
Sample efficient deep reinforcement
learning for dialogue systems with large

action spaces

Gellért Weisz

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Churchill College 10 August 2017

ii

Declaration

I, Gellért Weisz of Churchill College, being a candidate for the M.Phil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose.

Word count: 14902

Signed

Date: Thursday 10th August, 2017

iii

Acknowledgements

I would first like to express my gratitude to my supervisor, Dr Milica Gašić, whose time and
advice was indispensable when undertaking this piece of work. I would also like to thank
Paweł Budzianowski and Eddy Pei-Hao Su for the advice they gave during this year, and
for their assistance in implementing the ideas in practice. I further want to thank all the
MLSALT professors, lecturers and examiners who have been there to answer my questions
and ready to provide insights over the course of the year. Their teaching was excellent and
their explanations of the intricacies of machine learning and speech technology were an
invaluable resource.

iv

Abstract

In Statistical Dialogue Systems, we aim to deploy Artificial Intelligence to build automated
dialogue agents that can converse with humans. A part of this effort is the policy optimisation
task, which attempts to find a policy describing how to respond to humans, in the form
of a function taking the current state of the dialogue and returning the response of the
system. In this project, we investigate Reinforcement Learning approaches to this problem.
Particular attention is given to Deep Reinforcement Learning, Actor-Critic methods, off-
policy Reinforcement Learning with Experience Replay, the Natural Policy Gradient and its
approximations, and various methods aimed at reducing the bias and variance of estimators.
When combined, these methods result in an algorithm called ACER, that beats the current
state of the art in Statistical Dialogue Systems. This not only leads to a more sample efficient
algorithm that can train faster, but also allows us to apply the algorithm in more difficult
environments than before. We thus experiment with learning in the master action space,
which has two orders of magnitude more actions. After optimising ACER to the master
action space, it trains significantly faster and reaches a superior final performance than the
current state of the art.

Table of contents

1 Introduction 1

2 Preliminaties 3
2.1 Spoken Dialogue Systems . 3

2.1.1 Speech recognition . 4
2.1.2 Ontology . 4
2.1.3 Semantic decoding . 4
2.1.4 Action spaces . 5
2.1.5 Dialogue management . 8
2.1.6 Natural language generation . 10
2.1.7 Speech synthesis . 11

2.2 Training the policy with Simulation . 11
2.3 Reinforcement Learning . 12

2.3.1 Model-based planning . 13
2.3.2 Model-free tabular reinforcement learning 14
2.3.3 Function approximation . 18

3 Method 29
3.1 Actor-critic with Experience Replay . 29
3.2 Lambda returns . 32
3.3 Retrace . 33

3.3.1 Computational cost . 35
3.4 Architecture of our actor-critic Neural Networks 35
3.5 Importance Weight Truncation with Bias Correction 37
3.6 Trust Region Policy Optimisation . 39
3.7 Summary of ACER . 43
3.8 Master actions for ACER . 46
3.9 Master actions for GP . 47

vi Table of contents

4 Evaluation 49
4.1 Testing method . 49
4.2 Performance of ACER . 50
4.3 Contribution of TRPO . 52
4.4 Effect of execution mask . 53
4.5 Hyperparameter tuning . 55
4.6 Master action space . 58
4.7 Resilience against errors . 60

5 Summary and Conclusions 63
5.1 Future work . 64

5.1.1 Supervised pre-training . 64
5.1.2 Expanding the action space . 65
5.1.3 Off-policy eNAC . 65

References 67

Appendix A Example dialogue 73

Chapter 1

Introduction

Traditionally, computers are operated by either a keyboard and a mouse or touch. They
provide feedback to the user primarily via visual clues on a display. This Human-computer
Interaction model can be unintuitive to a human user at first, but it allows the user to express
its intent clearly, as long as their goal is supported and they are equipped with sufficient
knowledge to operate the machine. A Spoken Dialogue System (SDS) aims to make the
Human-computer Interaction more intuitive by equipping computers with the ability to
translate between human and computer language, thereby relieving humans of this burden
and creating an intuitive interaction model. More specifically, the objective of an SDS is to
help a human user achieve their goal in a specific domain (eg. hotel booking), using speech
as the form of communication. Recent advances in Artificial Intelligence and Reinforcement
Learning established the necessary technology to build the first generation of commercial
Spoken Dialogue Systems deployable as regular household items. Examples of such systems
are Amazon’s Echo, Google’s Home and Apple’s Siri and HomePod.

Spoken Dialogue Systems are complex as they have to solve many challenging problems
at once, under significant uncertainty. They have to recognise spoken language, decode the
meaning of natural language, understand the user’s goal while keeping track of the history of
a conversation, determine what information to convey to the user, convert that information
into natural language, and synthesise the sentences into speech that sounds natural. This
work focuses on one particular step in this pipeline: devising a policy that determines the
information to convey to the user, given our belief of their goal.

This policy has been traditionally planned out by hand using flow-charts. This was a
manual and inflexible process with many drawbacks that ultimately lead to systems that were
unable to converse intelligently. To overcome this, the policy optimisation problem has been
formulated as a reinforcement learning problem. In this formulation, the computer takes
actions and gets rewards. An algorithm aims to learn a policy that maximises the rewards

2 Introduction

through learning to take the best actions based on the state of the dialogue. Since the number
of possible states can be very large (potentially infinite), complex and universal function
approximators such as Neural Networks have been deployed as the policy.

Using Neural Networks for policy optimisation is challenging for two reasons. First,
there is often little training data available for an SDS as the data often comes from real
humans. The system should be able to train quickly in an on-line setting while the training
data is being gathered from users, to make the data to be gathered useful. Neural Networks
often exhibit too much bias or high variance when the volume of training data is small,
making it difficult to quickly train them in a stable way. Second, the success or failure of a
dialogue may be the only information available to the system to train the policy on. Dialogue
success depends crucially on most actions in the dialogue, making it difficult to determine
which individual actions contributed to the success, or lead to the failure of a dialogue. This
problem is exacerbated by the large size of the state space: the system will potentially never
be in the same state twice.

This project deploys Neural Networks for policy optimisation, aiming to solve the related
problems and derive a quick and stable learning algorithm, relying on recent innovations in
the field. The final algorithm, called ACER, achieves the best results seen so far on Neural
Network-based Spoken Dialogue Systems in the PyDial framework. An extension of this
project investigates how both algorithms applied, GP and ACER, can be optimised tor the
master action space. The performance of these algorithms beat the relevant state of the art
reported in Spoken Dialogue System.

Chapter 2

Preliminaties

2.1 Spoken Dialogue Systems

A Spoken Dialogue System needs to solve many incredibly complex problems: it has to
understand your speech, understand the logic and meaning behind it, use its knowledge
base to come up with the right answer and phrase it in human language, then play it to the
human. The current state of the art attacks this complex problem by splitting it into modules.
In this modular approach, modules are eg. converting human speech to words, phrasing
natural language from the system’s internal language, etc. These modules form a pipeline
illustrated in Figure 2.1. Even with this modular approach, a hard Machine Learning problem
needs to be solved for each module. Due to the high amount of uncertainty they have to
deal with, such as decoding a noisy recording of human speech into words, none of these
problems have been solved optimally so far and they all correspond to active research fields in
Artificial Intelligence. This highlights the benefit of the modular approach: since the modules
have well-defined input and output and are trainable in isolation, an improved solution to a
subproblem can be swapped in the pipeline without any change required for other parts of
the system. For this reason, research efforts can be focused on specific modules in isolation.

Fig. 2.1 Architecture of an Spoken Dialogue System.

4 Preliminaties

Other approaches to Spoken Dialogue Systems include (1) hand-coding the entire pipeline
with a flow-chart-based dialogue model, which is a less general approach, and (2) utilising
Neural Networks to solve all of the involved problems at once. Approach (2), while possible
in theory, is far beyond the scope of current AI technology.

2.1.1 Speech recognition

Humans have the benefit of having substantial general world knowledge and context knowl-
edge that they use to distinguish between similarly sounding words when performing speech
recognition. Even so, speech recognition is a challenging problem even for humans. Cur-
rently, computers cannot recognise speech with near-human certainty or accuracy [36].
Computers perform speech recognition even worse when significant noise is mixed with
the speech signal. However, Dialogue Systems need to be designed such that they could
be used in noisy environments too, such as in a car or on the street. Decoding errors will
happen, but we can build resilience against such errors. Rather than a one-best hypothesis, the
decoder outputs a set of most likely hypotheses for each utterance spoken by the user. This is
conveyed in a lattice or confusion network form, along with the probabilities associated to
the hypotheses. This method allows errors to be corrected further down the pipeline, on the
basis of which decoding makes sense in the current context. Arguably, this method is similar
to how a human would recognise speech by thinking about what makes sense in the context.

2.1.2 Ontology

The domain of a Spoken Dialogue System is defined by the ontology. The ontology is a
structured representation of the database, or the knowledge base, of the system. It defines the
type of entities users can interact with (eg. restaurants), their requestable slots, which are
properties the user can ask about (eg. name, address, phone number), and the informable slots
that users can specify (eg. price range, area). These are listed together with their possible
corresponding values (eg. cheap, moderate and expensive for pricerange). The database
consists of a set of entities and their corresponding properties. In this way, the ontology
restricts the type and content of interaction between the user and the system.

2.1.3 Semantic decoding

Semantic decoding turns natural language into a domain-specific well-defined language that
the back-end of an SDS can work with. It efficiently encodes the user intent or the system
reply in a dialogue act. A dialogue act consists of a dialogue act type, and pairs of semantic

2.1 Spoken Dialogue Systems 5

slots and values, as illustrated in the example below.

“Could you find me a cheap place in the city centre?”→

inform︸ ︷︷ ︸
dialogue act type

(price︸︷︷︸
semantic slot 1

= cheap︸ ︷︷ ︸
semantic value 1

, area︸︷︷︸
semantic slot 2

= centre︸ ︷︷ ︸
semantic value 2

)

The set of possible slot-value pairs are defined by the ontology. For limited ontologies,
applying Keyword Spotting with the ontology’s vocabulary thus lends itself naturally to the
semantic decoding problem. Support Vector Machines, Conditional Random Fields and
Recurrent Neural Networks with Attention have been applied to this problem with varying
levels of success [25]. It is important to note that the output of this step is a distribution over
the user’s possible dialogue acts along with their probabilities, with errors accumulating both
from the semantic decoder and speech recogniser.

2.1.4 Action spaces

Before investigating further components of the SDS, we introduce the set of possible system
actions, the dialogue acts that the system can give as a response. This is called the action
space. We will investigate the action space in the restaurants domain, noting that most
domains have a similar overall architecture. The set of possible actions are:

• request + slot

Here, slot is an informable slot such as area, food, or pricerange. This action prompts
the user to specify their criteria on a slot. Example textual representation: “Which area
are you interested in?”.

• confirm + slot

Here, slot is an informable slot. This action prompts the user to confirm their criteria
on a slot that they may or may not have already mentioned. Due to errors accumulating
during the decoding pipeline (speech recognition, semantic decoding, belief tracking),
the system has to deal with considerable uncertainty, but it can attempt to increase its
certainty in the user’s criteria by using a confirm action. Example textual representation:

“Did you say you want an expensive restaurant?”.

• select + slot

Here, slot is an informable slot. This action prompts a user to select a value for the slot
from a specified list of values. This is less open-ended than a request action and more
open-ended than a confirm action. It be used by the system to increase its certainty in

6 Preliminaties

a user criterion. Example textual representation: “Would you like Indian or Korean
food?”.

• inform + method + slots

This action provides information on a restaurant. The associated method specifies
how the restaurant to give information on should be chosen. The exact choice of
restaurant is not part of the action specification; it is derived by code when converting
from the action into the dialogue act. This conversion process reads the action and the
belief state and communicates with the database in the ontology, selecting a specific
restaurant by applying heuristics.

The standard method is to choose the first result in the ontology that matches the user
criteria specified so far. The method can also be byname, in which case the system
believes that the user asked about a specific restaurant by referring to its name, and
information on that restaurant should be provided. If the method is requested, we
inform on the same restaurant we informed on last, if it is alternatives then we pick
another restaurant that matches the user’s criteria (if possible).

There are several properties of a restaurant, with a binary choice for each of them on
whether the system wants to inform on it in a dialogue turn or not. The informable
slots for restaurants are:

– area

– food type

– description

– phone number

– price-range

– address

– postcode

– signature

We note that some of these slots are also requestable, allowing a user to query a
restaurant based on those slots. These slots are area, food type and price-range. A
restaurant also has a name, which we will always inform on. Together with the 7 slots
listed above, the system has a choice between 28 = 256 different ways it can inform
on a restaurant. A specific choice is referred to as the payload of an inform action.

2.1 Spoken Dialogue Systems 7

• reqmore

This is a simple action that prompts the user to provide more input.

• bye

This action is used to end the call, normally only as a response to the user’s intention
to end the call.

For the restaurants domain, there are 4 ·28 = 1024 inform actions and 3 ·3+2 = 11 other
actions. We call this action space the master action space. Due to its large size, training a
dialogue policy in this action space is increasingly difficult. Some algorithms do not converge
to the optimal policy, converge very slowly, or, in rare cases, have prohibitive computational
demands to converge 1. To alleviate this problem, we introduce the summary action space. In
this space, the inform actions do not specify which slots to inform on, leaving only 4 separate
inform actions, and 15 actions in total. An example of a master action and corresponding
summary action is:

Master action: inform(price = cheap,area = centre)

Summary action: inform_requested

If a policy is trained on the summary action space, the action selected by the policy needs to
be converted to a master action. The conversion is a set of heuristics that attempts to find the
optimal slots to inform on given the belief state. For example, if the user intent is to ask for
the phone number of a restaurant, the heuristics would understand this from the belief state
and derive that the phone number should be informed on. An example dialogue, including
conversion between summary and master action space is included in Appendix A.

