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Figure: Prediction confidence vs accuracy of classic and modern neural
network, obtained from [1].

Modern neural networks are poorly calibrated
meaning the predicted probabilities do not
correspond to the observed accuracy.

Measuring Calibration
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Figure: Calibration plots for Dropout Variational Inference (left) and
Bayesian Dark Knowledge (right).

Calibration of a classifier can be measured by
binning predictions over confidence levels and
comparing the observed and predicted
accuracies for the respective confidence levels.
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Figure: Uncertainty estimates of a Neural Net with ML inference and and
Bayesian Inference methods.

Approximate Bayesian Inference methods
significantly improve uncertainty estimates.
However, performance and bias are a problem.

Bayesian Dark Knowledge [2] uses student-
teacher training to summarise the posterior
predictive in a single network which allows
constant time inference.

Dropout Variational Inference
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Dropout Variational inference with a-divergences

requires only a small modification to the loss
function compared to ML inference [3].

Stochastic gradient MCMC
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Figure: Metropolis-Hasting (blue), Barker (orange), and noise adaptive
acceptance test (green).

The noise adaptive acceptance test is a novel

approach to reduce the bias of stochastic
gradient HMC.

A tradeoff is made between sample efficiency
and acceptance error.
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