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Abstract

This thesis formulates the Generalised Gaussian Process Convolution Model (GGPCM),
which is a generalisation of the Gaussian Process Convolution Model presented by Tobar
et al. [2015b]. The GGPCM provides a theoretical framework for nonparametric kernel
models of multi-dimensional signals defined on multidimensional input spaces. We show
that the GGPCM generalises and connects existing work; most notably, we derive a
dual formulation of the cross-spectral mixture kernel presented by Ulrich et al. [2015].
Finally, we use the GGPCM to develop the Deep Kernel Model, which presents a new
network structure for unsupervised learning.
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Notation

General

We make use of Lagrange’s notation for di�erentation.

(1, 1), . . . , (N, M) Shorthand for

(1, 1), . . . , (N, 1), (1, 2), . . . , (N, 2), . . . , (1, M), . . . , (N, M)

i Imaginary unit or, depending on the context, index
· ú Complex conjugate
| · | Modulus or, depending on the context, determinant
1X Indicator function
1 Shorthand for 1{0}

” Dirac delta function
R Reversal function; for any function f

1

: X æ Y the reversal function
R : Y X æ Y X yields the function f

2

= R(f
1

) such that
f

2

(x) = f
1

(≠x) for all x œ X

O Bachmann-Landau notation for asymptotic behaviour

Probability Theory

p Probability measure
d= Equality in distribution
E Expected value
N ( · ; µ, �) Multivariate Gaussian distribution with mean µ and covariance matrix �
DKL( · Î · ) Kullback-Leibler divergence



xx Notation

Linear Algebra

Unbolded symbols x denote scalars, bolded lower-case symbols x vectors and bolded
upper-case symbols X matrices or arrays—by array we mean the multi-dimensional
generalisation of the two-dimensional matrix. Vectors are column vectors unless specified
otherwise.

I Identity matrix
IN N ◊ N identity matrix
· T Transpose
· H Conjugate transpose
| · | Determinant or, depending on the context, modulus
Î · Îp p-norm
Î · ÎF Frobenius norm
¢ Kronecker product
diag(X

1

, . . . , XN) Block diagonal matrix; yields
S

WWWWWWWWWU

X
1

0 · · · 0 0
0 X

2

· · · 0 0
... ... . . . ... ...
0 0 · · · XN≠1

0
0 0 · · · 0 XN

T

XXXXXXXXXV

circ(X
1

, . . . , XN) Block circulant matrix; yields
S

WWWWWWWWWU

X
1

XN · · · X
3

X
2

X
2

X
1

· · · X
4

X
3

... ... . . . ... ...
XN≠1

XN≠2

· · · X
1

XN

XN XN≠1

· · · X
2

X
1

T

XXXXXXXXXV



xxi

stoep(X
1

, . . . , XN) Symmetric block Toeplitz matrix; yields
S

WWWWWWWWWU

X
1

X
2

· · · XN≠1

XN

X
2

X
1

· · · XN≠2

XN≠1

... ... . . . ... ...
XN≠1

XN≠2

· · · X
1

X
2

XN XN≠1

· · · X
2

X
1

T

XXXXXXXXXV

vec Matrix vectorisation function; if X œ RN◊M , then

vec X =
Ë
X

1,1 · · · XN,M

ÈT

Xi1,...,iN
Vector, matrix and array indexing; yields element (i

1

, . . . , iN) of
the array X

X i,: Fixation of first dimension of a matrix and ranging over the
second; yields vector containing the i’th row of X

X
:,i Fixation of second dimension of a matrix and ranging over the

first; yields vector containing the i’th column of X

X i1,...,in,:,...,:¸ ˚˙ ˝
N indices

Fixation of an arbitrary subset of dimensions and ranging over
the remaining; yields the array whose (in+1

, . . . , iN)’th element
is given by Xi1,...,iN

f(X) Element-wise function application; if X is
M -dimensional—X œ RN1◊···◊NM —but f takes a
(M ≠ m)-dimensional object—f : RNm+1◊···◊NM æ C—then
f(X) is the m-dimensional array whose (i