Using the summary action space comes with the clear benefit of a simpler dialogue policy
optimisation task. On the other hand, the necessary heuristics to map to the master action
space need to be manually constructed for each domain. Furthermore, since the belief state
is read by hard-coded heuristics, the meaning of the representation has to be pre-agreed. This
limits the applicability of a Neural Network as the belief tracker with an output vector trained
to encode the belief in the most useful form.

Execution mask Not every system action is appropriate in every situation. For example,
inform is not a valid action at the very beginning of the dialogue, when the system has not
yet received any information on what kind of entity the user is looking for. Thus, we can

1Since the training has to be on-line, ie. happening while user input is acquired, training is limited in
computation time to prevent the user from having to wait for the system to reply. However, the training step is
rarely the bottleneck.

8 Preliminaties

simplify the action space further by restricting the system actions that could be selected to
the actions that the system is able to produce a corresponding sensible response for.

2.1.5 Dialogue management

The job of the dialogue manager is to take the user’s dialogue acts and determine the
appropriate response to them in the format of dialogue acts. Traditionally, this could be
implemented as a large flow-chart with all interaction models carefully hand-crafted. The
required manual work and the inflexibility of supported interactions heavily limit the success
of this approach. Instead, our aim is to build a more intelligent dialogue manager out of two
components, the belief tracker and the policy optimiser.

2.1.5.1 Belief tracking

We call the user’s overall goal for a dialogue the user goal. This could be something like
finding and booking a restaurant with some specified criteria. The user works towards this
goal in every dialogue turn. In each dialogue turn, the short-term goal of the user is called
the user intent. Examples of user intent are: confirm what the system said, inform the system
on some criteria, and request more information on something.

The belief tracker is the memory unit of the SDS, with the aim to track the user goal, the
user intent and the dialogue history. We call this tuple the dialogue state, and the output of
the belief tracker is our current belief of this state.

Tracking dialogue history ensures we maintain the Markov Property - the assumption
that the next state depends only on the current state and current action, and is conditionally
independent of past actions and states. This is motivated by the idea that all relevant dialogue
history should be incorporated in the dialogue state. The tracking is slightly more complex
however, as we only have a Partially Observable Markov Decision Process (POMDP). This is
illustrated in Figure 2.2, where the grey variables are not observable. at is the current action,
st and st+1 are the current and next state, ot and ot+1 are the current and next observations
(belief state) and rt is the current reward, an indirect measure of how successful taking action
at was in state st (more on rewards in Section 2.3).

2.1 Spoken Dialogue Systems 9

Fig. 2.2 Partially Observable Markov Decision Process in the Dialogue System.

Inference using this formulation is intractable due to the large (possibly infinite) state
space [14]. We could alleviate the problem by breaking the state into the user goal, user
intent and dialogue history tuple and further assuming certain conditional independencies
between these items, but this would be specifically engineered to an SDS task and would
just be an approximation. According to Kaelbling et al. [14], we could view the problem as
a continuous-space Markov Decision Process (MDP), where the states are the belief states
(Figure 2.3). We adopt this method in this work.

Fig. 2.3 Markov Decision Process in the Dialogue System.

10 Preliminaties

In the PyDial framework, the belief state is represented as a dictionary that holds the
probability distributions of every value for every slot in the ontology. This could also be
represented as a long vector of individual probabilities.

2.1.5.2 Policy optimisation

A policy is a probability distribution of possible user actions given the current belief state,
and is commonly written as P(a|b,π) = π(a|b). Here, π is the policy, a is the action and b is
the output of the belief tracker, which is interpreted as a vector of probabilities 2.

In order to define the optimal policy, we need to introduce a utility function (reward) that
describes how good taking action a is in state b. The reward for a complete dialogue depends
on whether the user was successful in reaching their goal and the length of the conversation,
such that short successful dialogues are preferred. Thus, the last dialogue interaction gains
a reward based on whether the dialogue was successful, and every other interaction loses a
small constant reward, penalising for the length of the dialogue. The cumulative reward of a
dialogue is calculated as:

R(b0,a0, ...,bT ,aT) =
T

∑
t=0

r(bt ,at),

where T is the length of the dialogue. The task of policy optimisation is to maximise the
expected cumulative reward in any state b when following policy π , by choosing the optimal
action a from the set of possible actions A:

π
∗(bi) = argmax

ai∈A
E

bi+1∼P(ai|bi),ai+1∼π∗(bi+1),...

(
R(bi,ai, ...,bT ,aT)

)
.

2.1.6 Natural language generation

The output of the Dialogue Manager is a dialogue act, the system response to the user.
Whether the summary or the master action space is used in the Dialogue Manager, its output
will be converted to a canonical form, with all the values for the slots filled in according to
the ontology. This dialogue act is converted into textual natural language by the Natural
Language Generation (NLG) module. An example for such a conversion is:

request + area → Which area are you interested in?

2In our case, the action space is discrete, but we note that in general, the action space can also be continuous.

2.2 Training the policy with Simulation 11

The goal is for the textual output to be easy to understand by the human and convey the same
meaning as the machine-representation of the system response.

2.1.7 Speech synthesis

The textual output of the Natural Language Generation unit is converted into waveform. The
goal is to derive an audio representation of the exact textual input that sounds natural and is
easy to understand to a human. The output of this unit is played to the user.

2.2 Training the policy with Simulation

Due to the modular nature of Spoken Dialogue Systems, we are able to isolate the dialogue
management part of the pipeline and train it separately with a simulated user. The key
advantage of this approach is its support for automated training of the policy without a
human component. The simulation pipeline is illustrated in Figure 2.4. The simulation runs
on the semantic level, but it is also possible to run it on speech and and textual transcript
level, involving multiple stages of the original SDS pipeline. After every dialogue turn, the
simulator feeds back a reward signal to the optimisation process. This typically encodes how
efficient and successful a dialogue is.

Fig. 2.4 Simulation pipeline used to train the policy.

12 Preliminaties

For this project, we use a fairly simple belief tracker for the simulated training of the
policy called the focus tracker. The focus tracker updates its current belief based on the
certainty of incoming data (probabilities of being in state s expressed as o(s)) and the previous
belief:

b(st = s) = o(s)+

(
1−∑

s′
o(s′)

)
b(st−1 = s).

Alternatively, the dialogue tracker could be the output of a Neural Network trained separately
[12].

The implementation of the user simulator carries further choices. Ideally, the simulator’s
behaviour is as close as possible to the target human user. The data-driven approach learns
human behaviour from training data acquired from human test users – another Machine
Learning problem in itself. This approach can learn both user actions and user satisfaction
(reward) with a dialogue. Instead, the simulator used in this project is agenda-driven: the
simulated user has a particular goal, eg. to find a restaurant based on some particular criteria,
and it will take actions to reach this goal. These actions are selected by some code that
relies on hyperparameters controlling its behaviour, such as patience and informativeness.
At the end of a dialogue, the reward is based on whether the user goal was reached. This
simulator also has an error model that simulates uncertainty coming from the semantic
decoder by outputting a distribution over user dialogue acts with some added noise. This
makes the training process more difficult, but leads to a more stable policy that can operate
with uncertainty in the input.

The starting point of this dissertation is this entire simulation pipeline implemented in
the PyDial framework, as well as some policy optimisation algorithms. This project builds
on these and implements novel algorithms with the goal that they converge to the optimal
policy quickly, in a stable way, using few sample dialogues. The training will be run with the
pipeline described above, on the Cambridge Restaurants domain. While these choices are
specific, the modular design of SDSs means that the training algorithms implemented are
generally applicable to any set of choices.

2.3 Reinforcement Learning

In Reinforcement Learning, there is an agent interacting with the environment in discrete
time steps. In each time step, the agent observes the environment as a belief state vector bt

and chooses an action at out of the action space A. We will consider discrete action spaces
but in general they can be continuous. After performing action at , the agent observes a
reward rt produced by the environment. The interaction model is illustrated in Figure 2.5.

2.3 Reinforcement Learning 13

Fig. 2.5 Reinforcement Learning interaction model between agent and environment.

We need a concept of the total value of an episode of interactions. We call this the
cumulative discounted return. For the tth timestep, we calculate this as

Rt = ∑
i≥0

γ
irt+i.

The discount factor γ trades-off the importance of immediate and future rewards. The goal
of the agent is find a policy that maximises the expected discounted cumulative return for
every state. We define the value of a state-action pair under policy π to be the Q-function:

Qπ(bt ,at) = E
bt+1:T,at+1:T

(
Rt |bt ,at

)
,

and the value of a state is the V-function:

Vπ(bt) = E
at

(
Qπ(bt ,at)|xt

)
.

In both definitions, the expectation is taken over the states the environment could be in after
performing the actions, and the actions selected by policy π .

2.3.1 Model-based planning

The state transition and reward probabilities of the environment p(b′,r|b,a) are described by
the model. If this model is available, we apply planning to find the optimal policy. To derive
this, we start from the Bellman optimality equation. Assuming we have the optimal value

14 Preliminaties

function V∗(b) and optimal policy π∗:

V∗(b) = max
a

∗
E
π

(
Rt |bt ,at

)
= max

a

∗
E
π

(
rt+1 + γ

T−t−1

∑
k=0

γ
krt+k+2|bt ,at

)
= max

a

∗
E
π

(
rt+1 + γV∗(bt+1

)
= max

a ∑
b′,r

p(b′,r|b,a)
(
r+ γV∗(b′)

)
If starting from a baseline value function (eg. all values are zero) for V0, we can apply the
following iterative update process based on the Bellman equation:

Vk+1(b) = max
a ∑

b′,r
p(b′,r|b,a)

(
r+ γVk(b′)

)
(2.1)

It can be proved that the update process leads to convergence: limk→∞Vk(b) =V∗(b). This
leads to the Value iteration algorithm:

Algorithm 1 Value iteration
1: Initialise V0 arbitrarily
2: repeat
3: Improve Vk+1 using the estimate of Vk (Equation 2.1)
4: until convergence

2.3.2 Model-free tabular reinforcement learning

As the reinforcement learning scenarios become more challenging, the model of the environ-
ment is often not available to the agent. In such cases, the agent learns from trial and error
by interacting with a simulated or real environment. Monte Carlo methods can be used to
estimate transition and reward probabilities of the environment. These estimates are accurate
only in the limit of infinite observations for each state-action pair, thus a requirement for the
behaviour policy is to maintain exploration, ie. to keep visiting all state-action pairs with
nonzero probability. The behaviour policy is the policy used to generate the data during
learning. For on-policy methods, the behaviour policy is the same as the learned policy,
in other words, we evaluate and improve the same policy that is used to make decisions.
In contrast, off-policy methods evaluate and improve a policy different from that used to
generate the data, ie. the behaviour policy and the learned policy can be different. The

2.3 Reinforcement Learning 15

advantage of off-policy methods is that the optimal policy can be learned while the behaviour
policy can be set to explore sub-optimal actions too, so that the algorithm can keep exploring
the state-space. Thus, the purpose of the behaviour policy is to soften the optimal policy; we
will see a concrete example of how this is achieved.

2.3.2.1 On-policy Monte Carlo control

An example of an on-policy method is the On-policy Monte Carlo control (Algorithm 2).
This algorithm iterates through the following steps: first, it gathers a full episode based on
the current policy π . Then, it recalculates the average cumulative rewards for every state,
action pair based on the observations. This is used as the Monte Carlo approximation to the
Q-function. Finally, it carries out an update step, where the policy is selected based on the
approximated Q-function.

To maintain exploration, instead of following the best action based on the policy π , we
use ε-greedy exploration, which selects the best action (according to π) with probability
1− ε , and selects a random action with probability ε for ε > 0. The choice of ε represents
the exploration-exploitation trade-off: A large ε will lead to the agent exploring more of the
environment, but a small ε allows the exploitation of the policy learned so far, which helps
the agent learn faster. A common choice is to start off with a high ε and gradually decrease it
as time progresses and the agent’s predictions become more reliable.

Algorithm 2 On-policy Monte Carlo control
1: Initialise Q and π arbitrarily Returns← empty list∀b ∈ B,a ∈ A
2: repeat
3: for b ∈ B and a ∈ A do
4: Generate an episode using ε-greedy π starting with b,a
5: for b,a in the episode do
6: Returns← append return reveived for action a in state b
7: Q(b,a)← average(Returns(b,a))
8: for b in the episode do
9: π(b)← argmaxa Q(b,a)

10: until convergence

2.3.2.2 Off-policy Monte Carlo control

For the off-policy version of Monte Carlo control, the target policy π is greedy with respect
to the approximated Q, and we generate the behaviour based on a different policy µ . We
require for convergence that µ visit all states and actions with nonzero probability. To correct

16 Preliminaties

for this discrepancy we need to introduce Importance Sampling (IS) weights. Otherwise we
would add bias and the expected value of the approximated Q function would no longer be
the optimal Q∗. The IS weights are ρ = π(a,b)

µ(a,b) . Due to π being zero for every non-optimal
action according to Q, this means that all traces will be cut as soon as the generated episode
disagrees with π (Algorithm 3).

Algorithm 3 Off-policy Monte Carlo control

1: Initialise Q arbitrarily, N(b,a) = D(b,a) = 0 ∀b ∈ B,a ∈ A π ←
greedy with respect to Q

2: repeat
3: Generate episode {b0:T ,a0:T} using behaviour policy π

4: R← 0,W ← 1
5: for t = T down to 0 do
6: R← γR+ rt+1
7: N(bt ,at)← N(bt ,at)+W ·R ▷ numerator of Q
8: D(bt ,at)← D(bt ,at)+W ▷ denominator of Q
9: Q(at ,at)← N(bt ,at)

D(st ,at)

10: π(b)← argmaxa Q(b,a)
11: if at ̸= π(bt) then
12: Exit for loop ▷ cut trace as IS weight becomes 0
13: W ←W 1

µ(bt ,at)
▷ calculate IS weight

14: until convergence

Both off-policy and on-policy Monte Carlo control can be proved to converge, however,
for off-policy Monte Carlo control, this relies on sufficient exploration of the state-space.
The problem with these methods is their slow convergence, sample inefficiency and high
variance. Both on-policy [6] and off-policy [13] methods have been applied to SDS.

