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Abstract

Scalable Bayesian methods are becoming increasingly in demand. It is not uncommon to
have datasets at peta- and exabyte scale. Moreover, datasets tend to be high dimensional
and scattered with uncertainty. The Bayesian framework provides an elegant and princi-
pled system for reasoning under incomplete knowledge. We are interested in performing
scalable inference and learning in directed probabilistic models where the latent space
is both high dimensional and continuous, yielding an intractable posterior distribution.
Seeing the success of variational methods in such settings through stochastic optimiza-
tion and recognition models, a questions arises naturally: Can similar techniques work
in the Expectation Propagation framework?

This thesis proposes a new inference technique which utilizes Stochastic Expectation
Propagation for model learning, and a recognition model (inference network) for pos-
terior inference over local latent variables, resulting in constant space complexity. We
derive a new local objective function that leverages from stochastic optimization. Auto-
encoding-with-Stochastic-Expectation-Propagation (AESEP) demonstrates signs of suc-
cessful learning for factor analysis.
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1 | Introduction

At the heart of many machine learning problems lies the task of pattern recognition: The
task of unravelling hidden patterns in high-dimensional observations. One way to model this
scenario is via writing a generative procedure. This involves assuming a latent space, and a set
of generative rules relating the latent space to the observed space. For instance, a document
(observed space) might be generated by first selecting a set of topics, then words from that
topic (latent space) and combining them into sentences. In the literature such models are
referred to as latent variable models (LVMs).

Figure 1.1: Probabilistic Pipeline.1

Often the goal in this scenario is inference, and the probabilistic framework o�ers a principled
way for performing this task. In this pipeline (Figure 1.1), we use our prior knowledge to
script a model, which is trained for discovering patterns with an available dataset. The trained
model then finds its utility in making predictions about the unknown. The dynamics of this
pipeline are governed by Bayesian probability, which has proven itself as the optimal language
to reason under incomplete and uncertain information, MacKay (2003).

1Diagram inspired from Professor David Blei’s talk Scaling And Generalizing Approximate Bayesian

Inference, given 13/07/2016 in the department of Engineering, Cambridge University.



2 Introduction

In practice, inference is often faced with the bottleneck of intractability. First is the ana-
lytical intractability, and second is the computational intractability. In the case of LVMs,
these can stem from high-dimensional latent space, non-linear likelihoods, or large datasets.

In such circumstances, we must turn to approximate inference schemes. In fact, approximate
inference techniques are often used in practice where exact inference is possible, to harvest their
computational benefits. Over the past decade, the size of a typical dataset has dramatically
escalated, and it is not uncommon to have streaming data (e.g. user clicks). This requires
both quality analysis and computational e�ciency. What is more, the goal is often decision
making based on little information (e.g. Netflix movie suggestions to a new user). This has
brought a wave of attention to scalable Bayesian learning, for example Stochastic Variational
Inference, Ho�man et al. (2013), and Auto-encoding Variational Bayes (AEVB), Kingma and
Welling (2013).

Approximate inference can be achieved by directly sampling from the intractable posterior
(e.g. Markov Chain Monte Carlo), or through distributional approximations (e.g. Variational
Inference and Expectation Propagation). Moreover, recent e�orts have attempted to bridge
the gap between the two schools of thought, Salimans et al. (2015). Variational Inference (VI)
has generally accumulated more attention compared to Expectation Propagation (EP), Minka
(2001c). Perhaps because VI casts Bayesian inference as an optimization problem yielding a
well-defined lower bound to the model evidence. EP, on the other hand, iteratively approx-
imates moments of factors that together form a global approximation through simpler local
computations. It has been shown that variational methods are biased, and that EP outper-
forms VI in several applications, such as when likelihood functions are non-smooth (See Turner
and Sahani (2008) and Turner and Sahani (2011)). This makes us eager to learn more about
EP, and interesting research is already doing so (e.g. Li et al. (2016)).

There is however a hurdle with EP: each local approximation must be maintained in memory,
leaving an O(N) memory footprint. As a result, Stochastic Expectation Propagation (SEP),
Li et al. (2015), was proposed. SEP maintains a global approximation to the posterior through
parameter tying of the EP factors, while updating local approximations in the EP spirit. This
makes SEP a good choice for Bayesian learning in the large data setting with its O(1) space
complexity.

Many notorious machine learning problems involve local latent variables (e.g. dimensional-
ity reduction and topic modeling). AEVB successfully performed approximate bayesian vari-
ational inference using an auto-encoding map in latent variable models. However, in their
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experiments they were not Bayesian about the global model parameters. This thesis combines
SEP and AEVB into a new approximate inference scheme.

We propose doing Bayesian learning of the model parameters using SEP, and using an auto-
encoding map (recognition model) to approximate the posterior over the latent variables.