1

, . . . , im)’th element
is given by f(X i1,...,im,:,...,:)

f(X, Y ) Element-wise function application; if X œ RN1◊···◊NM and
X œ RN1◊···◊NK , but f : RNm+1◊···◊NM ◊ RNk+1◊···◊NK æ C,
then f(X, Y ) is the array whose (i

1

, . . . , im, j
1

, . . . , jk)’th
element is given by f(X i1,...,im,:,...,:, Y i1,...,ik,:,...,:)



xxii Notation

Miscellaneous

ú Convolution; for matrix-valued functions F
1

and F
2

defined as

(F
1

ú F
2

)(x) =
⁄

F
1

(x ≠ y)F
2

(y) dy

FN N ◊ N unitary discrete Fourier transform matrix
DFT Discrete Fourier transform
Fy{f}(x) Continuous Fourier transform of f ; defined as

Fy{f}(x) =
⁄

f(y) exp(≠2fiixT y) dy

Ff (x) Shorthand for Fy{f}(x)
Sy{f, g}(x) Cross-spectral density between two wide-sense stationary processes f and

g; equal to

Sy{f, g}(x) = Fz{E[f(x + z)gú(x)]}(y)

Sf,g(y) Shorthand for Sy{f, g}(x)
(C, A, b, c) See Appendix F.2; shorthand for

C exp
1
≠1

2xT Ax + xT b + c
2

(C, A) See Appendix F.3; shorthand for (C, A ¢ I, 0, 0)

Acronyms

AKM Approximate Kernel Model (Model 6)
CGPM Collaborative Gaussian processes model [Nguyen and Bonilla, 2014]
CMOGPM Convolved multi-output Gaussian process model [Álvarez and Lawrence,

2011]
CSMK Cross-spectral mixture kernel [Ulrich et al., 2015]
GGPCM Generalised Gaussian Process Convolution Model (Model 4)
GPCM Gaussian Process Convolution Model [Tobar et al., 2015b]
GPRN Gaussian process regression network [Wilson et al., 2012]
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ICM Intrinsic coregionalisation model [Goovaerts, 1997]
LCM Linear coregionalisation model [Goovaerts, 1997]
LFM Latent force model [Álvarez et al., 2009]
MTGPM Multi-task Gaussian process [Bonilla et al., 2008]
NKM Nonparametric Kernel Model (Model 5)
PSD Power spectral density
SLFM Semiparametric latent factor model [Teh and Seeger, 2005]
SMK Spectral mixture kernel [Wilson and Adams, 2013]





1 | Introduction

1.1 Motivation

Gaussian processes elegantly provide means to model an unknown function. They
give rise to Bayesian regression models in which one maintains a posterior distribu-
tion over the unknown function as evidence is accumulated; Figure 1.1 illustrates this
process. Gaussian processes have been succesfully applied in a wide variety of contexts—
Rasmussen and Williams [2006] provide an excellent overview.

Gaussian processes are nonparametric models. As opposed to parametric models, there
is no finite number of parameters that parametrises a Gaussian processes. Instead, the
number of parameters grows with the amount of evidence that is accumulated. This
property allows Gaussian processes to learn complex functions if plenty of evidence is
available. Conversely, this property makes them robust against overfitting if only little
evidence is available.

Their expressiveness and robustness however, come at a cost: Gaussian process models
are often computationally expensive and one is forced to choose a kernel. The kernel of a
Gaussian process reflects one’s assumption on how the unknown function autocovaries.1

The choice of the kernel is crucial; Figure 1.2 illustrates that the posterior distribution
can wildly vary for di�erent kernels. Unfortunately, determining which kernel to use
is hard; the kernel thus poses a di�cult design problem. We specifically refer to this
problem as the kernel design problem.