2.3.2.3 Temporal Difference learning

Monte Carlo control approximates the episodic cumulative reward for each state and action.
These updates depend very much on how successful the episode has been in the future and
thus the Monte Carlo updates introduce high variance. To reduce the variance, the function
approximations can be updated every time step rather than per episode, based on the current
approximation and the reward received. These updates are called the Temporal Difference
(TD) error; they are multiplied by the learning rate α and added to the current approximation.

2.3 Reinforcement Learning 17

SARSA updates the current Q-function estimate based on the state, action, reward, next
state, next action (b,a,r,b′,a′) tuple with the TD-error:

δ = r+ γQ(b′,a′)−Q(b,a)

Algorithm 4 shows the full algorithm.

Algorithm 4 SARSA

1: Initialise Q arbitrarily, Q(terminal, ·) = 0
2: repeat
3: Initialise b, choose a ε-greedily
4: R← 0,W ← 1
5: repeat
6: Take action a, observe r,b′

7: Choose a′ ε-greedily
8: Q(b,a)← Q(b,a)+α(r+ γQ(b′,a′)−Q(b,a))
9: b← b′,a← a′

10: until b is terminal
11: until convergence

Q-learning updates the current Q-function esimate based on the state, action, reward, next
state (b,a,r,b′) tuple, dropping the next action. Instead, the update is based on the a′ that
maximises the Q-value estimate. In this way, Q-learning is off-policy as the policy improved
is greedy with respect to Q and may be different from the behaviour policy. The TD-error is:

δ = r+ γ max
a′

Q(b′,a′)−Q(b,a)

Algorithm 5 shows the full algorithm.
Both Q-learning and SARSA can be shown to converge if ε tends to 0 and every state-

action pair is visited infinitely often. Compared to Monte Carlo control, these methods have
lower variance but higher bias, which can be attributed to the difference in the update rule.
Q-learning has been applied to Dialogue Systems by Levin et al. [17], and SARSA has been
applied by Henderson et al. [11].

A fundamental shortcoming of standard tabular methods is that since approximate func-
tion values for different state-action pairs are separated, the system’s knowledge of a state-
action pair does not generalise to other state-action pairs.

18 Preliminaties

Algorithm 5 Q-learning

1: Initialise Q arbitrarily, Q(terminal, ·) = 0
2: repeat
3: Initialise b
4: repeat
5: Choose a ε-greedily
6: Take action a, observer r,b′

7: Q(b,a)← Q(b,a)+α(r+ γ maxa′Q(b′,a′)−Q(b,a))
8: b← b′

9: until b is terminal
10: until convergence

2.3.3 Function approximation

So far we have been considering tabular solutions, with discrete action and state spaces such
that Q(b,a) can be approximated with independent values for every (b,a) pair. In more
realistic scenarios, the set of states or actions are either continuous or large enough for tabular
approximations to be inefficient. One could quantise the state space and apply a tabular
algorithm, but this may introduce large errors with the quantisation levels necessary for the
performance to be acceptable. Another method is to apply function approximation for Q, V
and π .

Non-parametric Gaussian Process-based approximation The Q-function can be ap-
proximated as a Gaussian process with zero mean and kernel function k(·, ·). This means
that for any set of points P1:n, they are distributed according to a zero mean Gaussian and
the covariance matrix is given by Ki j = k(Pi,Pj). Here, a point is a belief-action pair. Since
covariances are always positive, the covariance matrix K needs to be positive semidefinite. k
is only a kernel function if this is satisfied. Examples of kernel functions are:

• The linear belief kernel:

k((b,a),(b′,a′)) = ⟨b,b′⟩δa(a′),

where δ is the Kronecker delta function and ⟨·, ·⟩ is the scalar product.

• The Gaussian belief kernel:

k((b,a),(b′,a′)) = p2 exp
(
−
||b−b′||22

2l2

)
δa(a′),

where p and l are hyperparameters that are fixed before training.

2.3 Reinforcement Learning 19

After every iteration, the Q function is updated by the posterior given all state-action (b,a)
pairs and rewards observed so far [29]. A problem with Gaussian Processes is that the
computational cost of inference grows cubically with the number of datapoints. To combat
this, we set a sparcification threshold that ensures we only save datapoints whose belief states
are “distant” enough from the ones we already saved [7]. Even though this introduces an
approximation, Gaussian Processes generally enjoy quick convergence, good performance
and sample efficiency for small action spaces. Compared to other function approximation
methods, the main advantages of GP are that it 1) allows the incorporation of the prior
knowledge via the kernel function and 2) it provides an estimate of the uncertainty. GP has
been applied to Dialogue Systems by Gašić et al. [8].

Value-function approximation We can approximate the value function according to policy
π , Vπ(b) as

Vπ(b)≈ V̂π(b,θ).

To define V̂ , it is common to introduce feature functions that map to feature vectors of length
N: φ(b) : B→ RN , where B is the set of states. Provided the parameter set θ is a similar
N-length vector of rationals, we can define V̂ to be a linear function of θ :

V̂π(b,θ) = θ
T ·φ(b).

Linear function approximation has been applied to Dialogue Systems by Chandramohan et al.
[2], but more complex definitions are also possible. Another commonly used definition feeds
the input state through a Neural Network, making V̂ the output of the network. For what
follows, we only require V̂ to be differentiable with respect to its parameters θ .

With the aim of bringing our approximation V̂π(b) as close as possible to the true value
Vπ(b), we introduce a measure off (Mean Squared Value Error) error to minimise:

MSVE = ∑
b

d(b)
(
Vπ(b)−V̂π(b,θ)

)2
,

where d(b) is the fraction of time spent in b under policy π . 3

3Intuitively, the more time we spend in a state, the more accurate we want our value approximation of it to
be. This is expressed by weighting the errors by d(b).

20 Preliminaties

In order to minimise the error, the weights θ can be trained with Stochastic Gradient
Descent. Assuming that we receive samples bt and Vπ(bt) with distribution π(b),

θt+1 = θt−
1
2

α∇
(
Vπ(bt)−V̂π(bt ,θ)

)2

= θt +α
(
Vπ(bt)−V̂π(bt ,θt)

)
∇V̂π(bt ,θt),

where α is the learning rate. Of course we normally do not have access to the true value of
Vπ(bt) in a model-free environment, so we approximate it, relying on observations. Common,
previously mentioned approximations are:

• Monte Carlo back-up: Vπ(bt)≈ Rt . Suffers from high variance, but its approxima-
tions do not depend on previous estimates of V , ie. does not bootstrap.

• TD back-up: Vπ(bt) ≈ rt + γV̂π(bt+1,θ). This method bootstraps, ie. it bases its
approximations of V on previous approximations.

As an example, Algorithm 6 presents the value-function approximation method with Monte
Carlo back-up.

Algorithm 6 Gradient Monte Carlo Algorithm for Value-function approximation

1: Input: policy π and differentiable function V̂ (b,θ) : B×RN → R
2: Initialise θ0
3: repeat
4: Generate episode {b0:T ,r0:T} according to π

5: for t = 0,1, ...,T do
6: θt+1 = θt +α

(
Rt−V̂ (b,θt)

)
∇V̂ (bt ,θt)

7: until convergence

Policy-based approximation A small change in the value function can result in erratic
changes in the policy, making the Value-based approximation method somewhat unstable
[29]. To provide stronger convergence guarantees, we aim to learn a parametrised policy
directly, without the need for computing a value function.

We parametrise the policy with ω ∈ RN to get π(a|b,ω). A possible way to define π is

π(a|b,ω) =
exp(ωT φ(b,a))

∑a′ exp(ωT φ(b,a′))
,

where φ(b,a) are the features extracted from a state-action pair. This is called the softmax
function and it produces a valid probability distribution for any input: the output probabilities

2.3 Reinforcement Learning 21

fall between 0 and 1, and sum up to 1. Similarly to value-based approximation, π can also
be eg. the output of a Neural Network. We require π to be a valid probability distribution
and to be differentiable with respect to ω .

If J(ωt) is a measure of the success of π parametrised with ωt , then the gradient update
rule is

ωt+1 = ωt +α∇J(ωt).

Policy Gradient Theorem. [19, 30] If

J(ω) =Vπ(ω)(b0), then

∇J(ω) = ∑
b

dπ(b)∑
a

Qπ(b,a)∇ωπ(a|b,ω),

where dπ(b) is the fraction of time spent in b under policy π .

Reinforce Using the Policy Gradient Theorem and the update rule, we need a method to
approximate the gradient of J. In order to approximate

∑
b

dπ(b)∑
a

Qπ(b,a)∇ωπ(a|b,ω),

we notice that dπ(b) is the state-distribution under the policy. So if we follow π , we get the
required distribution of states. However, we need to correct for the distribution of actions as
they are not weighted in our target. Next, we notice that Qπ(b,a) can be approximated with
the discounted cumulative reward R. Finally, we have

∇J(w) = E
π

[
γ

tRt
∇ωπ(a|b,ω)

π(a|b,ω)

]
= E

π
[Rt∇ω logπ(a|b,ω)]

ωt+1 = ωt +αRt∇ logπ(at |bt ,ωt).

This leads to Algorithm 7 by Williams [35].

Actor-critic methods We can simultaneously estimate the policy and the value function
(or Q-function) in an iterative manner.

1. Actor: improves the current policy based on the Q-function estimated by the critic.

2. Critic: improves the current Q-function based on the new policy.

22 Preliminaties

Algorithm 7 REINFORCE

1: Input: policy π(a|b,ω), learning rate α > 0
2: Initialise ω

3: repeat
4: Generate episode {b0:T ,r0:T} according to π(·|·,ω)
5: for t = 0,1, ...,T do
6: Rt ← cumulative return at step t
7: ω ← ω +αRt∇ logπ(a|bt ,ω)

8: until convergence

This is a combination of value-based approximation and policy-based approximation, in that
we can apply an approximators of both types for the actor and the critic respectively. The
advantage of this method compared to REINFORCE is that here, Qπ(b,a) is approximated
by function approximation rather than R. This greatly reduces the variance and stabilises
learning. To further reduce the variance of this method, we observe that

∇J(ω) = E
π
[Rt∇ω logπ(a|b,ω)]

= E
π
[Qπ(b,a)∇ω logπ(a|b,ω)]

= E
π
[(Qπ(b,a)−Vπ(b))∇ω logπ(a|b,ω)] ,

where in the last step we made use of the fact that

∑
a
(Vπ(b)∇ωπ(a|b,ω)) =Vπ(b) ·∑

a
(∇ωπ(a|b,ω)) = 0,

as π(·|b) needs to sum to 1. See Sutton et al. [30] for full proof. Let us define the advantage
function

Aπ(b,a) = Qπ(b,a)−Vπ(b).

The variance of the estimation of Q in the policy gradient can thus be further reduced if the
advantage function is used:

∇J(ω) = E
π
[Aπ(b,a)∇ω logπ(a|b,ω)] .

The critic could estimate both Vπ and Qπ , or only the advantage function Aπ(b,a) directly.

Natural Actor Critic (NAC) A problem with the vanilla gradient ascent presented in
Section 2.3.3 is that small changes in the parameter space in the course of an update step can

2.3 Reinforcement Learning 23

lead to large differences in the policy. Even with a low learning rate (α), this could lead to
unstable learning due to the policy changing erratically. When α is low enough to avoid this,
it can be too low for learning to converge in a reasonable time frame.

One way to solve this is to restrict the step size in the policy space rather than the
parameter space [31, 21]. More specifically, the distance in the parameter space is defined
using a distance tensor Gω :

|dω|2 = dω
T Gωdω.

Gradient ascent updates the parameters ω in the direction of the steepest ascent, such that
the difference between the old and new ω is within the learning rate α . Traditional (vanilla)
gradient ascent uses the Euclidean distance measure by defining Gω as the identity matrix.
Instead, natural gradient defines Gω as:

(Gω)i j = E
[

δ log p(x|ω)

δωi

δ log p(x|ω)

δω j

]
,

For a distribution p that depends on the parameters ω . This is the Fisher Information Matrix.
Intuitively, since this distance measure operates in the distribution space of p, it is invariant
to the scaling of the parameters ω (Amari [1]). For a general distance, Amari [1] also shows
that the steepest direction of ascent is

G−1
ω ∇ωJ(ω).

Calculating the inverse of such Fisher Information Matrices tends to be prohibitively
costly in general. Natural Actor Critic (NAC) fixes this by using compatible function
approximation. It defines πω(a|b) freely, with the requirement that it be differentiable with
respect to ω . This can be the output of a neural network. However, the definition of the critic
estimating the advantage function is more restricted. Parametrised with w, it is defined as

Aw(b,a) = ∇ω logπ(a|b,ω) ·w.

Thus, the parameters w are weights for a linear combination. Peters et al. [23] shows that
under this definition, if w minimises the squared approximation error, ie.

w = argmin
w

E(Aπ(b,a)−Aw(b,a))
2 ,

then the natural gradient is
G−1

ω ∇ωJ(ω) = w.

24 Preliminaties

Thus the natural gradient for the actor update is recovered by solving the minimisation
problem for w during the critic update. A version of this algorithm, Episodic Natural Actor
Critic (eNAC), relies on the following (for complete derivation see Thomson [31]):

N

∑
n=1

∣∣∣∣∣Tn−1

∑
t=0

(Aπ(bn,t ,an,t)−Aw(bn,t ,an,t))

∣∣∣∣∣
2

=
N

∑
n=1

∣∣∣∣∣Tn−1

∑
t=0

(rn,t−∇ω logπω(an,t |bn,t) ·w− J(ω))

∣∣∣∣∣
2

,

where n and t are reference the indices of the episodes and the turns within the episodes,
respectively. Having collected N episodes, eNAC applies Least Squares to find w that min-
imises this expression. Since we do not have the value of J(ω), it needs to be approximated
too. However, it is just one constant that is the same throughout the episodes, so we only
introduce one additional degree of freedom. Algorithm 8 displays the complete algorithm.