The trajectory of this thesis is as follows. First the general problem scenario is mapped
out by presenting a generic graphical model and a concrete set of goals. Chapter 2 highlights
important theory that has been successful in the VI framework, which we braid into the pro-
posed scheme. Chapter 3 summarizes traditional EP, and introduces SEP. Finally chapter
5 presents Auto-encoding-with-SEP (AESEP) and derives its objective function. In chapter
6 experiments and evaluation is done. We end with suggestions for the direction of future work.

1.1 Problem Scenario

We consider a generic class of models2 with the dataset x

1:N

, where the N samples are in-
dependently and identically distributed (i.i.d.), and x

n

is either discrete or continuous. The
observed variables are generated by some process with latent variable z

n

per datapoint, and a
set of global parameters, ◊. The local latent variables typically represents some hidden struc-
ture in our data, while the global parameters denote the model parameters. This structure is
depicted in the graphical model in Figure 1.2.

Figure 1.2: Graphical model for class of models under consideration. The model has
observations x

1:N

, local latent variables z

1:N

, and global latent variables ◊. The arrows
represent the generative model.

The generative procedure can be described in two steps: z

n

is generated from a prior dis-
2Many well-known machine learning problems have graphical models of this form, e.g. Bayesian

mixture models, matrix factorization (Factor analysis, PCA), Dirichlet process mixtures, latent dirichlet
allocation, multilevel regression etc.
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tribution p(z
n

|◊), then x

n

is generated from a conditional distribution p(x
n

|z
n

, ◊). The
probabilistic model can be written as:

p(◊, z, x) = p(◊)
NŸ

n=1
p(z

n

, x

n

|◊) = p(◊)
NŸ

n=1
p(z

n

|◊)p(x
n

|◊, z

n

) (1.1)

Both the global and local latent variables are unknown. Bayes’ rule is applied to do posterior
inference over the latent space:

p(z
1:N

, ◊|x
1:N

) = p(◊)
r

N

n=1 p(z
n

|◊)p(x
n

|◊, z

n

)
p(x

1:N

)

The computation of the marginal likelihood, p(x
1:N

), involves integrating out the latent space,
and is commonly a source of intractability as discussed in the introduction. To perform this
task, we propose an approximate inference scheme with the following goals:

1. E�cient Approximate Bayesian learning of the model parameters ◊.

2. E�cient approximate posterior inference on the local latent variables z given an observed
value x.

In AESEP, SEP is used to achieve goal 1., and recognition models for goal 2.
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In this chapter exciting research that has lead to improved approximate posterior inference
in the VI framework is introduced. In particular we discuss the reparameterization trick,
Papaspiliopoulos et al. (2007), for improved gradient estimates, and recognition models for
e�cient approximate posterior inference, Kingma and Welling (2013) . Both techniques are
employed in the proposed system.

VI phrases Bayesian inference as an optimization problem. An approximate posterior dis-
tribution, q

„

(z|x), is fit to the exact posterior, p
◊

(z|x), by optimizing the approximation’s
parameters, „, such that the lower bound, L, of the marginal likelihood is maximized. The
marginal log-likelihood is composed of the individual datapoint likelihood terms, log p(X) =
q

N

n=1 log p(x
n

). Each individual term can be expressed in the form:

log p(x
n

) = KL
!
q

„

(z|x)
----p

◊

(z|x)
"

+ L(◊, „; x

n

)

Where the KL term is the Kullback-Leibler (KL) divergence between two distributions. The
variational lower bound is derived in appendix A, and the KL-divergence is also defined. The
result is the following form of the variational lower bound (also known as the ELBO):

log p(x
n

) Ø L(◊, „; x

n

) = E
q

„

(z|x)
Ë

log p
◊

(x, z) ≠ q
„

(z|x)
È

This optimization requires gradients with respect to both the generative parameters, ◊, and the
variational parameters, „. The gradients with respect to the variational parameters becomes
challenging where naive Monte Carlo (MC) estimates of the gradients yield high variance,
Paisley et al. (2012). Similar issues are faced in AESEP when taking gradients with respect
to the recognition model and SEP parameters.
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2.1 Use of Reparameterization Trick

The reparameterization trick is a strategy for generating samples from a distribution, e.g.
z ≥ q(z|x, „). The random variable z can be reparameterized using a di�erentiable transform:
z̃ = g(‘, x|„). The noise variable, ‘, is independent from „, and is sampled from some prior
distribution: ‘ ≥ p(‘). The idea is that the mapping, g(.), is di�erentiable with respect to both
„ and ‘. For example, suppose q(z) ≥ N (µ, �), and let ‘ ≥ N (0, I), then the transformation
becomes:

z = g(‘, x|„) = µ + �1/2

‘ (2.1)

The di�erentiable transform depends on the nature of the approximate distribution q. Intu-
itively, this is simply a shift in the source of stochasticity to ‘; merely substitution in terms of
calculus. However, some advantageous consequences appear when computing samples of the
gradients. Suppose we want to sample from q with respect to a function of z, f(z), then by
the chain rule this becomes a derivative with respect to ‘:

Ò
„

E
q(z|xn,„)[f(z)] = Ò

‘

E
p(‘)[f(g(‘, x

n

|„))]

The idea of variance reduction is to modify a function of a random variable, z

n

, such that the
variance decreases, but the expectations stays the same, Paisley et al. (2012). The reparam-
eterization trick reduces the variance of the samples, especially if the di�erential transform
has an isotropic covariance. The mechanics of the calculus above is a result of the determin-
istic mapping which explicitly results in the substitution: q(z|x, „)dz = p(‘)d‘. From this it
follows that:

⁄
q(z|x, „)f(z)dz =

⁄
p(‘)f(z)d‘ =

⁄
p(‘)f(g(‘, x|„))d‘

The reparameterization trick has been applied in the variational setting in a vast amount of
published literature. AEVB shows explicitly how it is used to form a more accurate approxi-
mation of the ELBO, such that the MC estimate is di�erentiable with respect to the variational
parameters. AESEP utilizes this trick in each local minimization for both the local and global
latent variables.
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2.2 Use of Recogntion Models

One of the stated goals is e�cient approximate inference of the local latent variables. The
implicit dependency between an observation x

n

and corresponding z

n

(See Figure 1.2) in-
vites the use of a recognition model, q(z

1:N

|x
1:N

, „), to approximate the exact posterior
p(z

1:N

|x
1:N

, ◊).

This framework has the advantage of bringing flexibility to the approximation by putting
few constraints on the recognition model parameters „. In contrast, the common mean field
approximation1, which assumes a factorized posterior, not only constraints the posterior but
also requires parameters for each factor to be stored in memory. Therefore, the recognition
model can also be thought of as parameter tying.

To achieve a deterministic mapping from an observation x

n

to z

n

, AEVB makes use of the
reparameterization trick (Figure 2.1b.). For example, if the recognition model is assumed
Gaussian q(z

n

|x
n

, „) = N (µ
n

, �
n

), then the output of the deterministic map given an obser-
vation, x

n

, is µ

n

and �
n

. Given the Gaussian assumed structure, the reparameterization in
Equation 2.1 can be utilized to deterministically map x

n

to z

n

.

Figure 2.1: a. Autoencoder showing the mapping and terminology used. b. Reparam-
eterization trick’s role in the encoding/decoding process, where the kite-shaped square
around z implies the random variable is deterministic. Figure b. is inspired by D.
Kingma’s talk on AEVB, Kingma (2014).

AEVB gives a clear picture of the system through the use of autoencoders (Figure 2.1a.). The
deterministic encoding map (e.g. observation to mean and variance) is a neural network, and
likewise is the decoding map. Therefore the only parameters necessary are the weights of the
network. In the general framework, any regression map could be utilized. To do approximate

1q(z1:N ) =
rrrN

n=1 qn(zn)
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VI, AEVB utilizes this to evaluate the variational lower bound. Specifically, once an observa-
tion x

n

has been mapped to a latent variable z

n

, this is used to evaluate the likelihood of that
particular observation which is necessary for the evaluation of the ELBO.
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This chapter starts by outlining traditional EP, and explains how EP is able to achieve quality
approximations of the posterior. Following last chapter’s brief introduction to VI, the contrast
between the two becomes clear. Once the EP framework is established, SEP is introduced
which is how learning is done in the proposed system.

3.1 EP

Expectation propagation approximates the unnormalized posterior, or the joint distribution,
and returns a tractable normalized posterior. For convenience, let ú denote unnormalized
densities. Suppose we have a dataset, X, and ◊ is a vector containing all latent variables, both
global and/or local, then the intractable exact posterior, p(◊|X), can be approximated with a
tractable approximate distribution q(◊):

p(◊, X) = p(◊)
NŸ

n=1
p(x

n

|◊) ¥ qú(◊) = p(◊)
NŸ

n=1
f

n

(◊)

Each likelihood term is approximated by a corresponding factor, f
n

(◊). Often these factors
are constrained to be members of a chosen exponential family. The result is a posterior in the
same family1.

Like variational inference, EP too, is based on minimizing the KL- divergence. However,
EP obtains its personality by taking the KL between the exact posterior and the approximate
posterior: the reverse form compared with the KL used in VI.

KL
1
p(◊|X)

---
---q(◊)

2
=

⁄
p(◊|X)log

p(◊|X)
q(◊) d◊ = E

p(◊|X)

C

log
p(◊|X)

q(◊)

D

1The product of distributions of the same exponential family is also a member of that family.
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The above minimization is intractable since taking an expectation with respect to the in-
tractable exact posterior is analytically impossible. EP gets around this by iteratively opti-
mizing each factor in the context of all the other factors, using what is referred to as the cavity
distribution: The product of all factors (including the prior), except for the current factor, n,
being updated. The cavity distribution for factor n is:

q_n

(◊) = q(◊)
f

n

(◊)

The local minimization for a factor n, becomes the following. p(x
n

|◊)q_n

(◊) is referred to as
the tilted distribution.

