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Background 1-D Regression: Visualising Uncertainty Classification on MINIST
Point estimates for neural networks are not enough: + Simple regression task using Bayes by Backprop (BBB). We compare to predictions from “ Error Rate A Error Rate tA)
* No way to quantify uncertainty in predictions - results in 400 Units 1200 Units

a regular NN and MC Dropout NN, as well as a Gaussian process.

[ icti . . . . Vanilla SGD 1.84 1.92
overconfident predictions. . « Uncertainty estimates are quite conservative.
* Notrobust - can be effectively fooled by adversarial examples. e Training done on 100 randomly sampled points from function with Gaussian noise: MC Dropout 1.99 1.85
.. . . _ - : _ Bayes-by-Backprop 2.01 2.35
Exact Bayesian inference completely intractable over weights: y =x+ 03 sin(2rn(x + €)) + 0.3sin(4n(x + €)) + ¢, e~N(0,0.02)
. ’ . . Table 1. MINIST classification result of SGD, dropout, BBB applied to a feedforward NN with two 400/1200 unit layers.
° Fu nct|ona| fo rm doesn t a”OW for analyt|c |ntegrat|0n, 00 L-D Regression with Regular NN 00 1-D Regression with MC Dropout - 1-D Regression with Bayes by Backprop 00 __1-DRegression with GP
* Huge number of weights make numerical methods intractable too. .. 7 | ' ' g g : e
8 : " o What does the distribution over weights
0.50 1 : : 0.50 1 ! 0.50 1
Solution: B RSP 8 | look like?
* Propose a fast, backpropagation-style, algorithm for learning an > 0oty AR BRI 1 >
approximate posterior distribution over the weights. Rl { & i * BBB produces the weights with the highest variance.
Bayes by Backprop ) ; ; , o | W] * We calculate the signal-to-noise ratio (SNR) for all of the weights
Vs | e | Y IR N S and see how pruning those weights with the lowest ratio affects
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. . . . . . ' -02 -01 00 01 02 ) 03 04 05 06 07 -02 -01 00 01 02 ) 03 04 05 06 07 -02 =01 00 01 02 ) 03 04 05 06 07 -02 -01 00 01 02 ) 03 04 05 06 07 performance _ BBB is mUCh |ESS affected than Other methOdS
* Varlatlonal BayeSIan paradlgm replaces |ntegrat|0n prObIem Wlth Figure 2. Regression of noisy data with credible intervals. Black crosses are training samples. Black lines are mean predictions. Pink/purple region is shows Distribution of Weights Signal to Noise Ratio of Weights
Optimisation task _ Ieve rage gradient methods and auto-diff. confidence. Left-to-right: Standard MLP, MC Dropout, BBB, and an RBF kernel GP. Implementations of BBB and MC Dropout built on code provided in [2]. Saye..s bgG%ackpmp e
40 - antia
* Make use of Monte Carlo approximations for training and o o _° ° e prosedt A505
- PP 5 Bayesian Optimisation .
predictions. z £ 100
. . . . . . . o . o . o 220* g 75 -
Approximate P(w|D) by minimizing KL divergence: * Taking advantage of the uncertainty information in Bayesian neural networks we can
. . . . | 50 4
9* = argmin KL[q(w|0)||P(w|D)] perform Bayesian optimisation. v e
auivalent N é y ] gound (Ead] * We maximise a very simple negative quadratic function while sequentially selecting T N R
u|va en maX|mlse e VI ence Ower un : [ . ampie eights Absolute Value of Signal to Noise Ratio
q y acq uisition pOI nts. ] ) ) . ) Figure 4. Left: Comparison between weight distribution of BBB, SGD, dropout. Right: Signal to noise
F(D,0) = E,y)g)llog P(D|w)] = KL[g(w|D)||P(w)] e We use Thompson sampling to pick a single function and choose the next point of be the ratio of all weights.

: : e val hat maximi hat function.
Monte Carlo approximation: alue that maximises t Weights Removed (%) | No. of Active Weights Test Error Rate (%)

After only six observations we have a pretty good model of the function.

n
1 . . . 0 478410 2.59
F(D,0) = ——Zlo w®10) —log P(w®) —log P(D|w®
B0 == s 8q(wlP) ~log P(w™) ~log P(D|w™) 50 239205 2.52
. 50 A ] 100 A x\

Gaussian variational posterior q(w("|8): - 95 23921 2.75
Reparameterisation trick: - Mean pedicton 2t 2562 e

w=u + lOg(l + exp ( ,0)) o€ 150, ? i%iigf:mple Table 2. Classification error on MINIST after weight pruning.

% Next Evaluation

e~N(0,1) W 2 % * Pruning weights with low SNR results in minimal accuracy

0 = (up) 0- impact on BBB but leads to catastrophic failure in other
methods including dropout.

e Can consider this Bayesian model selection with unnecessary

Scale mixture prior P(w):

_10.

P(w) = H”N(Wj|0» of) + (1 —mN(w;|0,07),01 > 03,0, < 1 parameters removed.
j —20 A -
 Only double the number of parameters yet trains an infinite ensemble ol ] ConCI usions
_ _ Figure 3. Re;su/ts of_BBB applied to Bayesian optimisation. _ _ * BayeSian treatment a”OWS for appropriate uncertainty
estimation.
References * Can be seen as an easy way to train an infinite ensemble of
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Flgure 1. Left: classical BP, fixed value on weights. Right: BB, distribution over weights. Image taken from [1]. [2] https://github.com/JavierAntoran/Bayesian-Neural-Networks posteriors and extending to different neural net architectures.