Algorithm 8 Episodic Natural Actor Critic

1: Input: policy π(a|b,ω), Aw(b,a) and learning rate α > 0
2: Initialise ω

3: repeat
4: Gather N episodes according to πω with states bn,t , actions an,t and total rewards Rn
5: Critic evaluation Apply least squares to find w and J(ω) to minimise

N

∑
n=1

(
Tn−1

∑
t=0

(Rn−∇ω logπω(an,t |bn,t) ·w− J(ω))

)2

6: Actor update ω ← ω +α ·w
7: until convergence

NAC has been applied to SDS by Thomson and Young [32].

Deep Reinforcement Learning (DRL) is a branch of Reinforcement Learning focusing
on function approximation using deep Neural Networks. A Neural Network is a collection of
connected neurons, where the output of a neuron is a linear combination of its inputs and
the weights associated to the neuron, fed into a nonlinear differentiable function such as
tanh, called activation. A deep Neural Network is made out of several (m) layers of neurons,
where information flows from input x to output y according to the following equations, where

2.3 Reinforcement Learning 25

hi is the hidden layer (NN outputs) for layer i and gi are the activations:

h0 = g0(W0xT +b0)

hi = gi(WihT
i−1 +bi), 0 < i < m

y = gm(WmhT
m−1 +bm).

The choice of activation functions often reflects the function of a neuron. Some examples are
listed below.

• Hyperbolic tangent function: f (x) = tanh(x). Produces an output between -1 and 1
with a soft transition.

• Logistic: f (x) = 1
1+exp(−x) . Produces an output between 0 and 1 with a soft transition.

• Rectified Linear Unit (ReLU): f (x) = [x]+. In other words, f (x) = 0 for negative
x, and is f (x) = x for non-negative x. The derivative of ReLU is simpler, making it
quicker to train.

• Softmax: fi(x) =
exp(xi)

∑ j exp(x j)
. This produces a valid probability distribution with soft

transitions.

• Identity function: f (x) = x. This does not restrict or condense the output into any
specific region.

Deep Reinforcement Learning methods have been applied to SDS by Li et al. [18] and
Williams et al. [34].

Deep Q-network (DQN) is a value-based approximation Deep Reinforcement Learning
method. The value of Q(b,a) is approximated using weights θ . It uses the Mean Squared
Value Error for measuring the prediction error, which is minimised by Stochastic Gradient
Descent. The MSVE is calculated after observing a reward r after performing action a in
belief state b:

MSVE =

(
r+ γ max

a′
Qθ (b′,a′)−Qθ (b,a)

)2

.

There are two problems with a vanilla implementation of this method that make it diverge:

• States are correlated: the successive states we encounter in an episode are correlated
with each other, pushing the network to learn about currently observed kinds of states
while forgetting previous kinds.

26 Preliminaties

• Targets are non-stationary: arising from the previous problem, the Q-value target of
successive positions is correlated, pushing the network to be biased towards currently
observed targets.

We want the network to learn the Q-value purely based on the state-action pair without any
temporal bias. To achiever this, we introduce Experience Replay.

Instead of updating the network as experience is gathered, the Experience Replay (ER)
method puts new experiences in an experience memory. Targets from this memory are
randomly sampled and used for training after each iteration. This is similar to the idea of the
Dyna framework [28], where an internal model is trained from all the observed interactions.

Another improvement that stabilises learning is to only update the network weights after
multiple targets have been considered. The update will be the sum of the gradients. Despite
these improvements however, the underlying issue with purely value-based approximations is
that a small change in the values can lead to significant changes in the corresponding greedy
policy [22]. This makes Deep Q-network a relatively unstable algorithm in the SDS domain,
as explored by Fatemi et al. [4]. DQN is also inefficient in the sense that it requires many
dialogues to converge. We will strive to find more stable and sample efficient algorithms.

Advantage Actor Critic (A2C) approximates both the policy function π (actor) and the
value function V (critic) with deep Neural Networks. The critic is parametrised with θ and is
updated with SGD based on the loss function:

L(θ) = (Rt−Vθ (st))
2 .

The policy is parametrised with ω . For an objective function J(ω), we established before
that the update rule for ω is:

∇J(ω) = E
π
[Aπ(b,a)∇ω logπ(a|b,ω)] ,

where A is the advantage function. We use an estimate of the advantage function:

EAπ(a|b) = Rt−Vθ (st),

and the objective is defined, as usual, as

J(ω) =Vω(s0).

This leads to Algorithm 9.

2.3 Reinforcement Learning 27

Algorithm 9 Advantage Actor Critic

1: Input: policy π(a|b,ω), Vθ (b,a), learning rate α

2: Initialise θ ,ω , and Vθ (terminal) = 0
3: repeat
4: Generate episode {b0:T ,a0:T ,r0:T} according to π(·|·,ω)
5: RT ← 0
6: for t = T downto 0 do
7: Rt−1← rt + γVθ (bt ,θ)
8: ∇J = ∇J+(Rt−Vθ (bt ,θ))∇ω logπ(at |bt ,ω)
9: ∇L = ∇L+∇θ (Rt−Vθ (bt ,θ))

2

10: ω ← ω +α∇J
11: θ ← θ +α∇L
12: until convergence

Chapter 3

Method

This project builds on recent breakthroughs in Deep Reinforcement Learning. In particular,
we investigate improvements to the actor-critic method. The goal is a stable and sample
efficient learning algorithm that performs well on challenging policy optimisation tasks in
the Spoken Dialogue Systems domain. Recent advances in DRL apply several methods,
including experience replay, truncated importance sampling with bias correction [33], the
off-policy Retrace algorithm [20] and trust region policy optimisation [26] to the domain
of Atari games. The core of this project is to investigate to which extent these advances
are applicable to the dialogue policy optimisation task. To this end, we introduce the Actor
Critic with Experience Replay (ACER) algorithm presented in Wang et al. [33], explaining
and investigating the steps needed to apply it to SDS. We thus achieve stable and efficient
learning, which ultimately allows larger action spaces to be considered. ACER proves to be
surprisingly effective, beating the state of the art Neural Network-based dialogue optimiser
[27]. This success motivated to extend the project to consider the more challenging domain
of the master action space. This chapter concludes with a description of modifications to
ACER and GP that have been devised to optimise the algorithms for master action space.

3.1 Actor-critic with Experience Replay

In Section 2.3.3, we investigated DRL algorithms Deep Q-network (DQN) and Advantage
Actor Critic (A2C). DQN samples its experience from a memory (Experience Replay), thus
overcoming the correlated states and targets problem. However, it only estimates the Q
function, leading to unstable learning. On the other hand, A2C is an actor-critic method
and it estimates both the value function and the policy. Its targets are calculated from an
unbiased, low-variance estimate, leading to stable learning. A2C does not have Experience
Replay however, which means that only one update step can be made per iteration, leading

30 Method

to slower learning. The question arises whether Experience Replay could be added to A2C.
For this, we have to derive an off-policy version of A2C, because the policy with which the
experience has been collected, µ , is different from the current policy π .

To derive this mathematically, we revisit the definition of the objective function. Accord-
ing to the original definition, we want to maximise the value of the initial state:

J(ω) =Vπ(ω)(b0).

Another way of expressing the same objective is to maximise the cumulative reward received
from the average state [3]. For policy µ , let the occupancy frequency dµ be defined as:

dµ(b) = lim
t→∞

P(bt = b|b0,µ).

According to the new definition of J(ω), V is weighted by dµ because µ was used to collect
the experience. We have

J(ω) = ∑
b∈B

dµ(b)Vπ(b).

The off-policy version of the Policy Gradient Theorem is used to derive the gradients:

∇ωJ(ω) = ∇ω

[
∑
b∈B

dµ(b) ∑
a∈A

π(a|b)Qπ(b,a)

]
= ∑

b∈B
dµ(b) ∑

a∈A
[∇ωπ(a|b)Qπ(b,a)+π(a|b)∇ωQπ(b,a)]

The second term is difficult to estimate accurately. However, we can estimate it by zero and
omit it. Degris et al. [3] provide justification for this. We have ∇ωJ(ω)≈ g(ω), where

g(ω) = ∑
b∈B

dµ(b) ∑
a∈A

∇ωπ(a|b)Qπ(b,a)

We encounter the states in proportions according to dµ just by sampling from the experi-
ence memory, so we do not need to estimate it explicitly. Estimating Qπ however is more
difficult: the off-policy interactions are gathered according to µ , and we are interested in the
Q-function under a different policy, the current policy π . We will look at different methods
to estimate Qπ .

3.1 Actor-critic with Experience Replay 31

Naïvely, we can estimate Qπ(b,a) with an importance sampled version of the discounted
cumulative reward R, sampled from the replay memory:

∇J(ω)≈ E

[(
T

∏
t=0

ρt

)(
T

∑
i=0

γ
irt+i

)
∇ωπ(a|b,ω)|b∼ dµ

]
.

where ρt =
π(at |bt)
µ(at |bt)

are the Importance Sampling (IS) weights. This estimation is unbiased,
but suffers from very high variance [33]. This is because it multiplies potentially unbounded
IS weights for an entire episode. This multiplication either results in a very small value
(vanishing weight) or a very large value (exploding weight). To achieve stable learning, we
need a different method that considers state-action pairs in isolation, applying only one IS
weight for each.

Starting again from the off-policy version of the Policy Gradient Theorem:

g(ω) = ∑
b∈B

dµ(b) ∑
a∈A

∇ωπ(a|b)Qπ(b,a)

= E

[
∑

a∈A
∇ωπ(a|b)Qπ(b,a)|b∼ dµ

]

= E

[
∑

a∈A
µ(a|b)π(a|b)

µ(a|b)
∇ωπ(a|b)

π(a|b)
Qπ(b,a)|b∼ dµ

]
= E [ρ(a|b)∇ω logπ(a|b)Qπ(b,a)|b∼ dµ ,a∼ µ(·|b)] ,

where ρ(a|b) = π(a|b)
µ(a|b) are the Importance Sampling (IS) weights. As with the on-policy

gradient, we can again use the advantage function in place of the Q-function for an unbiased
estimate with a lower variance:

g(ω) = E
µ
[ρ(a|b)∇ω logπ(a|b)Aθ] .

The advantage function is approximated in the vanilla version of A2C as Rt−V (bt ,θ). We
cannot use this here as the cumulative reward R has been gathered according to the old policy
µ and may not be representative of the current cumulative reward we can obtain following
π . Instead, we approximate the advantage function as rt + γV (bt+1,θ)−V (bt ,θ). This
also applies to the loss of the critic, which used to be (Rt−V (bt ,θ))

2. A2C with ER uses
(rt + γV (bt+1,θ)−V (bt ,θ))

2 instead. Algorithm 10 shows the complete algorithm.

32 Method

Algorithm 10 Advantage Actor Critic with Experience Replay

1: Input: policy π(a|b,ω), Vθ (b,a), learning rate α

2: Initialise θ ,ω,Vθ (terminal) = 0
3: repeat
4: Generate an episode according to π(·|·,ω) and save to replay memory
5: for i = 0,1, ...,batch_size do
6: Sample episode {b0:T ,a0:T ,r0:T} from replay memory, with old policy µ(a|b)
7: for t = T downto 0 do
8: Rt−1← rt + γV (bt ,θ)

9: ρ(at |bt)← π(at |bt)
µ(at |bt)

10: ∇J = ∇J+ρ(at |bt)(rt + γV (bt+1,θ)−V (bt ,θ))∇ω logπ(at |bt ,ω)

11: ∇L = ∇L+∇θ (rt + γV (bt+1,θ)−V (bt ,θ))
2

12: ω ← ω +α∇J
13: θ ← θ +α∇L
14: until convergence

3.2 Lambda returns

We saw how using the unbiased estimator

Qπ(bt ,at)≈
T

∑
i=t

γ
iri

resulted in high variance, due to the IS weight that has to be calculated for the entire episode.
The estimation

Qπ(bt ,at)≈ rt + γV (bt+1,θ)

only requires a single IS weight. However, this estimation is biased: the value function update
of the current state is based on the current estimate of the value function for the next state.
For example, if an interaction results in a higher final reward than expected by the function
approximators, then the final state will be updated to reflect this. All other states however
only update based on the estimate of the next state. For this reason, a similar interaction
needs to happen again for this update rule to propagate the update to two states before the
final state. Continuing with this, we get that an interaction needs to happen as many times as
its length to propagate the update to the initial state. This leads to slow convergence or no
convergence at all.

3.3 Retrace 33

It is possible to combine both methods and create an estimator that trades off bias and
variance according to a parameter λ . Degris et al. [3] estimate Qπ as:

Qπ(bt ,at)≈ Rλ
t , where

Rλ
t = rt +(1−λ)γV (bt+1)+λγρt+1Rλ

t+1.

Setting λ to 0 results in an equivalent estimation to what we had before: Qπ(bt ,at) ≈
rt + γV (bt+1,θ), with a low variance but high bias. Conversely, setting λ to 1 results in high
variance as many IS weights will be producted. This has the advantage of propagating the
final reward further to the starting state so suffers from lower bias. A carefully hand-selected
λ could bring the best of both worlds.

It is important to note that this approach has some shortcomings. First, it is required to set
λ ahead of time to represent a good trade-off. Second, even when λ is 0 to reduce variance
as much as possible, occasional large IS weights introduce the variance, and they can still
cause instability [33].

3.3 Retrace

The Retrace algorithm (Munos et al. [20]) attempts to estimate the current Q-function from
off-policy interactions in a safe and efficient way, with small variance. Throughout this
discussion, we call a method safe if its estimate of Qπ can be proven to converge to Qπ . We
introduce Retrace together with a set of related methods to illustrate the benefits of Retrace.
These methods all fit a general framework in which we derive our updated estimate of the
Q-function, Qret , from our current baseline estimate, Q, according to an error term that we
compute based on state-action trajectories sampled from the replay memory.

Qret(b,a) = Q(b,a)+E
µ

[
∑
t≥0

γ
t

(
t

∏
s=1

cs

)
(rt + γV (bt+1)−Q(bt ,at))

]
. (3.1)

The methods that stem from this framework differ only in their definition of cs, which will be
given later.