KL
1p(x

n

|◊)q_n

(◊)
Z

n

)
---
---f

n

(◊)q_n

(◊)
2

(3.1)

The tilted distribution’s presence in the local minimizations is fundamental to EP’s accurate
global approximations. To o�er clairvoyance, one can instead imagine an iterative procedure
where the KL-divergence is computed directly between p(x

n

|◊) and f
n

(x). The product of
n such entirely independent minimizations would give a globally unreliable approximation. It
might seem that one local minimization does not corporate any information about the other
N ≠ 1 minimizations, but this is not the case as the cavity distribution captures the current
estimate from the N ≠ 1 observations. In other words, the advantage of the cavity distribution
arrises due to the fact that the cavity defines the areas where the posterior probability is high.
Figure 3.1 visualizes the role played by the tilted and cavity distribution in each likelihood
approximation.

Figure 3.1: Example of EP update visualising the stability EP gets from the cavity
distribution in the KL minimization. In this case the likelihood factors are assumed
Gaussian. Observe that even though the likelihood terms do not resemble a Gaussian, the
cavity distribution ensures that the approximation is more accurate where the posterior
has a high value. Figure idea taken from Gelman et al. (2014).
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Furthermore, when the approximating factors are members of the exponential family the mini-
mization (Equation 3.1) reduces to moment matching of the moments of the tilted distribution.
The proof of this result is provided in appendix B. The result in the EP minimization is the
following projection of moments:

f
n

(◊)q_n

(◊) Ω proj[p(x
n

|◊)q_n

(◊)]

Finally, the updated factor is found by dividing out the cavity distribution. In the rare case
where the exact likelihood term and the approximating factor are in the same family, moment
matching is trivial (For an example see chapter 5.1). Usually the likelihood takes a complicated
form, and moments must be sampled from the exact likelihood term p(x

n

|◊). The algorithmic
steps of EP can be summarized:

1. Initialization. All factors are initialized. Usually restricted to be members of an
exponential family, e.g. f

n

(◊) Ω≠ N (0, I). Also initialize the unnormalized posterior:
qú(◊) = p(◊)

r
N

n=1 f
n

(◊)

2. Iteration. Until convergence:

(a) Cavity. Compute the cavity distribution:
q_n

(◊) = q(◊)
f

n

(◊)

(b) Tilted. Compute the tilted distribution:
p(x

n

|◊)q_n

(◊)

(c) Moment matching.
qnew(◊) = f

n

(◊)q_n

(◊) Ω proj[p(x
n

|◊)q_n

(◊)]

(d) Normalisation. Compute the marginal likelihood of the tilted:
Z

n

=
s

p(x
n

|◊)q_n

(◊)d◊

(e) Update.Update the new factor and store
f

n

(◊) = Z
n

q

new(◊)
q

n

(◊)

The local nature of EP makes it easy to parallelize and distribute. Moreover, the local com-
putations are cheap compared with a more complex global minimization. Unfortunately, there
are two main drawbacks to EP. First is the O(N) memory footprint as a result of the cavity’s
requirement to store the N approximating factors in memory. Second, traditional EP has no
guarantee of convergence, Minka (2001a).
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3.2 SEP

The beauty of EP’s local computations has a critical limitation: The number of approximating
factors linearly increase as the number of observations increase2. This becomes an issue when
doing approximate bayesian parameter learning over large datasets. As a reference point, VI
does not face this type of memory scaling because it maintains a global approximation. SEP
also maintains a global approximation, while updating the global approximation in a local
manner, resulting in O(1) space complexity.

The eventual goal of EP is to summarize the posterior through the likelihood factors. In
its optimization it is assumed that the contribution of each likelihood term would be averaged
out at convergence. SEP directly assumes this through parameter tying:

f(◊)N

—=
NŸ

n=1
f

n

(◊) ¥
NŸ

n=1
p(x

n

|◊)

Explicitly, only f(◊) is maintained, and the unnormalized posterior becomes:

q(◊) Ã f(◊)N p(◊)

SEP uses the same iterative local KL-minimization as EP to learn the current datapoint’s
approximating factor f

n

(◊). However, the minimization is in the context of the averaged cavity,
q≠1(◊) Ã q(◊)

f(◊) : summarizing the average contribution of each datapoint to the posterior.

KL
1p(x

n

|◊)q≠1(◊)
Z

n

)
---
---p(◊)f(◊)N )

2

To achieve a local approximation similarly perform moment matching and divide out the
cavity:

f
n

(◊) Ω≠ proj[q≠1(◊)p(x
n

|◊)]/q≠1(◊)

Finally, the global factor is updated using damping:

f(◊) = f(◊)1≠–f
n

(◊)–

Setting the damping parameter – = 1
N

is the most obvious choice, but the SEP authors also
suggests other choices, such as an adaptive damping parameter, and decreasing – according to
the Robbins-Monroe condition.