A number of recent works address the kernel design problem: Duvenaud [2014] presents
a way to search over a space of kernels through composition of existing kernels, and
Wilson and Adams [2013] present a flexible kernel by modellings its power spectral

1
The autocovariance of an unknown function f specifies the covariance between any two function

values f(t1) and f(t2).
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Figure 1.1: Posterior distribution over an unknown function as evidence is accumulated.
The evidence is represented by blue dots. The red line represents the mean of the pos-
terior distribution and the gradient indicates the marginal variance up to two standard
deviations.

Figure 1.2: Posterior distribution over an unknown function for di�erent kernels. The
evidence is represented by the blue dots and is the same as in Figure 1.1. The red line
represents the mean of the posterior distribution and the gradient indicates the marginal
variance up to two standard deviations.
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density with a sum of Gaussians. As noted by Tobar et al. [2015b], these approaches do
not completely resolve the kernel design problem: computational expenses restrict the
space of kernels that can be searched, and the large number of parameters introduced
by the sum of Gaussians reintroduces the problem of overfitting. Instead, Tobar et al.
[2015b] note that the kernel constitutes just another unknown function and thus propose
to model it by another Gaussian; the results are encouraging. They call their model the
Gaussian Process Convolution Model (GPCM).

The GPCM has only been formulated for one-dimensional signals defined on one-di-
mensional input spaces. Extending this model to multi-dimensional signals defined on
multi-dimensional input spaces would enable numerous applications in econometrics,
geostatistics and signal processing, among others.

1.2 Contribution of Thesis and Outline

The main contribution of this thesis is the formulation of the Generalised Gaussian Pro-
cess Convolution Model (GGPCM). The GGPCM provides a theoretical framework for
nonparametric kernel models of multi-dimensional signals defined on multidimensional
input spaces.

Chapter 2 develops a general-purpose model of dynamical signals. This model will
suggest a generalisation of the GPCM: the GGPCM. Thus, in hindsight, Chapter 2
motivates why this particular generalisation is appropriate.

Chapter 3 develops the GGPCM. We use the GGPCM to address the kernel design prob-
lem in multi-output Gaussian processes on multidimensional input spaces. Furthermore,
we develop a dual formulation of the cross-spectral mixture kernel [Ulrich et al., 2015]
and we show how the GGPCM connects to existing work.

Chapter 4 examines the GGPCM’s connection to existing multi-output Gaussian process
models. We provide an overview of the current literature.

Chapter 5 develops the Deep Kernel Model, which is a new network structure for unsu-
pervised learning. We sample from the Deep Kernel Model and investigate its proper-
ties.





2 | Modelling Dynamical Signals

2.1 Introduction

For many years scientists have used the concept of a system to study dynamic processes
of diverse nature. A system is a mathematical abstraction that is used to describe
properties of the process we intend to study. Dynamical systems describe processes that
evolve in time; the system then usually describes a transformation T : (RM)R æ (RN)R

from an input signal x to an output signal f = T (x)—the latter is also called the system
response.

This chapter develops a general-purpose model of dynamical signals. In doing so we
take a systems-modelling perspective by postulating that every signal is the response
of a particular system. Thus, equivalently, we develop a model of system responses.
We therefore utilise a general description of dynamical systems to construct the desired
model of dynamical signals.

2.2 The Linear State-Space Model

A widely used dynamical system model is one that describes mechanical, electrical,
hydraulic, and thermal systems, among others. These systems are all compositions
of resistive, inductive, capactive and memristive elements that are connected through
lossless transfer of energy; hence, they allow for a unified description. This description
embodies the concept of system state, whose manifestation is a vector s that at any time
determines future output given future input, thus rendering past input irrelevant. More
precisely, the description is a so-called state-space model whose general linear form is
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given by

sÕ(t) = A(t)s(t) + B(t)x(t), (2.1)
f(t) = C(t)s(t) + D(t)x(t). (2.2)

Examples of systems that are succesfully described by linear state-space models are
ubiquitous: linear state-space models describe electronics that are essential in everyday
life; systems that control your car, airplanes and even rockets; and many phenomena in
nature.