This framework introduces changes to the actor-critic model. Instead of approximating
V and π with Neural Networks and estimating Q in a closed-form equation to compute the
update targets, we estimate π and Q with Neural Networks. In other words, we change the
critic from estimating V to estimating the Q-function with a Neural Network. We compute V

34 Method

from π and Q:
V (b) = E

π
Q(b, ·) = ∑

a
π(a|b)Q(b,a).

The framework thus defines the update targets Qret from the output of the critic Neural
Network Q, with the help of coefficients cs. We define (∏t

s=1)cs = 1 for t = 0. Following
the idea presented in Sutton and Barto [29], we call cs the eligibility traces. Intuitively,
they control the weight with which prediction errors errors are considered: the immediate
prediction error r0 + γV (b1)−Q(b0,a0) is considered with a weight of 1. The further away
in the state-action trajectory an error occurs, the lower the weight with which we consider it.

If the current baseline estimation is Q(b,a) = 0 for every state-action pair and cs =

ρ(bs,as), then Qret will be equivalent to the importance sampled cumulative reward estimator.
On the other hand, if cs = 0, then Qret is equivalent to the TD-error estimation. This
framework can thus be seen as a method that bridges the TD-error estimation and the
cumulative return estimation methods. In this way, it is similar to the Lambda returns
method: its two extremes are the same high-variance and low-bias cumulative return, and the
low-variance and high-bias TD error estimation. However, the bias-variance trade-off is now
controlled by the eligibility traces cs instead of a single constant λ . This will give us greater
flexibility. We will present three methods of setting cs.

Importance Sampling (IS): cs = ρ(as|bs) [24, 9]. When IS is used, the estimation will
have no bias and it will yield Qπ for Q′ in expectation. As seen before, if the baseline Q = 0,
then this is the same as the cumulative return estimation method. Setting Q can be seen
as a variance reduction method [20]. Still, the product of IS weights introduces too much
variance.

Off-policy Qπ(λ): cs = λ [10]. This approach uses no IS, and only discounts traces
according to a single constant. As a results, it has low variance. Surprisingly, this method
converges, but only under a strict requirement that π and µ are sufficiently close to each
other. We cannot guarantee this so this method is not safe for us to use.

Tree-backup: cs = λπ(as|bs) [24]. In addition to the off-policy Qπ(λ) method, this
method also multiplies the traces by the target policy probabilities. This method still has low
variance and is also safe as the estimation converges to Qπ . However it is not efficient in
the near on-policy case where π and µ become similar. This usually happens further in the
training process, as a result of eg. ε being reduced in the ε-greedy exploration. In such a
case, multiplying all the traces with the target policy probabilities cuts them unnecessarily,
reducing their contribution to the update target.

3.4 Architecture of our actor-critic Neural Networks 35

Retrace(λ): cs = λ min(1,ρ(as|bs)). Ideally, we need a method that is safe, has low
variance and is as efficient as possible. Intuitively, safety and efficiency have been a trade-off
in the previous methods, in the sense that a safe method (tree-backup) cut the traces too much
in the near on-policy case to be efficient, and an efficient method (off-policy Qπ(λ)) was only
safe under strict conditions. Retrace solves this trade-off by setting the traces “dynamically”,
based on the Importance Sampling weights. In the near on-policy case, it is efficient as IS
weights will be about 1, preventing the traces from vanishing. It has low variance because
the IS weights are clipped at 1. It is also safe for any π and µ . The goal of this discussion is
limited to conveying the intuition behind Retrace, but a full proof of safety is available in
Munos et al. [20].

3.3.1 Computational cost

Let us investigate the computational cost of deriving Qret from Q in a naïve way. For each
episode sampled from the replay memory, and for each state-action pair, we need to visit
the remaining part of the episode to calculate the expectation of errors under µ according to
Equation 3.1. This quadratic element of the computational cost can be reduced to a linear
one by deriving Qret in a recursive way. For an episode trajectory b1:T ,a1:T sampled from
the replay memory, Equation 3.1 becomes:

Qret(bi,ai) = Q(bi,ai)+
T−i

∑
t≥0

γ
t

(
t

∏
s=1

ci+s

)
(ri+t + γV (bt+i+1)−Q(bi+t ,ai+t))

= Q(bi,ai)+ ri + γV (bi+1)−Q(bi,ai)

+ γci+1

T−i−1

∑
t≥0

γ
t

(
t

∏
s=1

ci+1+s

)
(ri+1+t + γV (bt+i+2)−Q(bi+1+t ,ai+1+t))

= ri + γV (bi+1)+ γci+1
(
Qret(bi+1,ai+1−Q(bi+1,ai+1)

)
.

We will use this more computationally efficient, recursive formulation of Qret .

3.4 Architecture of our actor-critic Neural Networks

Now that we introduced all the prerequisites, we direct our attention at designing the Neural
Networks for our actor-critic. On top of the input of the belief state, we build two hidden
layers, h1 and h2. The NN outputs functions π and Q; these will be two “heads” of the NN.
This means that both hidden layers h1 and h2 are shared between the predictor of Q and the
predictor of π . Weight sharing can be beneficial as it reduces the number of parameters to

36 Method

train. In our example, we expect there to be a strong correlation between π and Q: the more
likely we are to choose an action according to π , the higher we expect its Q-value to be. This
situation lends itself well for weight sharing. The architecture is illustrated in Figure 3.1.

Fig. 3.1 Architecture of our actor-critic neural network [33].

The layers are fully-connected between the input (belief) layer and h1, as well as between
h1 and h2. The activation function for theses layers is the Rectified Linear Unit (ReLU). h2 is
fully-connected to π and Q too. The activation function for π is softmax, which converts the
inputs to a probability distribution with values between 0 and 1, summing up to 1. There is
no activation function for the output Q, as we want it to have an unlimited range, both from
above and below (as rewards can be negative). Q is thus a linear combination of h2 and the
weights, plus a baseline constant per action. For the Cambridge Restaurants domain, the
belief state is represented by a 268-dimensional vector, as illustrated in Figure 3.2. This is
the input of the Neural Network. Layer h1 consists of 130 neurons and h2 has 50 neurons.
The idea is to force the NN to encode all information about the belief state relevant to π and
Q in 50 neurons, thereby learning a more stable mapping. The output vectors π and Q have
the dimensionality of the action space. Initially, we experiment with the summary action
space, which has 15 actions.

3.5 Importance Weight Truncation with Bias Correction 37

Fig. 3.2 Example of belief state representation. Contains continuous fields such as area are
represented as a probability distribution, while discrete fields such as has are been informed
are represented as a binary value and its negated form.

As before, we will denote the weights used by π and Q as ω and θ , respectively. We note
however that most weights are shared between ω and θ . The training process follows the
following steps:

1. Sample a batch of random experiences from experience memory.

2. Compute Importance Sampling weights.

3. Calculate Qret according to Retrace.

4. The advantage function is calculated as Aπ(b,a) = Qret(b,a)−∑a π(a|b)Q(b,a).

5. Calculate the actor gradient as g(ω) = ∑a,b (ρ(a|b)∇ω logπ(a|b)Aπ(b,a)) .

6. Calculate the critic gradient as ∇θ ∑a,b(Qret(b,a)−Qθ (b,a))2.

7. Update weights θ and ω based on the gradients calculated and the step-size α .

We can see from this training pipeline that Qret two serves two purposes simultaneously.
First, it is used as the update target of the critic. Training the critic will provide an improved
baseline for future calculations of Qret , as well as more accurate calculations of the V -function
(derived from π and Q). Second, Qret is used to estimate the advantage function for the actor
gradient calculation. While we could also use the output of the critic, Q, to perform this
estimation, using Qret compares favourably to that approach, as it is updated by the sampled
returns. Qret being an efficient estimator that has low bias and variance helps both of these
use cases.

3.5 Importance Weight Truncation with Bias Correction

Currently, we calculate the policy gradient as:

g(ω) = E
bt∼dµ ,at∼µ

[ρ(at |bt)∇ω logπ(at |bt)Aπ(bt ,at)] ,

38 Method

where the expectation is taken over the replay memory, and ρ(at |bt) =
π(at |st)
µ(at |st)

. An issue
with this approximation is that the Importance Sampling weights ρ(at |bt) are potentially
unbounded, introducing some variance. To solve this problem, we clip the IS weights from
above by a constant c: ρ(at |bt) = min{c,ρ((at |bt))}. We can split the equation into two
parts, one involving the truncated IS weight, and the other the residual. We need to also
estimate the residual, otherwise we introduce bias in the gradient estimation. We call the
residual the bias correction term.

g(ω) = E
bt∼dµ ,at∼µ

[ρ(at |bt)∇ω logπ(at |bt)Aπ(bt ,at)]

= E
bt∼dµ

[
E

at∼µ
ρ(at |bt)∇ω logπ(at |bt)Aπ(bt ,at)

+ E
at∼µ

[ρ(at |bt)− c]+∇ω logπ(at |bt)Aπ(bt ,at)
]
,

where [·]+ = max(0, ·). The weight of the bias correction term, [ρ(at |bt)− c]+, can still be
unboundedly large. This can be solved by sampling the action from the distribution π rather
than µ [33]. In this case we multiply by µ(at |bt)

π(at |bt)
= 1/ρ(at |bt) to correct for the different

sampling. The equation of the gradient becomes:

g(ω) = E
bt∼dµ

[
E

at∼µ
ρ(at |bt)∇ω logπ(at |bt)Aπ(bt ,at)

+ E
a∼π

[
ρ(a|bt)− c

ρ(a|bt)

]
+

∇ω logπ(a|bt)Aπ(bt ,a)

]
.

There are two key advantages of this formulation:

• The bias correction term ensures that the estimate of the gradient remains unbiased.

• The bias correction term is only active when ρ(a|b)> c, and otherwise the formulation
is equivalent to what we had before.

This means we can tune c to a high enough value to only modify the handling of belief-action
pairs with a high-variance Importance Sampling. For these cases, when ρ(a|b) > c, the
variance of the estimation is significantly reduced: the base term’s weight is clipped by c,
and the bias correction weight,

[
ρ(a|bt)−c

ρ(a|bt)

]
+

, falls between 0 and 1, both being bounded.
To apply this method, called the truncation with bias correction trick by Wang et al.

[33], we have to overcome a problem with the advantage function estimation. Before, we
estimated Aπ(b,a) = Qret(b,a)−∑a π(a|b)Q(b,a) for belief-action pairs that we sampled
from the replay memory. For the bias correction term however, only the belief is sampled

3.6 Trust Region Policy Optimisation 39

from the memory, and all the actions are considered and weighted by the current policy
π . Due to the way Qret is formulated, it learns from rewards, and only learns belief-action
pairs that have been visited and sampled from the replay memory. Thus the estimation is
not available for the bias correction term, so we use the output of the Neural Network, Q, to
estimate the advantage function for that term: A′π(b,a) = Q(b,a)−∑a π(a|b)Q(b,a).

3.6 Trust Region Policy Optimisation

As discussed in Section 2.3.3, restricting the training step-size according to the Eucledian
distance metric on the parameter space has some shortcomings. More specifically, small
changes in the parameter space can lead to erratic changes in the output policy. This could
lead to unstable learning or a learning rate too small for quick convergence. We discussed
Natural Actor Critic, and the computation of the natural gradient that restricts the step size
in the policy space. We saw that its training procedure was very different from the off-
policy gradient estimation methods presented here. We also saw that it required compatible
function approximation to avoid an expensive Fisher information matrix computation. For
these reasons, we cannot directly compute the natural gradient for ACER. We can, however,
attempt to modify NAC to work off-policy, which has been attempted as a side project, with
little success compared to ACER.

Instead of computing the exact natural gradient, we can approximate it. For the natural
gradient, the distance metric tensor is the Fisher information matrix:

(Gω)i j = E
[

δ log p(x|ω)

δωi

δ log p(x|ω)

δω j

]
.

It can be shown [16] that

dω
T Gωdω ≈ KL(π(·|b,ω)||π(·|b,ω +dω)),

Where KL is the Kullback–Leibler divergence. It is defined for discrete probability distribu-
tions as

KL(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

.

Thus, instead of directly restricting the learning step-size with the natural gradient method,
we can approximate the same method by restricting the Kullback–Leibler divergence between
the current policy π parametrised by ω , and the updated policy parametrised by ω +α ·
∇ωJ. More specifically, we will update the parameters with a value as close as possible
to ω +α ·∇ωJ, such that the new policy is within a constant distance of the old policy,

40 Method

Fig. 3.3 Trust Region Policy Optimisation.

where the distance metric is KL divergence. This method is called Trust Region Policy
Optimisation (TRPO), introduced by Schulman et al. [26]. Their method however relies on
repeated computations of Fisher-vector products for each update, which can be prohibitively
expensive. Wang et al. [33] introduce an efficient TRPO method that we will adopt instead.
Our description of the method will largely follow theirs with additional explanations, however,
it has been adapted to our discrete action-space SDS domain, and unnecessary steps have
been removed.

To begin with, Wang et al. [33] propose that the KL-divergence to the updated policy
should be measured not from the current policy, but from a separate average policy instead.
This stabilises the algorithm by preventing it from gaining momentum in a specific direction.
Instead, it is restricted to stay around a more stable average policy πa. TRPO with the average
policy is illustrated in Figure 3.3. The average policy is parametrised with ωa, where ωa

represents a running average of all previous policy parameters. It is updated softly after each
learning step as:

ωa← βωa +(1−β)ω.

β is a hyperparameter that controls the amount of history to maintain in the average policy. A
too low value close to zero makes the average policy forget the history very quickly, reducing
the effect of calculating the distances from the average policy instead of the current one. A
too high value close to one will prevent the average policy to adjust to the current policy, or
slows this adjustment process down. However, the weight given to the history is reduced
exponentially as the learning steps progress. A setting of β between 0.95 and 0.99 turned out
to work best in our case.

