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Point	estimates	for	neural	networks	are	not	enough:
• No	way	to	quantify	uncertainty	in	predictions	- results	in	

overconfident	predictions.
• Not	robust	- can	be	effectively	fooled	by	adversarial	examples.

Exact	Bayesian	inference	completely	intractable	over	weights:
• Functional	form	doesn’t	allow	for	analytic	integration.
• Huge	number	of	weights	make	numerical	methods	intractable	too.

Solution:
• Propose	a	fast,	backpropagation-style,	algorithm	for	learning	an	

approximate	posterior	distribution	over	the	weights.
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• Variational Bayesian	paradigm	replaces	integration	problem	with	
optimisation task	- leverage	gradient	methods	and	auto-diff.

• Make	use	of	Monte	Carlo	approximations	for	training	and	
predictions.

Bayes	by	Backprop

• Simple	regression	task	using	Bayes	by	Backprop (BBB).	We	compare	to	predictions	from	
a	regular	NN	and	MC	Dropout	NN,	as	well	as		a	Gaussian	process.

• Uncertainty	estimates	are	quite	conservative.
• Training	done	on	100	randomly	sampled	points	from	function	with	Gaussian	noise:

1-D	Regression:	Visualising	Uncertainty Classification	on	MNIST

• Bayesian	treatment	allows	for	appropriate	uncertainty	
estimation.

• Can	be	seen	as	an	easy	way	to	train	an	infinite	ensemble	of	
networks	with	only	double	the	number	of	parameters.

• The	induced	predictive	uncertainty	allows	for	principled	
exploration	in	in	RL	and	Bayesian	optimisation.

• Future	directions	include	developing	more	flexible	approximate	
posteriors	and	extending	to	different	neural	net	architectures.

Conclusions

• Taking	advantage	of	the	uncertainty	information	in	Bayesian	neural	networks	we	can	
perform	Bayesian	optimisation.

• We	maximise a	very	simple	negative	quadratic	function	while	sequentially	selecting	
acquisition	points.

• We	use	Thompson	sampling to	pick	a	single	function	and	choose	the	next	point	of	be	the	
value	that	maximises that	function.

• After	only	six	observations	we	have	a	pretty	good	model	of	the	function.

Bayesian	Optimisation

• BBB	produces	the	weights	with	the	highest	variance.
• We	calculate	the	signal-to-noise	ratio	(SNR)	for	all	of	the	weights	

and	see	how	pruning	those	weights	with	the	lowest	ratio	affects	
performance	- BBB	is	much	less	affected	than	other	methods.

What	does	the	distribution	over	weights	
look	like?

Figure	1.	Left:	classical	BP,	fixed	value	on	weights.	Right:	BBB,	distribution	over	weights.	Image	taken	from	[1].
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Gaussian	variational	posterior	𝒒(𝒘 𝒊 |𝜽):
Reparameterisation trick:

𝑤 = 𝜇 + log 1 + exp 𝜌 ∘ 𝜖
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, 𝜎1 > 𝜎2, 𝜎2 ≪ 1

• Only	double	the	number	of	parameters	yet	trains	an	infinite	ensemble

Model	 Error Rate	(%)	
400	Units

Error	Rate		(%)	
1200 Units

Vanilla	SGD 1.84 1.92

MC	Dropout 1.99 1.85

Bayes-by-Backprop 2.01 2.35

Weights	Removed	(%) No.	of	Active	Weights Test	Error Rate	(%)
0 478410 2.59
50 239205 2.52
75 119603 2.62
95 23921 2.75
98 9569 3.14

• Pruning	weights	with	low	SNR	results	in	minimal	accuracy	
impact	on	BBB	but	leads	to	catastrophic	failure	in	other	
methods	including	dropout.

• Can	consider	this	Bayesian	model	selection	with	unnecessary	
parameters	removed.

Table	1.	MNIST	classification	result	of	SGD,	dropout,	BBB	applied	to	a	feedforward	NN	with	two	400/1200	unit	layers.

Figure	2.	Regression	of	noisy	data	with	credible	intervals.	Black	crosses	are	training	samples.	Black	lines	are	mean	predictions. Pink/purple	region	is	shows	
confidence.	Left-to-right:	Standard	MLP,	MC	Dropout,	BBB,	and	an	RBF	kernel	GP.	Implementations	of	BBB	and	MC	Dropout	built	on	code	provided	in	[2].

Figure	3.	Results	of	BBB	applied	to	Bayesian	optimisation.

Figure	4.	Left:	Comparison	between	weight	distribution	of	BBB,	SGD,	dropout.	Right:	Signal to	noise	
ratio	of	all	weights.

Table	2.	Classification	error	on	MNIST	after	weight	pruning.