2Prior to SEP, solving this required a visit to the hardware store or the cloud.
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The algorithmic steps are very similar to the detailed outline given in the EP section, with the
SEP updates as explained. The algorithm is summarized in Figure 3.2, and the contrast to EP
can be seen. In particular take note of step 2, the computation of the cavity, clearly showing
how SEP uses the averaged contribution of each datapoint. Theoretically, this is a compromise
to the quality of the approximation, however the gain in terms of resources by changing to
SEP from EP might often be more dramatic. The authors achieve impressive results on both
synthetic and real datasets.

Algorithm 1 EP
1: choose a factor f

n

to refine:
2: compute cavity distribution

q≠n

(◊) Ã q(◊)/f
n

(◊)
3: compute tilted distribution

p̃
n

(◊) Ã p(x
n

|◊)q≠n

(◊)
4: moment matching:

f
n

(◊) Ω proj[p̃
n

(◊)]/q≠n

(◊)
5: inclusion:

q(◊) Ω q≠n

(◊)f
n

(◊)

Algorithm 2 SEP
1: choose a datapoint x

n

≥ D:
2: compute cavity distribution

q≠1(◊) Ã q(◊)/f(◊)
3: compute tilted distribution

p̃
n

(◊) Ã p(x
n

|◊)q≠1(◊)
4: moment matching:

f
n

(◊) Ω proj[p̃
n

(◊)]/q≠1(◊)
5: inclusion:

q(◊) Ω q≠1(◊)f
n

(◊)
6: implicit update:

f(◊) Ω f(◊)1≠ 1
N f

n

(◊) 1
N

Figure 3.2: Comparing EP and SEP algorithms. The procedure is done iteratively until
convergence. In step one, EP chooses a factor to refine, while SEP chooses a datapoint
(as local factors are not kept in memory) to compute the local minimization for updating
the global approximation.
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This chapter introduces the proposed approximate inference scheme: Auto-encoding with SEP.
First, we motivate the EP-like approximations. We incorporate parameter tying strategies to
define a new set of approximations. Then we derive a local objective function by minimizing
a KL-divergence in an EP-like fashion. Following this we propose the use of a sampling based
stochastic optimization of the objective function.

4.1 Approximating Factors and Parameter Tying

The Problem Scenario introduced the generic probabilistic model (Equation 1.1) being consid-
ered. Mathematically, the joint likelihood p(z

n

, x

n

|◊) is a function t
n

(x
n

, z

n

, ◊) with param-
eters x

n

, z

n

and ◊. In alignment with the EP philosophy, we approximate t
n

(x
n

, z

n

, ◊) with
Ât
n

(x
n

, z

n

, ◊).

p(z
n

|◊)p(x
n

|◊, z

n

) = t
n

(x
n

, z

n

, ◊) ¥ Ât
n

(x
n

, z

n

, ◊) = f
n

(z
n

) Ât
n

(◊)

This can further be approximated using SEP parameter tying on the Ât
n

(◊) factors, such that
Ât(◊)N =

r
N

n=1 Ât
n

(◊), resulting in the following expression:

Ât
n

(x
n

, z

n

, ◊) = f
n

(z
n

)Ât(◊)

At this stage each f
n

(z
n

) could be approximated using EP, yielding an SEP-EP model. We
tie parameters at one more level. Intuitively there is a local dependency between the observed
x

n

and the corresponding latent variable z

n

. Unlike the traditional EP approach, where each
f

n

factor would have separate parameters, ⁄

n

, we can exploit this intuitive relationship via
an encoder map (like in chapter 2.2). Such that f

n

(z
n

) = f(g
„

(x
n

)). For convenience we
write f(z

n

), to represent the deterministic mapping from x

n

to z

n

via a recogntion model
utilizing the reparameterization trick. This makes the final approximation with both sources



4.2 Local KL-divergence 15

of parameter tying:

p(z
n

|◊)p(x
n

|◊, z

n

) = t
n

(x
n

, z

n

, ◊) ¥ Ât
n

(x
n

, z

n

, ◊) = f(z
n

)Ât(◊)

The complete approximation can be expressed as:

p(z
1:N

, x

1:N

, ◊) = p(◊)
NŸ

n=1
p(z

n

|◊)p(x
n

|◊, z

n

) ¥ p(◊)Ât(◊)N

NŸ

n=1
f(z

n

)

4.2 Local KL-divergence

The EP minimization step takes the KL-divergence between the tilted distribution, and the
unnnormalised approximate posterior. These densities are expressed respectively:

q(◊, z

1:N

) Ã p(◊)
Ÿ

n

Ât
n

(x
n

, z

n

, ◊) (4.1)

qtilt(◊, z

1:N

) = 1
Z

q(◊, z

1:N

)
Ât
n

(x
n

, z

n

, ◊)
t
n

(x
n

, z

n

, ◊) (4.2)

Z is the normalization constant, which ensures that qtilt(◊, z

1:N

) integrates to unity. By taking
the KL-divergence between Equation 4.1 and 4.2, a local objective, E, is derived.