3.6 Trust Region Policy Optimisation 41

Next, we define our goal for TRPO. We work with our previous definition of the policy
gradient:

g(ω) = E
bt∼dµ

[
E

at∼µ
ρ(at |bt)∇ω logπ(at |bt)

(
Qret(b,a)−∑

a
π(a|b)Q(b,a)

)

+ E
a∼π

[
ρ(a|bt)− c

ρ(a|bt)

]
+

∇ω logπ(a|bt)

(
Q(b,a)−∑

a
π(a|b)Q(b,a)

)]
.

TRPO can be formulated as an optimisation problem, where we aim to find z than minimises
the L2-distance between z and the vanilla gradient g. This is a quadratic minimisation. In
addition, for reasons that will become clear later, our aim is for the divergence constraint
to be formulated in a linear way. Since z will be used for the parameter update, we have
that ω ′ = ω +αz, where ω ′ denotes the updated parameters. We can approximate the KL
divergence after the policy update using a first-order Taylor expansion:

KL
[
π(·|ωa)||π(·|ω ′)

]
= KL [π(·|ωa)||π(·|ω)]+∇ωKL [π(·|ωa)||π(·|ω)]T ·αz.

So the increase in KL divergence in this step is

∇ωKL [π(·|ωa)||π(·|ω)]T ·αz.

We can constrain this increase to be small by setting δ , such that

∇ωKL [π(·|ωa)||π(·|ω)]T · z≤ δ ,

where the learning rate α is left out, since it is a constant and can be incorporated into δ .
Letting k =∇ωKL [π(·|ωa)||π(·|ω)], the optimisation problem with linearised KL divergence
constrain is [33]:

minimize
z

1
2
||g(ω)− z||22

subject to kT z≤ δ

Since the constraint is linear, the overall optimisation problem reduces to a simple quadratic
programming problem. We separate it into two cases. If kT g≤ δ , that is, the KL divergence
constraint is satisfied by g itself, then the solution is z = g. Otherwise, the solution will be
at the edge of the convex solution space. In other words, if kT g > δ , we can rewrite the

42 Method

constraint as an equality:

minimize
z

1
2
||g(ω)− z||22

subject to kT z = δ

In this case, since kT z−δ = 0, we can define the objective slightly differently, by subtracting
λ times this value. The objective becomes

L(λ ,z) =
1
2
||g(ω)− z||22−λ (kT z−δ).

We call this function the Lagrangian of the constrained problem, and λ the Lagrangian
multiplier. At a solution, the derivative of L with respect to z will be 0, as it is a local
minimum. The derivative with respect to λ will also be 0, as kT z−δ = 0. These conditions
are known as the Karush–Kuhn–Tucker (KKT) conditions, and they are necessary conditions
for the optimum of the constraint satisfaction problem. We thus have

∂L
∂λ

=−kT z+δ = 0

∂L
∂ z

= (z−g)−λk = 0,

from which we can derive
δ = kT z

z =−λk+g

δ =−λ ||k||22 + kT g

λ =
kT g−δ

||k||22

z = g− kT g−δ

||k||22
k.

In case kT g≤ δ , kT g−δ

||k||22
≤ 0, so for the general case,

z = g−max{0, kT g−δ

||k||22
k}.

As Wang et al. [33] point out, this closed-form solution to the problem has an intuitive
interpretation. If the KL constraint is satisfied, there is no change to the gradient. Otherwise,
the gradient is scaled back in the direction of k, which reduces the rate of change of the KL
divergence between the updated policy and the average policy.

3.7 Summary of ACER 43

3.7 Summary of ACER

Actor Critic with Experience Replay (ACER) is the result of all methods presented in this
chapter. When on-policy, it is a modified version of A2C. Both use Experience Replay and
sample from their memories to achieve high sample efficiency. The difference between
them is that ACER additionally employs Trust Region Policy Optimisation, and that it uses
a Q-function estimator instead of a V -function estimator as the critic. When off-policy, it
uses Truncated Importance Sampling with Bias Correction [33] to reduce the variance of IS
weights without adding bias. The Retrace algorithm is used to compute the targets based on
the observed rewards in a safe, efficient way, with low bias and variance. When complete,
the training pipeline consists of the steps below. We will investigate the effect of various
hyperparameters and how to set them in Section 4.5.

1. Sample a batch M of random dialogues from experience memory.

2. Compute Importance Sampling weights.

3. Calculate Qret according to Retrace: for each sampled dialogue,

Qret(bi,ai) = ri + γV (bi+1)+ γci+1
(
Qret(bi+1,ai+1−Q(bi+1,ai+1)

)
.

4. The advantage function is calculated as Aπ(b,a) = Qret(b,a)−∑a π(a|b)Q(b,a), the
advantage function for the bias correction term is A′π(b,a)=Q(b,a)−∑a π(a|b)Q(b,a).

5. Calculate the actor gradient as

g(ω) = ∑
(at ,bt)∈M

[
ρ(at |bt)∇ω logπ(at |bt)Aπ(bt ,at)

+ ∑
a∈A

π(a|bt)

[
ρ(a|bt)− c

ρ(a|bt)

]
+

∇ω logπ(a|bt)A′π(bt ,a)

]
,

for a constant c defining the truncation threshold for IS weights.

6. Apply TRPO on the gradient by calculating the closed-form solution z to the optimisa-
tion problem. For k = ∇ωKL [π(·|ωa)||π(·|ω)],

z = g−max{0, kT g−δ

||k||22
k},

for a constant δ controlling the allowed rate of KL divergence.

44 Method

7. Calculate the critic gradient as ∇θ ∑a,b(Qret(b,a)−Qθ (b,a))2.

8. Update weights ω and θ based on z and the critic gradient, respectively, based on the
learning rate α .

9. Update the average policy weights ωa← βωa+(1−β)ω , for a constant β controlling
the forget rate.

This training algorithm is presented in pseudocode (Algorithm 12), and is called from the
master ACER algorithm (Algorithm 11). A hyperparameter batch_size controls the number
of dialogues considered for a training step, and n controls the number of training steps for
each new dialogue gathered.

3.7 Summary of ACER 45

Algorithm 11 ACER master algorithm

1: Input: policy π(a|b,ω), Qθ (b,a), hyperparameters α,β ,γ,δ

2: Initialise θ ,ω,ωa, and Qθ (terminal) = 0
3: repeat
4: Generate episode {b0:T ,a0:T ,r0:T} according to ε-greedy using π(·|·,ω)

5: Save generated episode, along with values of π(·|·,ω) (to be used for IS weights)
6: for i = 1 to n do
7: Sample a subset of replay memory, M, of size batch_size
8: Call training algorithm (Algorithm 12) with {M,θω,ωa,π,Q,α,β ,γ,δ}
9: until convergence

Algorithm 12 ACER training algorithm

1: Input: {M,θω,ωa,π,Q,α,β ,γ,δ}
2: Initialise g = 0, dθ = 0
3: for each dialogue {b1:N ,a1:N ,r1:N ,µ} in M do
4: for 1 = N to 1 do
5: ρt ← π(at |bt ,ω)

µ(at |bt)

6: V (bt)← ∑a Qθ (bt ,a)π(a|bt ,ω)

7: Qret ← rt + γQret

8: Aπ(bt ,at)← Qret−V (bt)

9: A′π(bt ,at)← Qθ (bt ,at)−V (bt)

10: ρ t ← min(r,ρt)

11: B← ∑a∈Aπ(a|bt ,ω)
[

ρ(a|bt ,ω)−c
ρ(a|bt ,ω)

]
+

∇ω logπ(a|bt ,ω)A′π(bt ,a)

12: g← g+ρ t∇ω logπ(at |bt ,ω)Aπ(bt ,at)+B ▷ IS truncation plus bias correction
13: dθ ← dθ −∇θ (Qret−Qθ (bt ,at))

2

14: Qret ← ρ t(Q
ret−Qθ (bt ,a))+V (bt)

15: k← ∇ωKL [π(·|ωa)||π(·|ω)]

16: z← g−max{0, kT g−δ

||k||22
k}

17: ω ← ω +α · z
18: θ ← θ +α ·dθ

19: ωa← βωa +(1−β)ω

46 Method

3.8 Master actions for ACER

In Section 3.4, we discussed the architecture for ACER NNs when applied to the summary
action space. The outputs π and Q were produced directly from the two hidden layers h1 and
h2. As an extension to this project, because we found that ACER substantially increased the
learning rate, we also applied it on the master action space. However, to make this efficient,
the NNs need to be redesigned.

As discussed in Section 2.1.4, there are 8 informable slots of an entity, each with a binary
choice on whether we inform on it. Thus, a single inform action makes up 28 = 256 separate
master actions, only differing in what they inform on. We want to incorporate the fact that
these actions are very similar into the design of our NNs. We achieve this by breaking the
policy π into a summary policy πs, corresponding to the 15-dimensional summary action
space, and a payload policy πp, corresponding to the 256 choices of the payload of an
inform action. We break the Q function up similarly into Qs and Qp. We reconstruct the
1035-dimensional master policy π and master Q-function Q as follows: for each summary
action A,

• If A does not have a payload (ie. is not an inform action), append the corresponding
summary values from πs and Qs onto π and Q.

• Otherwise, for each payload P of the 256 possible choices, append πs(A) ·πp(P) to π .
This is because the probability of choosing action A with payload P is modelled as
the product of the probability of choosing A and that of choosing P. For each P, we
also append Qs(A)+Qp(P) to Q, allowing the payload network to learn an offset of Q
achieved by choosing a particular payload.

The complete NN architecture is illustrated in Figure 3.4. It is important to note that only
the architecture of the NNs is changed and the training algorithm is unchanged. In fact, the
NNs are treated as a black box by ACER. These outputs being 1035-dimensional for master
action space, training ACER in this setting will be informative about the applicability of this
algorithm on larger action spaces.

3.9 Master actions for GP 47

Fig. 3.4 Architecture of the actor-critic neural network for the master action space.

3.9 Master actions for GP

Similarly to ACER, the GP method needs to be adjusted before we deploy it on master action
space. In Section 2.3.3, we introduced the kernel function:

k((b,a),(b′,a′)) = ⟨b,b′⟩δ (a,a′).

We recall that the kernel function defines our a priori belief of the covariance between any
two belief-action pairs. This kernel is a multiplication of a scalar product of the beliefs and a
Kronecker delta on the actions. The latter has the effect that any two different actions are
considered completely independent. While this might be a good approximation for summary
actions, a more elaborate action kernel is required for master actions. This could introduce
the idea that two inform actions with slightly different payloads are expected to have similar
results on the same belief state, thus showing higher covariance.

Our new action kernel returns 0 for actions a and a′ that stem from different summary
actions. Otherwise, a and a′ are the same inform action with differing payloads. In this
case, we calculate the kernel based on the cosine similarity of the two payloads, treating
the payloads as vectors describing the sets of slots to inform on. Let us call as and ap the
summary action and the payload corresponding to a. ap is represented as a vector where

48 Method

each entry is either 0 or 1, depending on whether the corresponding slot is informed on.
Writing ap = ap

||ap||
1
2

for the normalised version of the payload vector, the kernel becomes

k((b,a),(b′,a′)) = ⟨b,b′⟩δ (as,a′s)⟨ap,a′p⟩. Furthermore, the Kronecker delta function can
be implemented as a scalar product between one-hot vector representations of the summary
actions as. The final kernel is

k((b,a),(b′,a′)) = ⟨b,b′⟩⟨as,a′s⟩⟨ap,a′p⟩.

To show that this is a kernel function, we show that resulting kernel matrices are positive
semidefinite. For this, we show that for any set of (bi,ai) pairs and vectors xi of rationals of
the right dimensionality,

∑
i, j

xiKi jx j = ∑
i, j

xik((bi,ai),(b j,a j))x j ≥ 0

This is because

∑
i, j

xik((bi,ai),(b j,a j))x j = ∑
i, j

∑
k

xix j ·as
ikas

jk ·ap
ikap

jk ·bikb jk

= ||∑
i,k

xi ·as
ik ·ap

ik ·bik||2 ≥ 0.

As in the case of ACER on master action space, the training algorithm is unchanged.
Only the kernel function is adjusted to incorporate the idea of similarity between master
actions. The GP can thus be trained on this 1035-dimensional master action space.

Chapter 4

Evaluation

In this chapter, we aim to quantitatively evaluate the performance of our implementation of
ACER, described in the previous chapter. We find that ACER delivers the best performance
and fastest convergence among all Neural Network-based algorithms implemented in PyDial.
We follow up this observation with an investigation of the contribution of TRPO. We also
deploy the algorithm in a more challenging setting without the execution mask aiding action
selection. Next, we investigate the effect of different hyperparameter selections, and the
algorithm’s stability against it. As an extension to the core project, we then turn our attention
to master action space, and deploy ACER and GP on it. Finally, we investigate how resilient
different algorithms are to semantic errors and changing testing conditions.

4.1 Testing method

During training, the algorithm the algorithm explores the state space. As training progresses,
this exploration is generally decreasing and the algorithm exploits what it learned more and
more. In testing, we aim to measure the performance of the algorithm as if it stopped training
after a certain number of episodes. Thus, testing experiments are run as follows. First, the
total number of dialogues or iterations (here, usually 4000) is broken down into milestones
(here, usually 20 milestones of 200 iterations each). As the training over the total number of
iterations progresses, a snapshot of the state of the training (all NN weights, hyperparameters,
and replay memory) is saved at each milestone. A separate run of 4000 iterations is then
performed without any training steps, where each of the saved snapshots are tested for 200
iterations each. In addition to no training being performed during this testing phase, it also
performs no exploration. More specifically, in our case, the greedy policy with respect to π ,
instead of ε-greedy, is used to derive the next action. This informs us on the performance of

50 Evaluation

the system as if it stopped training at a specific milestone, allowing us to observe the speed
of convergence and the performance of early milestones, discounting for the exploration.

