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Experiments & Results
1. Plasticity vs. Stability (dataset: Split MNIST)
Likelihood only → catastrophic forgetting
KL only → inability to adapt

2. Performance vs. Coreset Size

3. Task Accuracy (Split MNIST & Split NotMNIST)
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Conclusion
Main contribution of this project includes:
• Customizable implementation of VCL pipeline in

PyTorch (network architecture, task ordering, etc.)
• Demonstration of various consequences from

changing model characteristics
• Performance increase with episodic memory

Extensions
1. Adversarial Ordering

• Changing the incoming task order

2. Different Network Architectures

• Changing the number of shared/head layers

Coreset

• Small subset of data from each task
• Excluded in training & used before prediction
• Avoids catastrophic forgetting
Coreset Heuristics

• Random selection & K-center methods

Episodic Memory Enhancement

Projection Operation
PO finds a tractable normalized distribution that
approximates the intractable un-normalized posterior
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• Recursive relation between posteriors recovered
• )0 # = "(#) (initialized with prior distribution)

Bayesian Inference
BI provides a framework for continual learning

" # $%:' ∝ " # 4
56%

'
" $5 #

∝ " # $%:'/% "($'|#)
Posterior Update: normalize (current posterior ×

likelihood of newly observed data)

Variational Continual Learning
VCL uses KL divergence minimization for projection
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G: set of available posterior functions
)5 # : Gaussian mean-field approximate posterior

Continual Learning
• Data may arrive in non i.i.d. way
• Tasks may change and/or new tasks may emerge

PlasNcity
(catastrophic forgedng)

vs. Stability
(inability to adapt)
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VCL in Deep Discriminative Models
Multi-head Network

• Standard architecture for multi-task learning

Posterior Update: finds )5 # that maximizes the
negative variational online free energy
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Expected Likelihood adapts to the new task
• Intractable & approximated using Monte Carlo

sampling and local reparameterization trick[3]

KL Divergence avoids forgetting previous tasks
• Tractable & )0 # initialized with small variance

for t = 1,…,T # T: total no. tasks

Observe new task $5
if first task

# train feed-forward NN with $5
Initialize )0(#) with MLE

Update coreset T5 with T5/% and $5
# update posterior
)5(#) = proj()5/% # , $5 ∪ T5/%\T5)

for task in previous tasks
# incorporate coreset
)5W(#) = proj()5 # , T5)
# make prediction
get_score(test_x, test_y, )5W(#))
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#X
Input Layer

Head 1 Head T

Hidden Layer

#%Y #'Y

Shared Network

→ Continuous update
→ Baseline: 2 layers

Head Network

→ Task-specific update
→ Baseline: 1 layer

⋯

Varying # Shared Varying # Head
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