2.3 A General-Purpose Model of Dynamical
Signals

Suppose that f is a dynamical signal. By the postulate that every signal is the response
of some system, we can assume that some system generated f . Now, Section 2.2 suggests
that we can safely assume this system to be of the form of Equations (2.1) and (2.2). In
that case Appendix A.1 shows that f admits the following parametrisation:

Model 1 (Time-Variant Model).

f(t) =
⁄

R
H(t, ·)x(·) d· .

Observe that f is parametrised in terms of some matrix-valued function H—the impulse
response1—and the postulated input x.

In many applications of state-space models A(t), B(t), C(t) and D(t) are approximately
constant.2 In that case Appendix A.2 shows that H(t, ·) = H(t ≠ ·). Model 1 then
reduces to the following model:

1
Letting x(t) = ”(t ≠ t0)x0, t œ R yields the response f(t) = H(t, t0), t œ R. That is, H is the

system response of an impulse excitation; in this sense H is called the impulse response.

2
For example, consider an electric circuit. In that case, approximating A(t), B(t), C(t) and D(t) as

time invariant roughly corresponds to approximating resistances, capacitances and inductances as time

invariant. This approximation is often reasonable.
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Model 2 (Time-Invariant Model).

f(t) =
⁄

R
H(t ≠ ·)x(·) d· = (H ú x)(t).

Observe that Model 2 attains the form of a convolution.

2.4 Conclusion

We have developed a general-purpose model of dynamical signals: Model 2. Unfortu-
nately, Model 2 leaves the impulse reponse H and postulated input x unspecified. This
issue will be addressed in Chapter 3.





3 | The Generalised Gaussian
Process Convolution Model

3.1 Introduction

Chapter 2 developed a general-purpose model of dynamical signals: the Time-Invariant
Model (Model 2). By extending Model 2’s input space to RK we derive the Multidimen-
sional Time-Invariant Model:

Model 3 (Multidimensional Time-Invariant Model).

f(t) =
⁄

RK
H(t ≠ · )x(· ) d· = (H ú x)(t)

Model 3 is a deterministic model of multidimensional signals defined on multidimensional
input spaces. This chapter shows that a stochastic version of Model 3 can be used to ad-
dress the kernel design problem in multi-output Gaussian processes on multidimensional
input spaces.

Recall that f : RK æ RN , H : RK æ RM◊N and x : RK æ RM .

3.2 Gaussian Process Regression

A Gaussian process defines a distribution over functions. More precisely, a stochastic
process f(t), t œ R is Gaussian if and only if for every t =

Ë
t
1

· · · tT

ÈT
it holds

that f(t) =
Ë
f(t

1

) · · · f(tT )
ÈT

is multivariate Gaussian distributed. We denote f ≥
GP(mf , Kf ) where mf and Kf denote respectively the mean function and kernel of f .
This implies that f(t) ≥ N [mf (t), Kf (t, t)]. Furthermore, we usually let mf = 0 without
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loss of generality [Rasmussen and Williams, 2006] and denote Kf1,f2 = Kf (t
1

, t
2

) where
f

1

= f(t
1

) and f
2

= f(t
2

).

Suppose that we observe data y at ty generated by the process y(t) = f(t) + Á(t), t œ R
where Á(t) ≥ N (0, ‡2), t œ R . For unobserved function values f ú at tfú it then holds
that

S

U y

f ú

T

V

------

S

U ty

tfú

T

V , ◊ ≥ N
Q

a0,

S

UKy,y + ‡2I Ky,fú

Kfú,y Kfú,fú

T

V

R

b

where ◊ denotes ‡ and the parameters of Kf and mf—◊ are also called the hyperparam-
eters. We usually omit explicit conditioning ty and tfú . According to Appendix B.1 we
can perform prediction via

f ú | y, ◊ ≥ N [Kfú,y(Ky,y + ‡2I)≠1y, Kfú,fú ≠ Kfú,y(Ky,y + ‡2I)≠1Ky,fú ].