E = KL
1
qtilt(◊, z
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)
---
---q(◊, z
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)
2

=
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...
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1
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) d◊dz
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=
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dz ”=n
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Z
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� is the following expression:

�(x
n

, z

n

, ◊) = p(x
n

, z

n

|◊)
Zf

n

(z
n

) Ât
n

(◊)
(4.3)

4.3 Stochastic Objective

The objective can be approximated by employing sampling schemes. The unobserved variables
are now sampled, {◊

(m)

, z

(m)

n

}M

m=1 s q(◊)f(z
n

), such that ◊ is sampled from the SEP posterior
approximation, and z

n

from the recognition model approximation. The samples are taken
via the reparameterization trick, to achieve benefits (see chapter 2.1) when computing the
gradients with respect to both the SEP and recognition model parameters. Approximating E

via sampling results in:

E ¥ ÂE = 1
M

Mÿ

m=1
�(x

n

, z

(m)

n

, ◊

(m)) log �(x
n

, z

(m)

n

, ◊

(m)) (4.4)

In a similar manner, the normalization constant in Equation 4.3 can be approximated from
the unnormalized �:

Z ¥ 1
M

Mÿ

m=1
�ú(x

n

, z

(m)

n

, ◊

(m)) (4.5)

At this stage, the tradeo� between a biased and an unbiased estimate becomes relevant. Note
that an unbiased estimate of Z, does not mean that 1

Z

is unbiased. Theoretical work on
unbiased estimates of 1

Z

exists. To achieve an unbiased estimate for the final approximation,
separate sets of samples must be used in the approximation of Z and �ú. Unfortunately,
this leads to a resulting approximation with high variance. Intuitively, the two sets invite
two sources of randomness, which leads to the observed increased variance. Self normalized
important sampling reduces the variance by using one set of samples for both approximations.
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Following Equation 4.4, we utilize this fact which results in the following biased estimate:

ÂE = 1
M

Mÿ

m=1

1
Z

�ú(x
n

, z

(m)

n

, ◊

(m)) log �ú(x
n

, z

(m)

n
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(m))
Z

= 1
M

Mÿ

m=1

�ú(x
n

, z

(m)

n

, ◊

(m))
Z

Ë
log �ú(x

n

, z

(m)

n

, ◊

(m)) ≠ log Z
È

Plugging in for Z using Equation 4.5:

= 1
M

Mÿ

m=1

�ú(x
n

, z

(m)

n

, ◊

(m))
1

M

q
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(m)
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log �ú(x

n
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(m)) ≠ log
1 1
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�ú(x

n
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n
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2È

=
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n
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(m)
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, ◊

(m))
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m=1 �ú(x
n

, z

(m)

n
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log �ú(x
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, ◊

(m)) ≠ log
1 Mÿ
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, z
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, ◊
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2

≠ log 1
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È

Next the self normalising weights Âw are defined:

Âw(m) = �ú(x
n

, z

(m)

n

, ◊

(m))
q

M

m=1 �ú(x
n

, z

(m)

n

, ◊

(m))

log Âw(m) = log �ú(x
n

, z

(m)

n

, ◊

(m)) ≠ log
Mÿ

m=1
�ú(x

n

, z

(m)

n

, ◊

(m))

Combining the expression, we get:

ÂE =
Mÿ

m=1
Âw(m) log Âw(m) + M log(M)

Since the objective is being minimized the constant can be ignored, giving:

ÂE =
Mÿ

m=1
Âw(m) log Âw(m)
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4.4 Algorithm

We denote Â as the parameters of the global SEP factor (i.e. the moments of the chosen
parametric distribution), and „ the parameters of the recognition model (e.g. the weights of
a neural network). – and — are the damping constants for the SEP and recognition model,
respectively, and g(.) is a di�erentiable transform via the reparameterization trick.

1. Initialization. Initialize the global SEP factor and the Recognition model parameters:
Â, „ Ω≠ Initialize

2. Iteration. Until convergence:

• Datapoint. Choose a datapoint x

n

.

