejection method is also tried, where the entropy of the
posterior distribution for each sample is calculated. We reject the samples with too low
entropies because they tend to have a sharp distribution, which means the original model is
too confident to classify them. We also reject the samples with too high entropies, which
means the data may not contain useful information for training. Three strategies are used and
their results are shown in table 4.12. The rejection mode ’ent ≤1’ means that the samples
with entropy lower than 1 will be rejected, ’cv max ent’ means that the samples with entropy
larger than the maximum entropy for CV set samples will be rejected, and ’cv min ent’ means
that the samples with entropy lower than the minimum entropy for CV set samples will be
rejected. However, no performance gains are obtained from above methods.

Table 4.13 Uncon GANs scheme (prior mode): performance of retrained acoustic model with
increased augmented data quantity

Data Hours
%Frame level acc

%PER
Training set CV set

Uncon GANs + Original 6 73.06 49.99 25.46
Uncon GANs + Original 30 81.94 49.29 26.02

In the last experiment, the quantity of the augmented data is increased from 3 hours to 27
hours. The corresponding results are shown in table 4.13. It can be seen that increasing the
quantity of generated data actually degrades the model performance in terms of PER. After
using more generated data, the model’s accuracy for training set increases dramatically while
the accuracy for CV set decreases significantly. This mode is similar to the problem happened
in CGANs experiment in section 4.4. The incorrect pattern variations are created in generated
samples which makes them easy to be classified. However, the corresponding decision
boundaries learned from these samples cannot be used for the real data. This demonstrates
the unreliability of GANs for data augmentation.



Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, a generative adversarial nets (GAN) based speech data augmentation method
was proposed. Several GANs architectures were designed for frame level acoustic data
generation. A GANs array system was also proposed in this work, where separate GANs
were trained for each phonetic units. In addition, two data generation frameworks were
developed based on conditional GANs array and unconditional GANs array separately. A
thorough investigation has been made on proposed methods. The experimental results in
chapter 4 show that the designed GANs structures have the ability to learn the distribution
of the real acoustic data. However, some strange variations are also created in generated
samples, which may not exist in real speech features. Thus, the data synthesised by GANs
fail to reduce the phone error rate of the acoustic model in ASR task. Although the desired
performance gains on TIMIT dataset have not been achieved, we still believe that GANs
have the potential for successful speech data augmentation in future work.

5.2 Future work

Firstly, a larger speech corpus, such as Aurora4 [36], can be used in future work. The speech
dataset used in this work is TIMIT, which contains only 3 hours training data. When training
GANs, the training set has to be further split into 48 subsets because each phone has a
separate GAN. As a result, the quantity of the training data for each GAN is extremely small,
and estimating a reliable generator cannot be ensured.

Secondly, different acoustic model architectures can be tested in further work. In current
work, we only use a simple DNN structure with fixed hyperparameter settings. The depth
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(number of hidden layers) and width (number of hidden units) of the network can be further
adjusted. Moreover, the other acoustic structures, such as RNN, LSTM and VDCNN, can
also be used for testing this data augmentation method. Certain acoustic model configurations
may be less sensitive to the unnatural variations created by GANs.

Last but not least, a more advanced method needs to be developed to measure the quality
of the generated data. A major factor that causes the failure in this project is that we can
not locate the problem of the generated data precisely, which makes it hard to figure out the
solutions.
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