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Overview

We provide a unifying overview to compare methods for efficient training of directed latent vari-
able models. Directed latent variable models can represent complicated marginal distributions
over observed variables. Additionally, probabilistic flexible deep neural networks can repre-
sent complex multi-modal distributions. In all the approaches, these two areas are combined
together. Due to intractable posterior distribution, variational inference methods are used to
approximate the posterior distribution.

Key Idea: A neural network parameterized model qφ(z) or qφ(z|x) is used to infer posterior.
The auxiliary neural network is trained to perform inference by maximizing the variational
lower bound. We compare the different approaches of performing variational inference based
on optimizing the lower bound.

Variational Inference

Considering large datasets and latent space z, the exaxt posterior distribution pθ(z|x) is in-
tractable. Considering the latent variable model Pθ(x, z) = Pθ(x|z)Pθ(z), the goal is to learn
the maximum likelihood parameters θ and infer the latent variables z for observations x.

The log marginal likelihood to the lower bounded as follows:

logPθ(x) ≥ EQ[logPθ(x, z)− logQφ(z|x)] = Lθ,φ(x) (1)

In variational inference, a non-gradient based optimisation technique, the goal is to minimize
the KL divergence DKL(Qφ(z|x)||Pθ(z|x)), by alternating between maximizing the lower bound
Lθ,φ(x) w.r.t variational posterior Qφ(z|x) and the model parameters θ.

Auto-Encoding Variational Bayes (AEVB)

By considering the lower bound objective function from equation 1 as L = EQφ(z|x)[fφ(x, z)],
the stochastic gradient-based variational inference method considers stochastic gradient
ascent by finding the gradient ∇φL.

∇φL = EQφ(z|x)[(∇φ log qφ(z|x))fφ(x, z)] = (∇φ log qφ(zl|x))fφ(x, zl) (2)

where zl ∼ qφ(z|x). This means that we take a single sample zl from qφ(z|x) and then can
approximate ∇φL ≈ ∇φfφ(x, zl).

Instead of considering variance reduction techniques (as shown in NVIL), and other good gra-
dient estimators using multiple samples (IWAE, RWS), AEVB considers a reparameterization
technique to reduce variance of gradient estimator.

The reparameterized gradient estimator can be obtained by first sampling εl from p(ε). Consid-
ering the hidden variable z parameterized by z ∼ gφ(ε, x) such that the transformation gφ(ε, x)
is differentiable. This means zl can be sampled from gφ(ε), such that zl ∼ qφ(z|x).

Considering the variational distribution qφ(z|x) = N(µ, σ2) as a Gaussian distribution, the pa-
rameters µ and σ can be otained from a multi-layer neural network. The lower bound Lφ,θ(x)
of log p(x) can therefore be jointly optimized w.r.t θ and φ.

Neural Variational Inference (NVIL)

NVIL similarly considers using an inference network with a feedforward model Qφ(h|x) and
the generative model and the inference network is trained jointly by updating the parameters θ
and φ to increase the variational lower bound Lθ,φ(x). Instead of using the reparameterisation
trick, NVIL considers finding gradients directly and then using a neural network parameterized
baseline network as a variance reduction technique. The gradients w.r.t θ and φ are given as:

∇θLθ,φ(x) = EQ[∇θ logPθ(x, z)] (3)

∇φLθ,φ(x) = EQ[(logPθ(x, z)− logQφ(z|x))∇φ logQφ(z|x)] (4)

Reducing Variance Using Baseline: NVIL considers choosing an input-dependent base-
line bψ(x) which is also a neural network that can be seen as capturing logPθ(x). A baseline
function is chosen that can reduce the variance of the gradient estimator ∇φLθ,φ(x) such that
the resulting learning signal logPθ(x, z) − logQφ(z|x) − bψ(x) is close to zero. The unbiased
estimator of ∇φLθ,φ(x) for any baseline is therefore given as:

∇φLθ,φ(x) = (logPθ(x, z)− logQφ(z|x)− bψ(x))
d

dφ
logQφ(z|x) (5)

Reweighted Wake-Sleep (RWS)

The reweighted wake-sleep algorithm extended from wake-sleep algorithm considers an im-
portance sampling estimate due to sampling of latent variables multiple times from recognition
model. The estimator of the parameter gradient is:

∇θLp =
K∑
k=1

ŵk
d

dθ
log p(x, zk) (6)

with zk ∼ q(z|x) and wk =
p(x,hk)
q(zk|x). In the sleep phase q-update, consider x, z ∼ p(x, z) and then

calculate the gradient ∇φLq. The wake-phase q-update is:

d

dφ
Lq =

K∑
k=1

ŵk
d

dφ
log q(x, hk) (7)

The reweighted wake-sleep algorithm is based on argminφKL(pφ(z|x)|qφ(z|x)) and obtains a
lower bias lower variance gradient estimation for maximizing the lower bound.

Importance Weighted Auto-Encoder (IWAE)

IWAE derives the lower bound gradient estimator from importance weighting, and uses mul-
tiple samples from the inference network instead of single samples. IWAE can obtain better
flexible approximate posterior distribution to model the true posterior.

Lk = EQ[log
1

k

k∑
i=1

wi] ≤ logEQ[
1

k

k∑
i=1

wi] (8)

where the weights w are w(x, h, θ) =
p(x,h|θ)
q(h|x,θ). To optimize the lower bound, the gradient esti-

mate considering importance weighting is:

∇θL(x) =
1

k

k∑
i=1

∇θ logw(x, h(εi;x, θ), θ) (9)

where the mapping h is represented as a neural network, and equation 9 is a Monte-Carlo
estimator for maximizing the lower bound based on the importance weighted autoencoder
algorithm.

Experimental Results

Figure below shows test set performance dor different dimensionality of latent space. More la-
tent variables does not cause overfitting (due to regularizing effect of lower bound). It improves
performance of AEVB, and is independent of NVIL.

Comparison of maximization of lower bound of variational inference, using an inference net-
work for neural network parameterized variational distribution. Comparison between AEVB
vs NVIL vs RWS for directed generative modelling on MNIST dataset.

Summary

• Perform efficient inference in directed probabilistic models with both continuous and discrete
latent variables
•Compared variance reduction techniques for the gradient estimator for comparing the

marginal log-likelihood lower bound
•Multiple sample-based objectives using RWS generalises better for maximizing variational

lower bound
•RWS and IWAE implements effective variance reduction compared to reparameterisation

trick in AEVB and using baseline network in NVIL
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