• Sample. Random samples for the reparameterization of ◊ and z

n

‘

◊

≥ p(‘)
‘

z

≥ p(‘)

• Gradients. Compute gradients of local objective ÂE
g Ω≠ O

Â,„

ÂE(x
n

, g
„

(x
n

, ‘

z

), g
Â

(x
n

, ‘

◊

))

• Optimize. Optimize parameters using gradient based method to achieve local
optimal set of parameters.
Â

n

, „

n

• SEP Update.Update global SEP factor
Ât(◊) = Ât(◊)1≠– Ât

n

(◊)–

• Update Recognition Model. Update recognition model using damping
„ Ω≠ „

1≠—

„

—
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We use Factor Analysis (FA) as an instance of the generic latent variable model (Figure 1.2)
to test AESEP. FA is a linear model where each observation, x

n

œ Rp, is generated by some
lower dimensional latent variable, z

n

œ Rq, through a lineal transformation, W œ Rp◊q, with
added isotropic noise, ‡

x

. The transform can for example be: x

n

= W z

n

+ ‡

x

I. This has
conditional density1:

p(x
n

|z
n

, W , ‡2
x

) Ã exp{≠0.5(x
n

≠ W z

n

)T (‡2
x

I)≠1(x
n

≠ W z

n

)}

From the likelihood, observe that the posterior is the following:

p(z
n

|x
n

, W , ‡2
x

) s N (
#
I + W

T (‡

2

x

I)≠1

W

$≠1
W

T (‡2
x

I)≠1
x

n

,
#
I + W

T (‡

2

x

I)≠1

W

$≠1)
(5.1)

Equation 5.1 is compared to the posterior inference approximation produced by the recogni-
tion model to verify the approximation. Because SEP’s convergence properties are not well
understood, Li et al. (2015), evaluation of model learning by SEP is more challenging. This is
in contrast to VI with a well-defined lower bound on marginal likelihood. As an alternative,
we use the predictive marginal likelihood as our metric. Another option is to plot the fixed
points of the EP energy function (See Minka (2001b)). However, this is also questionable as
the direct relationship between EP and SEP is an open question, Li et al. (2015). The exact
generative model used to generate synthetic data is:

p(z) = N (0, I)

p(x|z, ◊) = N (Wz, ‡2

x

I)

w
i,j

≥ N (0, ‡2
w

)

‡
x,w

≥ N (0, 1)
1See Fokoué (2009) for a detailed introduction to Factor Analysis.
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Implementation details can be found on https://github.com/verajohne/Autoencoding_

SEP

5.1 Vanilla EP to Infer Latent Variables

We show that EP performs exact inference in the case of factor analysis. This also serves as a
clear demonstration of moment matching. The likelihood terms of FA are Gaussian, therefore
when the approximated factors are assumed Gaussian, moments are easily computed through
the exact projection:

f
n

(z
n

) = p(x
n

|z
n

, ◊)

This derivation is included in appendix C. Figure 5.1 shows that EP successfully performs
exact inference over the latent space in FA.

Figure 5.1: Posterior over local latent variable z

n

where the latent space is 2 dimensional.
samples are generated using a. Equation 5.1 b. Exact EP inference on z

n

. The small
di�erences in the covariance is due to the stochasticity in the sampler.

5.2 Auto-encoding with SEP

The global SEP factor, t(◊), is assumed Gaussian with mean, u, and covariance, V , such that
t(◊) = N (◊; u, V ). Since factor analysis is a linear model, the recognition model is utilized to
learn the following encoding:

f(z) = N (z; Rx, S)

https://github.com/verajohne/Autoencoding_SEP
https://github.com/verajohne/Autoencoding_SEP
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R and S are shared across all N data-points. Thus, the only variables maintained in memory
are R, S, u, V ; independent of dataset size. Indeed, an increase in dimensionality of either
latent or observed space will result in larger memory occupancy of each individual variable.

A number of observations are worth noting for future e�orts. Initial testing used separate
MC samples for estimates of �ú and the normalization constant Z. This resulted in numerical
issues due to the two sources of variance (see chapter 4.3). As a result, we turned to self
normalizing importance sampling. This solved the numerical issues, but noisy gradients were
still observed, despite the presence of the reparameterization trick as a control variate. One
strategy that reduced observed noise was fixing the random number generator seed in each
local minimization. This constrained the variance between each batch of MC samples.

Moreover, since the objective function is a MC estimate, stochastic gradient based optimiz-
ers, such as Adam Kingma and Ba (2014), can be leveraged. The implementation of Adam
dramatically improved computation time (See Figure 5.2).

Figure 5.2: The norm of the gradients of u, R, S. Taken during the minimization of
the first datapoint during the first iteration, using a. Adam b. deterministic gradient
descent (GD). Observing the range of the axises shows that (i) Adam stabilized much
faster than deterministic GD (x-axis) (ii) Adam adds momentum to the search (y-axis).
The parameters of Adam were initialized as advised by the authors

The initial sanity check set R, S, u, V to their optimal values, and it was observed that
marginal likelihood stayed maximized, as well as the parameters remaining at their optimal
values; indicative of a stable local objective function. Prior to the proposed joint optimization
of AESEP, both SEP and the recognition model were tested separately. Figure 5.3 shows the
results after fixing the SEP factor to optimal values, and learning the encoding map. Compar-
ing the exact and approximated posterior, we can conclude that the recognition model learns
the required encoding.
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Figure 5.3: Learning R, while keeping u and V fixed. The two plots show the posterior
over local latent variable z

n

where the latent space is 2 dimensional. a. Exact posterior
(Equation 5.1) b. Approximated posterior.

