# Weight Uncertainty in Neural Networks

## Background

#### **Point estimates for neural networks are not enough:**

- No way to quantify uncertainty in predictions results in overconfident predictions.
- Not robust can be effectively fooled by adversarial examples.

#### **Exact Bayesian inference completely intractable over weights:**

- Functional form doesn't allow for analytic integration.
- Huge number of weights make numerical methods intractable too.

#### Solution:

• Propose a fast, backpropagation-style, algorithm for learning an approximate posterior distribution over the weights.

## **Bayes by Backprop**

- Variational Bayesian paradigm replaces integration problem with optimisation task - leverage gradient methods and auto-diff.
- Make use of Monte Carlo approximations for training and predictions.

#### Approximate P(w|D) by minimizing KL divergence:

$$P^* = \operatorname{argmin} KL[q(w|\theta)||P(w|D)]$$

#### Equivalently maximise the Evidence Lower BOund (ELBO):

 $\mathcal{F}(D,\theta) = \mathbb{E}_{q(w|\theta)}[\log P(D|w)] - KL[q(w|D)||P(w)]$ 

#### Monte Carlo approximation:

$$\mathcal{F}(D,\theta) \approx -\frac{1}{n} \sum_{i=1}^{n} \log q(w^{(i)}|\theta) - \log P(w^{(i)}) - \log P(D|w^{(i)})$$

$$w^{(i)} \sim q(w|\theta)$$

#### Gaussian variational posterior $q(w^{(i)}|\theta)$ :

Reparameterisation trick:

$$w = \mu + \log(1 + \exp(\rho)) \circ \epsilon$$
$$\epsilon \sim \mathcal{N}(0, I)$$
$$\theta = (\mu, \rho)$$

#### Scale mixture prior P(w):

$$P(w) = \prod_{j} \pi \mathcal{N}(w_j | 0, \sigma_1^2) + (1 - \pi) \mathcal{N}(w_j | 0, \sigma_2^2), \sigma_1 > \sigma_2, \sigma_2 \ll 1$$

Only double the number of parameters yet trains an infinite ensemble



*Figure 1. Left: classical BP, fixed value on weights. Right: BBB, distribution over weights. Image taken from [1].* 



- Taking advantage of the uncertainty information in Bayesian neural networks we can perform Bayesian optimisation.
- We maximise a very simple negative quadratic function while sequentially selecting acquisition points.
- We use Thompson sampling to pick a single function and choose the next point of be the value that maximises that function.
- After only six observations we have a pretty good model of the function.



Alexander J. Chan, Andrew Lee, Wen Wu

# **1-D Regression: Visualising Uncertainty**

• Simple regression task using Bayes by Backprop (BBB). We compare to predictions from a regular NN and MC Dropout NN, as well as a Gaussian process.

Uncertainty estimates are quite conservative.

• Training done on 100 randomly sampled points from function with Gaussian noise:

 $y = x + 0.3 \sin(2\pi(x + \epsilon)) + 0.3 \sin(4\pi(x + \epsilon)) + \epsilon,$  $\epsilon \sim \mathcal{N}(0, 0.02)$ 

confidence. Left-to-right: Standard MLP, MC Dropout, BBB, and an RBF kernel GP. Implementations of BBB and MC Dropout built on code provided in [2].

# **Bayesian Optimisation**

## References

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, "Weight uncertainty in neural networks," in Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML'15, p.1613–1622, JMLR.org, 2015. [2] https://github.com/JavierAntoran/Bayesian-Neural-Networks

#### Mod

- Vanilla
- MC Dro
- Bayes-by-B

Table 1. MNIST classification result of SGD, dropout, BBB applied to a feedforward NN with two 400/1200 unit layers.

# What does the distribution over weights look like?



ratio of all weights.

| Weights Removed (%) | No. of Active Weights | Test Error Rate (%) |
|---------------------|-----------------------|---------------------|
| 0                   | 478410                | 2.59                |
| 50                  | 239205                | 2.52                |
| 75                  | 119603                | 2.62                |
| 95                  | 23921                 | 2.75                |
| 98                  | 9569                  | 3.14                |

- Pruning weights with low SNR results in minimal accuracy impact on BBB but leads to catastrophic failure in other methods including dropout.
- Can consider this Bayesian model selection with unnecessary parameters removed.
- Bayesian treatment allows for appropriate uncertainty estimation.
- Can be seen as an easy way to train an infinite ensemble of networks with only double the number of parameters. The induced predictive uncertainty allows for principled
- Future directions include developing more flexible approximate posteriors and extending to different neural net architectures.



# **Classification on MNIST**

| del      | Error Rate (%)<br>400 Units | Error Rate (%)<br>1200 Units |
|----------|-----------------------------|------------------------------|
| SGD      | 1.84                        | 1.92                         |
| opout    | 1.99                        | 1.85                         |
| Backprop | 2.01                        | 2.35                         |

BBB produces the weights with the highest variance. We calculate the signal-to-noise ratio (SNR) for all of the weights and see how pruning those weights with the lowest ratio affects performance - BBB is much less affected than other methods.

Figure 4. Left: Comparison between weight distribution of BBB, SGD, dropout. Right: Signal to noise

Table 2. Classification error on MNIST after weight pruning.

### Conclusions

exploration in IRL and Bayesian optimisation.