We use the PyDial user simulator as described in Section 2.2, with the focus belief tracker
for all experiments. The number of maximum turns is limited to 25, after which, if the
user did not achieve their goal, the dialogue is deemed unsuccessful. The discount factor γ

is set to 0.99 for all algorithms where it is applicable. For NN-based algorithms, the size
of a minibatch, on which the training step is performed, is 64. For algorithms employing
Experience Replay, the replay memory has a capacity of 2000 interactions. Where ε-greedy
is used, ε is linearly reduced from 0.95 down to 0 over the training process. For NN-based
algorithms, the size of the hidden layers is 130 for h1 and 50 for h2

4.2 Performance of ACER

To test ACER with other algorithms implemented in PyDial, we introduce the initial environ-
ment. The simulated semantic error rate is 0% both for training and testing. The learning
rate for the actor and critic are 0.001. Instead of a simple Gradient Descent on the loss
function, we use the Adam Optimiser, which associates momentum to the gradient [15]. To
discourage the algorithm from learning a trivial policy, we subtract a small multiple (0.01) of
the policy entropy. This way, saying eg. bye every time is discouraged, as the entropy of such
a policy would be low, thus the loss would be higher. The ACER-specific hyperparameters
are: c = 5,δ = 1,β = 0.99,n = 1. The batch size is 64. We perform training and testing on
4000 iterations split into 20 steps. We compare our implementation of ACER to existing
implementations of eNAC, A2C and GP. We run the experiment 5 times and average the
results, to reduce the variance arising from different random initialisations. We compare
the average per-episode reward obtained by the agent, the average number of turns in a
dialogue and the percentage of successful dialogues. For every turn in the dialogue, there
is a reward of -1 to incentivise shorter dialogues. For every dialogue where the simulated
user achieved their goal, there is a reward of 20. The algorithms optimise this reward metric,
rather than the success rate. It is thus important to include it in the comparisons. As the
training progresses, the success rate generally increases (Figure 4.1), while the average
reward increases (Figure 4.2) and the number of turns decreases (Figure 4.3).

4.2 Performance of ACER 51

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

60

65

70

75

80

85

90

95

100
S

uc
ce

ss
 r

at
e

(%
)

ACER
eNAC ER
A2C PER
GP

Fig. 4.1 Success rate of ACER compared to other RL methods.

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

10

5

0

5

10

15

R
ew

ar
ds

ACER
eNAC ER
A2C PER
GP

Fig. 4.2 Rewards of ACER compared to other RL methods.

52 Evaluation

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

3

4

5

6

7

8

N
um

be
r

of
 tu

rn
s

ACER
eNAC ER
A2C PER
GP

Fig. 4.3 Number of turns of ACER compared to other RL methods.

We observe that ACER is comparable to GP in terms of speed of convergence, sample
efficiency, success rate, rewards and turns. While the success rate of ACER remains one or
two percentage points below that of GP, ACER requires fewer dialogue turns and ultimately
obtains somewhat higher rewards than GP. This suggests that the slightly worse success rate
of ACER presents a shortcoming of the reward function rather than the algorithm, as the
algorithm only optimises the reward function.

We also observe that ACER far exceeds the performance of other Neural Network-based
methods in terms of all of speed of convergence, sample efficiency, success rate, rewards and
turns. These results far exceed our expectations.

4.3 Contribution of TRPO

As ACER is an elaborate algorithm including an efficient implementation of TRPO. This is a
modular part of ACER, ie. it serves to stabilise the learning but can be removed completely.
To investigate the advantage that TRPO provides to the whole algorithm, we removed it
and compared the performance of ACER with TRPO to ACER without TRPO (Figure 4.4).
While the algorithm converges to a similar performance without TRPO, we can see that
applying TRPO is beneficial in the early stages of learning, as it stabilises the updates. As a
result, TRPO improves the rate of convergence and sample efficiency.

4.4 Effect of execution mask 53

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

60

65

70

75

80

85

90

95

100
S

uc
ce

ss
 r

at
e

(%
)

ACER with TRPO
ACER without TRPO

Fig. 4.4 Success rate of ACER with TRPO, compared to ACER without TRPO.

4.4 Effect of execution mask

As introduced in Section 2.1.4, not every system action is appropriate in every situation. For
example, inform is not a valid action at the very beginning of the dialogue, when the system
has not yet received any information on what kind of entity the user is looking for. As a
result, if the policy were to select such an action, the system would fail to convert it to a valid
response 1. To fix this, an execution mask is constructed by the system that ensures that only
valid actions are selected: the probability of invalid actions is set programmatically to zero.
Removing this mask inherently complicates the task of policy learning, as the policy then has
to learn not to select the inappropriate actions based on the belief state. To test how ACER
tackles this problem, we repeat our experiments without the execution mask. Figure 4.5
compares success rates, while Figure 4.6 compares rewards.

1In this case, an empty response is constructed during the conversion process.

54 Evaluation

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100

S
uc

ce
ss

 r
at

e
(%

)

ACER
eNAC ER
A2C PER
GP

Fig. 4.5 Success rate of ACER compared to other RL methods, without the execution mask.

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

5

0

5

10

15

R
ew

ar
ds

ACER
eNAC ER
A2C PER
GP

Fig. 4.6 Rewards of ACER compared to other RL methods, without the execution mask.

We can see that in general, algorithms converge slower under this more difficult setting,
as expected. The final performance of GP and ACER remain somewhat below their per-
formances with the mask. This is also expected as a mapping learned by RL is rarely as
precise as a hard-coded solution to a problem (execution mask). Still, the difference in final

4.5 Hyperparameter tuning 55

performances is surprisingly low. GP shows faster initial convergence than ACER, as the
latter shows a more steady progress. They remain comparable in every other regard.

4.5 Hyperparameter tuning

ACER has several additional hyperparameters compared to more traditional algorithms. We
investigate the effect of hyperparameters c,δ ,β , and n on the algorithm’s performance. To
better illustrate the differences, we run the tests in a more challenging setting, without the
execution mask.

Importance Weight threshold c This value is the upper bound of IS weight; weights
higher than c are truncated. Setting this value to too high diminishes the effect of weight
truncation, while a value too low will rely more on the less accurate bias correction term.
From Figure 4.7, we see that c = 5 delivers the highest convergence rate and a good final
performance. We also see that for the wide range of values from c = 1 to c = 20, there is no
big difference in final performance, suggesting that the algorithm is stable in face of varying
this hyperparameter.

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100

S
uc

ce
ss

 r
at

e
(%

)

ACER with c=20
ACER with c=10
ACER with c=5
ACER with c=1

Fig. 4.7 Success rate of ACER with varying hyperparameter c.

KL divergence constraint δ This value constrains the KL divergence between an updated
policy and the running average policy. Setting it too high allows radical jumps, setting it too
low slows the convergence down. Figure 4.8 shows results for different settings. We can see

56 Evaluation

that a setting of δ = 10 or δ = 50 results in erratic changes in the performance of ACER,
while δ = 0.5 and δ = 1 are sensible choices.

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100

S
uc

ce
ss

 r
at

e
(%

)

ACER with δ=50

ACER with δ=10

ACER with δ=1

ACER with δ=0.5

Fig. 4.8 Success rate of ACER with varying hyperparameter δ .

Average policy update weight β As discussed in Section 3.6, a too low value makes
the average policy forget the history very quickly, but a too high value will prevent the
average policy to adjust to the current policy. Figure 4.9 shows the comparisons. We
can see that for β ≤ 0.9, the average policy forgets the history too quickly, allowing the
policy to gain momentum in any direction and thus preventing it from converging to a
good performance. For β = 0.95, the policy converges quickly, while β = 0.99 results in a
somewhat conservative algorithm, where the KL divergence constraint keeps the policy near
a slowly changing average. β = 0.99 still converges to a good result, but does so somewhat
slower than β = 0.95.

4.5 Hyperparameter tuning 57

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100
S

uc
ce

ss
 r

at
e

(%
)

ACER with β=0.99

ACER with β=0.95

ACER with β=0.9

ACER with β=0.8

ACER with β=0.5

Fig. 4.9 Success rate of ACER with varying hyperparameter β .

Training iterations n For each episode gathered, we run the training step n times. Setting
this number higher allows the algorithm to learn more from the gathered experience. However,
if n is too high, the training might diverge due to the policy moving too much. This is
illustrated in Figure 4.10: for n = 1, convergence is quick and performance is good. For
n = 10, performance stays poor throughout. For n = 30 and n = 50, the algorithm diverges
completely.

58 Evaluation

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100

S
uc

ce
ss

 r
at

e
(%

)

ACER with n=50

ACER with n=30

ACER with n=10

ACER with n=1

Fig. 4.10 Success rate of ACER with varying hyperparameter n.

4.6 Master action space

ACER compares favourably to other NN-based algorithms, but performs about equally if
not slightly worse than GP in our experiments. The experiments were run on the summary
action space, which only has 15 actions. In a more difficult scenario, we may have orders of
magnitude more actions. In such scenarios, the computational cost of GPs can be prohibitive.
If ACER still performs well under the same scenario, it might may be the overall best method
to apply to larger action spaces. This is because ACER does not have the prohibitive cubic
computational cost of GP, and is expected to train much more quickly.

To test our hypotheses, we deploy ACER on the master action space according to
Section 3.8. Figure 4.11 compares the results to ACER on summary space. Both experiments
were run with the execution mask. We can see that convergence is slower on the master action
space. This is expected due to having to choose between vastly higher number of actions
on the master action space (1035 as opposed to 15). However, ACER is still surprisingly
effective on the master action space, converging to about the same performance as on the
summary space. We note that this is without any modification to the training algorithm; as
described in Section 3.8, only the underlying Neural Network is changed. ACER achieves
the best results in terms of speed of convergence and final performance on master action
space out of NN-based SDS policy optimiser algorithms.

4.6 Master action space 59

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

60

65

70

75

80

85

90

95

100
S

uc
ce

ss
 r

at
e

(%
)

ACER on summary action space
ACER on master action space

Fig. 4.11 Success of ACER on summary action space compared to ACER on master action
space.

To investigate further whether ACER is the best choice of algorithm on the master action
space, we modify GP to run on master action space according to Section 3.9. We compare
ACER and GP both on summary and master action spaces, without the execution mask in
Figure 4.12. Both GP and ACER show slower speed of convergence on master action space.
This is expected, as the random initialisation of a policy on master action space will be much
less sensible than an initialisation on the summary space, the latter taking advantage of the
hard-coded summary to master action mapping method. However, it is surprising to see
that all experiments converged to roughly the same performance of about 97% success rate,
except for GP on summary, which has a final success rate of 98%-99%. This suggests that
both ACER and GP can handle large action spaces quite efficiently. To our knowledge, our
implementation of both ACER and GP on master action space achieves better performance
than any experiment of a policy optimiser on master action space in SDS.

60 Evaluation

0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues

0

20

40

60

80

100

S
uc

ce
ss

 r
at

e
(%

)

ACER on summary action space
ACER on master action space
GP on summary action space
GP on master action space

Fig. 4.12 Success of ACER and GP on summary and master action spaces, without execution
mask.

GP is more sample efficient than ACER on the challenging master action space without
execution mask. However, it requires vastly more computational resources to run: this
experiment took 6.45 hours to run with ACER, and 8.63 days with GP2. Arguably, the extra
computational cost overshadows the disadvantage of ACER, that it has to be run for more
iterations to converge.

4.7 Resilience against errors

So far, our experiment settings were quite idealised, training and testing policies under a
perfect simulator with no semantic errors. However, in real life, the pipeline surrounding
the policy optimiser deals with substantial uncertainty, which tends to introduce errors. We
ultimately want to measure how well a policy optimiser can learn the optimal strategy in face
of noisy semantic-level input. In our experiments, we control this by the semantic error rate,
the rate at which a random noisy input is introduced to the optimiser to simulate an error
scenario. We focus on two desirable properties of a policy. First, ideally, the policy would
learn not to trust the input as much, and ask questions until it is sure about the user goal, just
like a real human would if the telephone line is noisy. Second, an ideal policy would not
only adjust to the error rate of the training conditions, but would dynamically adjust to the

2The running times were measured on an Azure cloud machine with a 16-core CPU and 64GB of RAM.

4.7 Resilience against errors 61

conditions of the dialogue it is in. If the policy adjusts too much to the training conditions, it
is said to overfit. This could severely limit the policy’s deployability.

We test key algorithms for these two desirable properties. eNAC, the previous best
NN-based policy optimiser is compared to ACER and GP. ACER and GP are also compared
to their respective variants in master action space. We run the test as follows: first, we train
the algorithms under 15% semantic error rate until convergence, with the execution mask.
Then we take the fully trained policy and test it under a range of semantic error rates, ranging
from 0% to 50%. Figure 4.13 and Figure 4.14 shows the results of the experiment.

0 10 20 30 40 50

Semantic error rate

20

30

40

50

60

70

80

90

100

110

S
uc

ce
ss

 r
at

e
(%

)

GP on master
ACER on master
eNAC PER on summary
ACER on summary
GP on summary

Fig. 4.13 Success rate of key algorithms when training them on 15% and testing them on
varying error rates.

62 Evaluation

0 10 20 30 40 50

Semantic error rate

2

0

2

4

6

8

10

12

14

16

R
ew

ar
ds

GP on master
ACER on master
eNAC PER on summary
ACER on summary
GP on summary

Fig. 4.14 Rewards of key algorithms when training them on 15% and testing them on varying
error rates.

Success rate and reward follow the same trends. As expected, we see a general downwards
trend for each algorithm as the semantic error rate increases. There is however no apparent
spike in performance at the 15% semantic error rate of the training process, indicating that
none of the algorithms overfit to this setting. We can see that the performance of eNAC is
far behind all the other algorithms. ACER and GP are closer in performance, but GP on
summary space consistently beats ACER on summary space.

It might be surprising that both ACER and GP perform better when trained on the master
action space as opposed to the summary space, given that they performed worse in previous
experiments. However, those experiments had no semantic errors, and a hand-crafted rigid
mapping from summary actions to master actions, that relied on the belief state to find the
best payload for an inform action. Under a higher semantic error rate, the belief state will be
noisy and this code may not perform optimally. This highlights the benefits of expanding the
scope of Artificial Intelligence in SDS: AI can be more versatile than hand-coded mappings,
especially when the mapping performs decision making under uncertainty.