For the next experiment the setup was flipped; fixing the recognition model parameters, R and
S, and training SEP (See Figure 5.4). In theory the predictive marginal likelihood should grad-
ually increase towards the true marginal likelihood, and this is observed when large datasets
were used; indicating that SEP requires more observations in order to generalize. When small
datasets are used AESEP stabilizes at a local minima. Albeit in a noisy-fashion, predic-
tive marginal likelihood is slowly increasing. However, observe that, unlike in VI, where we
expect to see a monotonically increase marginal likelihood, this is not expected in EP-like
algorithms.

Figure 5.4: Fixing the recognition model, and learning the generative parameters using
SEP. a. Small dataset b. Large dataset. The red line indicates true marginal likelihood.

The recognition model successfully trained with SEP fixed, and the previous experiment in-
dicate signs of convergence while fixing the recognition model. However, more experiments
are mandated for reliable conclusions. Figure 5.5 shows the predictive marginal likelihood
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using full AESEP. Comparing Figure 5.4 and 5.5 similar patterns are observed, except that in
the case of full AESEP the stabilization at a local minima happens much sooner when small
datasets are used.

Figure 5.5: Predictive marginal likelihood for full AESEP with random initialization
using a. Small Dataset b. Large dataset. The red line indicated true true marginal
likelihood.

Experiments revealed AESEP to be di�cult to tame; a behavior generally shared across EP-
like algorithms. In the light of observed results, in training of AESEP, we propose the following
starting points for further investigation. First, it is hypothesized that the two model constraints
might be interfering: Does SEP and the recognition model have to learn at a similar rate
(damping hyper-parameters)? Second, the theoretical claims of AESEP ought to be verified
for larger and established datasets (e.g. MNIST). Third, lack of a global objective is restrictive
in sensible visualizations of convergence. Predictive marginal likelihood are the recommended
metrics. However, Energy function formulations are expected to ascribe an additional support
for the theoretical claims. Fourth, profiling of the code reveals gradient computations as
the bottleneck in time complexity, and hence alternative optimization strategies should be
explored.



6 | Conclusion

This thesis has introduced AESEP for jointly performing Bayesian learning and inference in
large latent variable models. We theoretically proved the existence of a local objective function
that is minimized in the EP-fashion. With recent advances in stochastic optimization, we
further developed a Monte Carlo approximation of the theoretical objective, and incorporated
control variate schemes. Experiments indicate learning and inference on a factor analysis
model. Applicability of AESEP to real-life scenarios is an open-ground and is left to future
investigations.
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A | Derivation of Variational
Lowerbound

log p(x) = log
⁄

p
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(x, z)dz

= log
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p
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log p
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= L(◊, „; x)

The last step uses Jensen’s inequality. The final RHS is the variational lowerbound.
VI considers the KL-divergence between the approximate and the exact posterior:
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B | Moment Matching of EP

A distribution in the exponential family can be expressed in the following form:

p(z|÷) = h(z)g(÷)exp{ ÷

T u(z)}

÷ are the natural parameters, g(÷) ensures integration to unity:

g(÷)
⁄

h(z)exp{÷

T u(z)}dz = 1

Di�erentiating this with respect to ÷ gives:

≠O ln g(÷) = E
q(÷)[u(z)] (B.1)

Taking the KL divergence between the exact, p and approximate distribution, q, gives:

KL(p||q) =
⁄

p(z)log
p(z)
q(z)d◊

= E
p(z)[log p(z) ≠ log q(z)]

= E
p(z)[log q(z)] + logp(z)

= E
p(z)[≠ ln

1
h(z)exp{÷

T u(z)}
2
] + logp(z)

= E
p(z)[≠ ln g(÷ ≠ ÷

T u(z))] ≠ ln h(z) + log p(z)

= ≠ ln g(÷) ≠ ÷

TE
p(z)[u(z)] + Constant

Taking the gradient

≠O ln g(÷) = E
p(z)[u(z)] (B.2)

Equation B.1 and B.2 imply moment matching:

E
q(z)[u(z)] = E

p(z)[u(z)]



C | Exact EP on local latent variables
of FA

The goal is to infer the latent variables z

n

with the following approximate distribution:
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From the generative model of factor analysis we know the form of the data likelihood, and as
a result of exact moment matching we get the following result:
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Lastly, the likelihood scaling factor becomes:
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Substituting in the calculated mean and covariance and assuming the dimensions of z is 2, the
final likelihood factor takes the following tedious form.
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