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Introduction

Neural Statistician is an extension of variational autoencoder (VAE) as an
unsupervised generative model that introduces a dataset-level latent variable
c; € R! referred to as a context. The context is used to learn summary
statistics of unordered datasets D; = {xy, ..., z;}.

Model Description

Vanilla Variational Autoencoder

VAE uses a latent variable model for data-point x, with latent z ~ p(2) s.t.:
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e Encoder network: g(z|z; ¢)
e Decoder network: p(x|z;0)
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— Get variational lower bound (ELBO): Figure: VAE model.

log P(x0) = Lo = Ey(aps.)log p(x]2:0)] — Dicr(a(z|z; ¢)[|p(2))

Neural Statistician

Basic model: latent variable ¢ shared for items in same dataset, s.t.:
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The variational lower bound on the dataset:
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(a) Basic model (b) Full model (c) Statistic network

Figure: The Neural Statistician model.

Full model: for complex datasets, use multiple stochastic layers z;.; and skip-

connections:
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The full approximate posterior is now:
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The variational lower bound for the full model:

Lp = Rp (reconstruction) +Cp (context divergence) +Lp (latent divergence)
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Neural Statistician Building Blocks

e Shared encoder x — h optional

* Statistic network q(c|D;¢) : {hy, ..., hy} — pigp, 0(2;|D

o Inference network q(z|x,c;¢): h,c — Hz|z.co Uz\xc
e Latent decoder network p(z|c;0) : ¢ — puiy, Uz‘c
e Observation decoder network p(z|c, z;0) : ¢,z — Hz|e,z; U§|cz

Synthetic 1-D Distributions

Aim: Demonstrate clustering of similar datasets.

We generate synthetic datasets consisting of samples from different distributions
and we plot the summary statistics p.p learned by the model. The distribution
families cluster, with the mean and variance mapped to orthogonal directions.

Figure: Mean of g(c|D; ¢), coloured by distribution (left) type, (center) mean, (right) variance.

Spatial MINIST 2-D Experiments

Aim: Model complex datasets and identify representative samples.

Spatial MNIST is obtained by sampling 50 coordinate values from a probability
density specified by the pixel intensity of MNIST digits [3]. We are able to
sample new datasets conditioned on a set of inputs, and also summarise sensible
datasets by choosing a subset S C D that minimises K L (q(c|D; @)||q(c|.S; @)).
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Figure: Blue and red dots are the input digits as well as 6-sample summaries. Orange digits are
the conditioned samples from spatial MNIST data.

Youtube Faces

Aim: Specify complex distributions and generate conditioned / new samples.

We train the model on cropped and resized images from the Youtube Faces
Database [6] to generate new frames conditioned on input faces and show rea-
sonable similarity. We also generate new samples with a consistent identity:.

Figure: (left) Inputs, (center) faces conditioned on input and (right) generated from sampled c.
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OMNIGLOT and Few-shot Learning

Aim: Transfer generative model to new datasets and classify unseen classes.

We demonstrate few-shot learning capabilities by training on OMNIGLOT and
generating samples conditioned on unseen OMNIGLOT characters or MNIST
digits. We also test k-shot classification of unseen examples x by minimising

K L(q(c|Dy;; ¢)||q(c|x; @)), with k labelled examples of each class D;.

Task Method
Test Dataset K Shot K way | Paper Ours
MNIST 1 10 78.6 70.2
MNIST 5 10 93.2 &7.6
OMNIGLOT 1 5 98.1 95.7
OMNIGLOT 5 5 99.5 98.5
OMNIGLOT 1 20 93.2 85.6
Figure: Few-shot learning from OMNIGLOT 5 20 0.1 955

OMNIGLOT to unseen class / MNIST.

(left) Inputs, (right) conditioned samples. Table: Few-shot learning classification accuracies.

Extension: Emotion-specified Expression

Aim: Generate samples conditioned on label.

We change the proposed graphical model by introducing observed variable y [5].
The context prior is now conditioned on a dataset label yp, i.e. p(c) = p(c|yp)
and D ={x;,...,xn, yp}. We train the model on the CK+ emotions database
2, 4]. Sample images generated from a context prior given emotion labels are
consistent with the desired emotion.

Figure: Sample faces conditioned on emotion label.
Top-left to bottom-right: neutral, anger, contempt,
disgust, fear, happiness, sadness, and surprise.

Figure: Extended model using labels
for training and sampling.

Conclusion

The Neural Statistician is a highly flexible generative model that can be used
to learn representations of datasets, with applications in a wide variety of tasks.

The model is:

-+ Unsupervised, data efficient, parameter eflicient, capable of few-shot

learning, processes datasets of variable length.

— Dataset hungry, limited to datasets of relatively small size during training.
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