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Why be Bayesian?

•Weight uncertainty: knowing what we dont know.
•Balance modelling capacity and simplicity.
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Figure: A NN trained with MAP inference presents low
predictive entropy when misclassifying ood samples.

Approximate Inference Methods

The posterior over w is intractable for neural nets.
We consider the following approximations.
•Bayes by Backprop [1]

ELBO ≈ LBBP (µ,σ) = 1
N

N∑
i=1

[
log p(y|x,w(i))−

− log q(w(i)|µ,σ) + log p(w(i))
]

w(i) = µ + σ � ε(i); ε(i) ∼ N (0, I)
•MC Dropout [3]

ELBO ≈ Ldrop(m) = log p(y|x,w)− λ‖m‖2
2

w = m� z ; z ∼ Bernoulli(pdrop)
• Stochastic Gradient Langevin Dynamics [4]

∆w(i) = ε(i)

2
M

[
∇ log p(w(i))+

+ ND

Nbatch

Nbatch∑
n=1
∇ log p(yn|xn,w(i))

]
+ η(i)

η(i) ∼ N (0, ε(i)M)

Uncertainty Decomposition

Uncertainty caused by noise, or Aleatoric uncer-
tainty, can be quantified as Eq(w)[σ2

pred] or Ha =
Eq(w)[H(y′ |x′,w)]. Model or Epistemic uncer-
tainty can be measured as Varq(w)(µpred) or He =
H(y′ |x′)−Ha, [2].

Homoscedastic Regression
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Figure: Toy homoscedastic regression task. Data is generated by a GP with a RBF kernel (` = 1, σn = 0.3). We use a single-output
FC network with one hidden layer of 200 ReLU units to predict the regression mean µ(x). A fixed log σ is learnt separately.

Heteroscedastic Regression
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Figure: Toy heteroscedastic regression task. Data is generated by a GP with a RBF kernel (` = 1 σn = 0.3 · |x + 2|). We use a
two-head network with 200 ReLU units to predict the regression mean µ(x) and log-standard deviation log σ(x).

MNIST Classification

MNIST MAP MAP
Ensemble

BBP
Gaussian

BBP
GMM

BBP
Laplace

BBP Local
Reparam MC Dropout SGLD P-SGLD

Log Likelihood -572.90 -496.54 -1100.29 -1008.28 -892.85 -1086.43 -435.458 -828.29 -661.25
Error % 1.58 1.53 2.60 2.38 2.28 2.61 1.37 1.76 1.76

Table: MNIST test results for methods under consideration. We approximate Eq(w)[p(y′|x′,w)] with 100 MC samples. We use a FC
network with two 1200 unit ReLU layers. If unspecified, the prior is Gaussian. P-SGLD uses RMSprop preconditioning.
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Figure: Comparison of each method’s decomposed predictive entropy on ood samples: rotated MNIST digits. t is the correct class.
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Figure: Histograms of weights sampled from each model
trained on MNIST. We draw 10 samples of w for each model.
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Figure: MAP results in overconfidence on MNIST-test.
Approximate inference methods are underconfident for high p.

Discussion

Bayesian methods produced plausible uncertainties
on the homoscedastic task. They underestimate epis-
temic uncertainty on the heteroscedastic task. Addi-
tional experiments on real datasets are needed.
BBP underfits MNIST, resulting in a large aleatoric

uncertainty. SGLD methods provide better epistemic
uncertainty on ood samples through a less localised
posterior approximation; the samples of w explain the
data in diverse ways. Weight distributions reflect this.
Method performance varies across tasks and met-

ric being evaluated. There is no clear best method.
Optimising BBP hyperparameters is difficult.
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