

Variational Continual Learning in Deep Discriminative Models

Gwangbin Bae (gb585), Riccardo Barbano (rb876), Justin Bunker (jb2200)

Continual Learning

- Data may arrive in non i.i.d. way
- Tasks may change and/or new tasks may emerge

Plasticity Stability VS. (catastrophic forgetting) (inability to adapt)

Bayesian Inference

BI provides a framework for continual learning

$$p(\boldsymbol{\theta}|\mathcal{D}_{1:T}) \propto p(\boldsymbol{\theta}) \prod_{t=1}^{T} p(\mathcal{D}_{t}|\boldsymbol{\theta})$$
$$\propto p(\boldsymbol{\theta}|\mathcal{D}_{1:T-1}) p(\mathcal{D}_{T}|\boldsymbol{\theta})$$

Posterior Update: normalize (current posterior × likelihood of newly observed data)

Projection Operation

PO finds a tractable normalized distribution that approximates the intractable un-normalized posterior

$$p(\boldsymbol{\theta}|\mathcal{D}_{1:T}) \approx q_T(\boldsymbol{\theta}) = \operatorname{proj}(q_{T-1}(\boldsymbol{\theta})p(\mathcal{D}_T|\boldsymbol{\theta}))$$

- Recursive relation between posteriors recovered
- $q_0(\theta) = p(\theta)$ (initialized with prior distribution)

Variational Continual Learning^{[1][2]}

VCL uses KL divergence minimization for projection

$$q_t(\boldsymbol{\theta}) = \operatorname*{argmin}_{q \in Q} KL\left(q(\boldsymbol{\theta}) \parallel \frac{1}{Z_t} q_{t-1}(\boldsymbol{\theta}) p(\mathcal{D}_t \mid \boldsymbol{\theta})\right)$$

Q: set of available posterior functions $q_t(\boldsymbol{\theta})$: Gaussian mean-field approximate posterior

Episodic Memory Enhancement

Coreset

- Small subset of data from each task
- Excluded in training & used before prediction
- Avoids catastrophic forgetting

Coreset Heuristics

Random selection & K-center methods

VCL in Deep Discriminative Models

Multi-head Network

Standard architecture for multi-task learning

Posterior Update: finds $q_t(\boldsymbol{\theta})$ that maximizes the negative variational online free energy

$$\sum_{n=1}^{N_t} \mathbb{E}_{\boldsymbol{\theta} \sim q_t(\boldsymbol{\theta})} \left[\log p\left(y_t^{(n)} | \boldsymbol{\theta}, \mathbf{x}_t^{(n)} \right) \right] - KL(q_t \parallel q_{t-1})$$

- sampling and local reparameterization trick^[3]
- **Expected Likelihood** adapts to the new task • Intractable & approximated using Monte Carlo **KL Divergence** avoids forgetting previous tasks • Tractable & $q_0(\theta)$ initialized with small variance

Algorithm^{[1][4]}

for t = 1,, T # T:
Observe new tas
if first task # train feed Initialize q
Update coreset
update poster $q_t(\boldsymbol{\theta}) = \text{proj}(q_{t-1})$
for task in pre # incorporat $q'_t(\theta) = \text{proj}($ # make predi
get_score(te

Head Network

- \rightarrow Task-specific update
- \rightarrow Baseline: 1 layer

Shared Network

- \rightarrow Continuous update
- \rightarrow Baseline: 2 layers

- : total no. tasks
- sk \mathcal{D}_t
- d-forward NN with \mathcal{D}_t $q_0(\boldsymbol{ heta})$ with MLE
- \mathcal{C}_t with \mathcal{C}_{t-1} and \mathcal{D}_t
- rior $\mathcal{D}_1(\boldsymbol{\theta}), \ \mathcal{D}_t \cup \mathcal{C}_{t-1} \setminus \mathcal{C}_t)$
- evious tasks te coreset $(q_t(\boldsymbol{\theta}), C_t)$ iction est_x, test_y, $q_t'(\boldsymbol{\theta})$)

Experiments & Results

1. Plasticity vs. Stability (dataset: Split MNIST) **Likelihood only** \rightarrow catastrophic forgetting **KL only** \rightarrow inability to adapt

2. Performance vs. Coreset Size

3. Task Accuracy (Split MNIST & Split NotMNIST)

UNIVERSITY OF CAMBRIDGE

Extensions **1. Adversarial Ordering** Changing the incoming task order $[---]{0/8}, \{1/3\}, \{2/7\}, \{5,9\}, \{6/4\} = --- \{0/1\}, \{2/3\}, \{4/5\}, \{6/7\}, \{8/9\}]$ ••••••••••••••••••••••• 1.00^{-1} 0.95 0.85 Task Arrival **2. Different Network Architectures** Changing the number of shared/head layers Varying # Head 1.00 Varying # Shared 0.95 0.90 ₹ 0.85 0.80 0.75 (3,1) (4,1) (2,1) (1,2) (1,3) (1,4)

Conclusion

Main contribution of this project includes:

- Customizable implementation of VCL pipeline in PyTorch (network architecture, task ordering, etc.)
- Demonstration of various consequences from changing model characteristics
- Performance increase with episodic memory

References

[1] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, Richard E. Turner. Variational Continual Learning. ICLR, 2018.

[2] Siddharth Swaroop, Cuong V. Nguyen, Thang D. Bui, Richard E. Turner. Improving and Understanding Variational Continual *Learning.* NIPS workshop on Continual Learning, 2018

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra. Weight Uncertainty in Neural Networks. ICML, 2015 [4] Alex Graves. Practical Variational Inference for Neural Networks. NIPS, 2011.