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Introduction

Neural Statistician is an extension of variational autoencoder (VAE) as an
unsupervised generative model that introduces a dataset-level latent variable
ci ∈ Rl, referred to as a context. The context is used to learn summary
statistics of unordered datasets Di = {x1, ..., xj}.

Model Description

Vanilla Variational Autoencoder
VAE uses a latent variable model for data-point x, with latent z ∼ p(z) s.t.:

p(x) =
∫
p(x|z; θ)p(z)dz

• Encoder network: q(z|x;φ)
• Decoder network: p(x|z; θ)

→ Get variational lower bound (ELBO):
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Figure: VAE model.

logP (x|θ) ≥ Lx = Eq(z|x,φ)[log p(x|z; θ)]−DKL(q(z|x;φ)‖p(z))

Neural Statistician
Basic model: latent variable c shared for items in same dataset, s.t.:

p(D) =
∫
p(c)

[∏
x∈D

∫
p(x|z; θ)p(z|c; θ)dz

]
dc

The variational lower bound on the dataset:

LD = Eq(c|D;φ)

[∑
x∈d

Eq(z|c,x;φ)[log p(x|z; θ)]−DKL(q(z|c, x;φ)‖p(z|c; θ))

]
-DKL(q(c|D;φ)‖p(c))
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Figure: The Neural Statistician model.

Full model: for complex datasets, use multiple stochastic layers z1:k and skip-
connections:

p(D) =
∫
p(c)

∏
x∈D

∫
p (x|c, z1:L; θ) p (zL|c; θ)

L−1∏
i=1

p (zi|zi+1, c; θ) dz1:Ldc

The full approximate posterior is now:

q (c, z1:L|D;φ) = q(c|D;φ)
∏
x∈D

q (zL|x, c;φ)
L−1∏
i=1

q (zi|zi+1, x, c;φ)

The variational lower bound for the full model:
LD = RD (reconstruction) +CD (context divergence) +LD (latent divergence)

Neural Statistician Building Blocks

• Shared encoder x→ h optional
• Statistic network q(c|D;φ) : {h1, . . . , hm} → µc|D, σ

2
c|D

• Inference network q(z|x, c;φ) : h, c→ µz|x,c, σ
2
z|x,c

• Latent decoder network p(z|c; θ) : c→ µz|c, σ
2
z|c

• Observation decoder network p(x|c, z; θ) : c, z → µx|c,z, σ
2
x|c,z

Synthetic 1-D Distributions
Aim: Demonstrate clustering of similar datasets.
We generate synthetic datasets consisting of samples from different distributions
and we plot the summary statistics µc|D learned by the model. The distribution
families cluster, with the mean and variance mapped to orthogonal directions.

Figure: Mean of q(c|D;φ), coloured by distribution (left) type, (center) mean, (right) variance.

Spatial MNIST 2-D Experiments
Aim: Model complex datasets and identify representative samples.
Spatial MNIST is obtained by sampling 50 coordinate values from a probability
density specified by the pixel intensity of MNIST digits [3]. We are able to
sample new datasets conditioned on a set of inputs, and also summarise sensible
datasets by choosing a subset S ⊆ D that minimisesKL (q(c|D;φ)||q(c|S;φ)).

Figure: Blue and red dots are the input digits as well as 6-sample summaries. Orange digits are
the conditioned samples from spatial MNIST data.

Youtube Faces

Aim: Specify complex distributions and generate conditioned / new samples.
We train the model on cropped and resized images from the Youtube Faces
Database [6] to generate new frames conditioned on input faces and show rea-
sonable similarity. We also generate new samples with a consistent identity.

Figure: (left) Inputs, (center) faces conditioned on input and (right) generated from sampled c.

OMNIGLOT and Few-shot Learning
Aim: Transfer generative model to new datasets and classify unseen classes.
We demonstrate few-shot learning capabilities by training on OMNIGLOT and
generating samples conditioned on unseen OMNIGLOT characters or MNIST
digits. We also test k-shot classification of unseen examples x by minimising
KL(q(c|Di;φ)||q(c|x;φ)), with k labelled examples of each class Di.

Figure: Few-shot learning from
OMNIGLOT to unseen class / MNIST.
(left) Inputs, (right) conditioned samples.

Task Method
Test Dataset K Shot K way Paper Ours
MNIST 1 10 78.6 70.2
MNIST 5 10 93.2 87.6
OMNIGLOT 1 5 98.1 95.7
OMNIGLOT 5 5 99.5 98.5
OMNIGLOT 1 20 93.2 85.6
OMNIGLOT 5 20 98.1 95.5
Table: Few-shot learning classification accuracies.

Extension: Emotion-specified Expression
Aim: Generate samples conditioned on label.
We change the proposed graphical model by introducing observed variable y [5].
The context prior is now conditioned on a dataset label yD, i.e. p(c)→ p(c|yD)
and D = {xi, . . . , xm, yD}. We train the model on the CK+ emotions database
[2, 4]. Sample images generated from a context prior given emotion labels are
consistent with the desired emotion.
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Figure: Extended model using labels
for training and sampling.

Figure: Sample faces conditioned on emotion label.
Top-left to bottom-right: neutral, anger, contempt,
disgust, fear, happiness, sadness, and surprise.

Conclusion
The Neural Statistician is a highly flexible generative model that can be used
to learn representations of datasets, with applications in a wide variety of tasks.
The model is:
+ Unsupervised, data efficient, parameter efficient, capable of few-shot

learning, processes datasets of variable length.
− Dataset hungry, limited to datasets of relatively small size during training.
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