Chapter 5

Summary and Conclusions

This project has been a major success. The policy optimiser algorithms implemented for the
project beat the state of the art in Spoken Dialogue Systems in three ways:

• A version of ACER [33] designed for Spoken Dialogue Systems shows better results
than the current state of the art for Neural Network-based policy optimisers [27].

• This implementation of ACER is also able to train in the master action space, showing
the best performance among Neural Network-based policy optimisers, as reported by
Fatemi et al. [4] and Su et al. [27].

• Our implementation of GP with a redesigned kernel function achieves the best perfor-
mance on master action space, something which previously was not possible.

GP suffers from an inherently high computational cost, making the algorithm unsuitable in
higher volume action spaces. In such cases, the fact that ACER can be trained well on the
master action space indicates that it may be the best currently known method to train policies
with large action spaces.

As agents powered by Machine Learning gain more intelligence, they can be applied
to more and more challenging domains. With respect to SDS, this could mean that more
and more of the system will be controlled by Artificial Intelligence, while less and less of it
will be hard-coded. Using the master action space is a good example of this: a hard-coded
mapping between summary and action spaces can be used to simplify the task of the AI
agent. However, as the project shows, it is no longer required to train in this action space.
There is an algorithm (ACER) that can finally bridge the semantic gap between summary
and master action spaces without the help of domain-specific code written explicitly for this

64 Summary and Conclusions

mapping 1. This has three benefits: first, as has been demonstrated, training on master action
space outperforms the mapping based on fixed code, when uncertainty (semantic errors) is
involved. Second, it allows us to build a more generally applicable system, with less work
required to deploy it in differing domains. Third, it allows us to consider domains that have
vastly higher action spaces, even if there is no clear way to convert those action spaces into
small summary action spaces (such as a general purpose dialogue system).

ACER fits well into other SDS research directions too. Successful policy optimisers
need to be sample efficient and be able to be trained quickly, to avoid subjecting human
users to poor dialogue performance for long. ACER uses Experience Replay for sample
efficiency, together with many methods aimed at reducing bias and variance of the estimator,
to achieve quick training. Recently, Su et al. [27] combined Supervised Learning with Deep
Reinforcement Learning to investigate the performance of an agent bootstrapped with SL and
trained further with DRL. The Neural Networks of ACER are compatible with that approach.

5.1 Future work

This project showed how the framework of Neural Network-based Actor Critic can be
extended with Experience Replay, TRPO, and several other methods to design a sample
efficient policy optimiser with good performance. Here, we introduce some of the many
directions in which this work could be continued.

5.1.1 Supervised pre-training

As explored by Su et al. [27], Supervised Learning is inherently unsuitable to learn a policy
efficiently for many reasons. First, the supervision for the learning comes from an agent
which may act imperfectly or suboptimally at times. Second, the number of supervised
samples may be limited, while the RL framework gathers experience for itself. Third, the
key dialogue acts which lead to success or failure are not identified by the SL framework,
and thus the credit assignment problem is unsolved. The RL framework deals extensively
with this problem by devising suitable update targets.

Despite all of these shortcomings, Supervised Learning could be used to pre-train a
policy before Reinforcement Learning takes over. In this way, RL would start from better
performance, which may decrease the overall interactions required for convergence, as well
as increase sample efficiency. This pre-training method however has to be designed in such a

1The design of Neural Networks in ACER was optimised for the domain, as described in Section 3.8.
However, the training algorithm itself remains general.

5.1 Future work 65

way as to avoid leaving the policy in a local optimum, from which Reinforcement Learning
may not be able to recover. It would be interesting to see how much Supervised Pretraining
could improve the current performance of ACER.

5.1.2 Expanding the action space

Both of our settings, training on summary and on master action space, considered static
action spaces only. Under this framework, the entire policy would have to be retrained if
a new action or payload were to be introduced. This could hurt the maintainability of a
real-life Dialogue System, as it would be expensive to extend the database schema or the list
of actions. Ideally, the training algorithm could adapt to such changes made, being able to
retain its pre-existing knowledge of the old actions.

Additionally, based on the learned knowledge of the old actions, the learning framework
may be able to quickly place the desirability of the new action based on the belief state
quickly. Intuitively, this works by categorising the new action based on the insight provided
by the old one. A Bayesian approach of One-shot Learning has been attempted by Fei-Fei
et al. [5] for object recognition. A similar method could be devised for actor-critic Neural
Networks. This would not only improve sample efficiency for the new action, but also
provide the benefit of not having to retrain the entire model. It would also be interesting
to investigate whether in a large action space such as the master action space, the sample
efficiency of ACER could be further improved by adding actions iteratively, thus starting out
with a simple training task and gradually increasing the difficulty.

5.1.3 Off-policy eNAC

As discussed in Section 3.6, the motivation behind Trust Region Policy Optimisation is to
restrict the gradient according to a distance metric on the policy, rather than an Eucledian
metric on the underlying parameters. Small changes in the latter can result in radical changes
in the policy, while restricting the step-size directly in the policy space stabilises learning. To
avoid expensive Fisher Matrix computations, TRPO is based on an estimate of the natural
gradient:

dω
T Gωdω ≈ KL(π(·|b,ω)||π(·|b,ω +dω)).

However, Episodic Natural Actor Critic can directly use the natural gradient, without an
approximation, while avoiding expensive Fisher matrix calculations (Section 2.3.3). It would
be interesting to see how this algorithm would perform in an off-policy setting. Some work
has been carried out in this topic as part of a possible extension to the project, but initial

66 Summary and Conclusions

results were disappointing. The challenge comes down to whether the dialogue could be
separated into individual dialogue acts: on the one hand, reducing the variance of IS weights
necessitates separating dialogue acts apart, as otherwise, a product of IS weights is introduced
for an entire dialogue. On the other hand, eNAC relies on dialogues being considered together
to be able to limit introducing further unknown constants in the equation; currently, only the
value of the initial state is a constant, and eNAC relies on that value being the same for every
dialogue.

However, if IS variance could be reduced in a way that is compatible to natural gradient
based learning, we could see another policy optimiser that is sample efficient and converges
to a good performance.

References

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

[2] Senthilkumar Chandramohan, Matthieu Geist, and Olivier Pietquin. Optimizing spoken
dialogue management with fitted value iteration. In Eleventh Annual Conference of the
International Speech Communication Association, 2010.

[3] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv
preprint arXiv:1205.4839, 2012.

[4] Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing He, and Kaheer Suleman. Policy net-
works with two-stage training for dialogue systems. arXiv preprint arXiv:1606.03152,
2016.

[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[6] M Gašić, Simon Keizer, Francois Mairesse, Jost Schatzmann, Blaise Thomson, Kai
Yu, and Steve Young. Training and evaluation of the his pomdp dialogue system in
noise. In Proceedings of the 9th SIGDIAL Workshop on Discourse and Dialogue, pages
112–119. Association for Computational Linguistics, 2008.

[7] Milica Gasic and Steve Young. Gaussian processes for pomdp-based dialogue manager
optimization. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(1):28–40, 2014.

[8] Milica Gašić, Filip Jurčíček, Simon Keizer, François Mairesse, Blaise Thomson, Kai
Yu, and Steve Young. Gaussian processes for fast policy optimisation of pomdp-based
dialogue managers. In Proceedings of the 11th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 201–204. Association for Computational
Linguistics, 2010.

[9] Matthieu Geist and Bruno Scherrer. Off-policy learning with eligibility traces: A survey.
The Journal of Machine Learning Research, 15(1):289–333, 2014.

[10] Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q (\lambda)
with off-policy corrections. In International Conference on Algorithmic Learning
Theory, pages 305–320. Springer, 2016.

[11] James Henderson, Oliver Lemon, and Kallirroi Georgila. Hybrid reinforce-
ment/supervised learning of dialogue policies from fixed data sets. Computational
Linguistics, 34(4):487–511, 2008.

68 References

[12] Matthew Henderson, Blaise Thomson, and Steve J Young. Deep neural network
approach for the dialog state tracking challenge. In SIGDIAL Conference, pages
467–471, 2013.

[13] F Jurcıcek, M Gašic, S Young, R Laroche, G Putois, M Geist, and O Pietquin. D1. 5:
Online adaptation of dialogue systems. 2011.

[14] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1):99–134,
1998.

[15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[16] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances
in neural information processing systems, pages 849–856, 2009.

[17] Esther Levin, Roberto Pieraccini, and Wieland Eckert. A stochastic model of human-
machine interaction for learning dialog strategies. IEEE Transactions on speech and
audio processing, 8(1):11–23, 2000.

[18] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.
Deep reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541,
2016.

[19] Peter Marbach, Oliver Mihatsch, Miriam Schulte, and John N Tsitsiklis. Reinforcement
learning for call admission control and routing in integrated service networks. In
Advances in Neural Information Processing Systems, pages 922–928, 1998.

[20] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and effi-
cient off-policy reinforcement learning. In Advances in Neural Information Processing
Systems, pages 1046–1054, 2016.

[21] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks.
arXiv preprint arXiv:1301.3584, 2013.

[22] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190,
2008.

[23] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In European
Conference on Machine Learning, pages 280–291. Springer, 2005.

[24] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, page 80, 2000.

[25] Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms
for spoken language understanding. In Eighth Annual Conference of the International
Speech Communication Association, 2007.

[26] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In Proceedings of the 32nd International Conference
on Machine Learning (ICML-15), pages 1889–1897, 2015.

References 69

[27] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young. Sample-
efficient actor-critic reinforcement learning with supervised data for dialogue manage-
ment. arXiv preprint arXiv:1707.00130, 2017.

[28] Richard S Sutton. Reinforcement learning architectures for animats. In From Animals to
Animats: Proceedings of the First International Conference on Simulation of Adaptive
Behavior, pages 288–296, 1991.

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[30] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in neural information processing systems, pages 1057–1063, 2000.

[31] Blaise Thomson. Statistical methods for spoken dialogue management. Springer
Science & Business Media, 2013.

[32] Blaise Thomson and Steve Young. Bayesian update of dialogue state: A pomdp
framework for spoken dialogue systems. Computer Speech & Language, 24(4):562–
588, 2010.

[33] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. arXiv preprint arXiv:1611.01224, 2016.

[34] Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks: practical
and efficient end-to-end dialog control with supervised and reinforcement learning.
arXiv preprint arXiv:1702.03274, 2017.

[35] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[36] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational
speech recognition. arXiv preprint arXiv:1610.05256, 2016.

Acronyms

A2C Advantage Actor Critic. 24, 25, 27, 29

ACER Actor Critic with Experience Replay. v, 35

AI Artificial Intelligence. 1, 3

DQN Deep Q-network. 23, 24, 27

DRL Deep Reinforcement Learning. 22, 23, 27

eNAC Episodic Natural Actor Critic. 22, 23

ER Experience Replay. v, 23, 24, 27, 29

FIM Fisher Information Matrix. 21

GP Gaussian Process. v, 17, 35

IS Importance Sampling. v, 14, 15, 28–32, 34, 35

MDP Markov Decision Process. 8, 9

ML Machine Learning. 11

MSVE Mean Squared Value Error. 18, 23

NAC Natural Actor Critic. 21

NLG Natural Language Generation. 10

NN Neural Network. v, 2, 3, 7, 11, 18, 19, 22–24, 31, 33, 34

POMDP Partially Observable Markov Decision Process. 8

72 Acronyms

ReLU Rectified Linear Unit. 34

RL Reinforcement Learning. 1, 12, 22

SDS Spoken Dialogue System. 1–5, 7, 8, 10, 12, 27

SGD Stochastic Gradient Descent. 18, 23, 24

TD Temporal Difference. 15, 16

TRPO Trust Region Policy Optimisation. v, 35

Appendix A

Example dialogue

Below is an example dialogue between a user looking for a restaurant with a medium price
range, and a system that internally translates between summary and master actions. We thus
illustrate the nature of a dialogue and the distinction between summary and master actions.
System responses are written as Sys: summary_action→master_action:

Sys : hello()→ hello()

User : inform(type=restaurant)

Sys : request_pricerange()→ request_pricerange()

User : inform(pricerange=moderate)

Sys : inform()→ inform(food="turkish",pricerange="moderate",name="efes restaurant")

User : reqalts()

Sys : inform_alternatives()→ inform(food="turkish",pricerange="moderate",name="anatolia")

User : request(phone)

Sys : inform_requested→ inform(name="anatolia",phone="01223 362372")

User : thankyou()

Sys : bye()

	Table of contents
	1 Introduction
	2 Preliminaties
	2.1 Spoken Dialogue Systems
	2.1.1 Speech recognition
	2.1.2 Ontology
	2.1.3 Semantic decoding
	2.1.4 Action spaces
	2.1.5 Dialogue management
	2.1.6 Natural language generation
	2.1.7 Speech synthesis

	2.2 Training the policy with Simulation
	2.3 Reinforcement Learning
	2.3.1 Model-based planning
	2.3.2 Model-free tabular reinforcement learning
	2.3.3 Function approximation

	3 Method
	3.1 Actor-critic with Experience Replay
	3.2 Lambda returns
	3.3 Retrace
	3.3.1 Computational cost

	3.4 Architecture of our actor-critic Neural Networks
	3.5 Importance Weight Truncation with Bias Correction
	3.6 Trust Region Policy Optimisation
	3.7 Summary of acer
	3.8 Master actions for acer
	3.9 Master actions for gp

	4 Evaluation
	4.1 Testing method
	4.2 Performance of acer
	4.3 Contribution of trpo
	4.4 Effect of execution mask
	4.5 Hyperparameter tuning
	4.6 Master action space
	4.7 Resilience against errors

	5 Summary and Conclusions
	5.1 Future work
	5.1.1 Supervised pre-training
	5.1.2 Expanding the action space
	5.1.3 Off-policy eNAC

	References
	Appendix A Example dialogue