This is the Gaussian process regression framework.

The values of the hyperparameters should be chosen such that the model best fits the
true data-generating process. In this sense, as argued by Rasmussen and Williams [2006],
their values can be determined by maximising the marginal likelihood—also called the
evidence—given by

p(y | ◊) = N (µ, �) Ã |�|≠1/2

¸ ˚˙ ˝
complexity penalty

exp
5
≠1

2Î�≠1/2(y ≠ µ)Î2

2

6

¸ ˚˙ ˝
compatability with data

for some µ and �. Observe that the marginal likelihood is a trade-o� between the
model’s compatibility with the data and |�|≠1/2 being small; that is, the evidence is
large if the model is compatible with the data, but only if the model is not too complex
in the sense that it is compatible with any data—if �≠1/2 is such that Î�≠1/2(y ≠ µ)Î2

2

is small for any y, then |�≠1/2| = |�|≠1/2 is small and thereby the evidence must be
small. Thus maximising the evidence tends to explains the data in a simple way. This
tendency is commonly recognised as a manifestation of Occam’s razor [MacKay, 2002].

Finally, Appendix C shows how Gaussian processes can be used to define distributions
over multivariate matrix-valued functions.
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3.3 The Generalised Gaussian Process Convolution
Model

Model 3 leaves the input signal x and impulse response H unspecified. Since they
constitute unknown functions, it is sensible to model them by two Gaussian processes;
we then obtain the Generalised Gaussian Process Convolution Model (GGPCM):

Model 4 (Generalised Gaussian Process Convolution Model (GGPCM)). Draw

H ≥ GP(0, KH),
x ≥ GP(0, Kx),
Á ≥ GP(0, �2)

independently for some kernel Kx, some kernel KH and some diagonal matrix �. Then
observations are generated by y = f + Á = H ú x + Á.

In the remainder of this chapter we study the case that Kx(t
1

, t
2

) = ”(t
1

≠ t
2

)I—we let
x be white noise. The general case will be studied in Chapter 4.

Observe that f | H is a linear combination of Gaussian processes. Hence f | H is another
Gaussian process, which thus can be identified by its mean function and kernel:

E[f(t) | H ] =
⁄

RK
H(t ≠ · )E[x(· )] d· = 0,

Kf | H(t
1

, t
2

) = E[f(t
1

)fT (t
2

) | H ]

=
⁄

RK

⁄

RK
H(t

1

≠ ·
1

)E[x(·
1

)xT (·
2

)]
¸ ˚˙ ˝

”(· 1≠· 2)I

HT (t
2

≠ ·
2

) d·
1

d·
2

=
⁄

RK
H [· ≠ (t

2

≠ t
1

)]HT (· ) d·

= [R(H) ú HT ](t
2

≠ t
1

) (3.1)
= Kf | H(t

1

≠ t
2

)

where R is the reversal function. We have established the following equivalent model:
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Model 5 (Nonparametric Kernel Model (NKM)). Draw

H ≥ GP(0, KH),
Á ≥ GP [0, ”(t

1

≠ t
2

)�2]

independently for some kernel KH and some diagonal matrix �. Afterwards draw

f | H ≥ GP{0, [R(H) ú HT ](t
2

≠ t
1

)}.

Then observations are generated by y = f + Á.

This equivalent formulation reveals that white noise excitation in Model 4 yields ordinary
Gaussian process regression in which the kernel is modelled nonparametrically. We
cannot model the kernel of f simply with a sample from a Gaussian process—a kernel
has to be positive semidefinite, which in general a sample from a Gaussian process is not.
Thus Model 5 shows a way to nonparametrically model a positive-semidefinite matrix-
valued function. We verifiy that Kf | H = R(H) ú HT is indeed positive semidefinite:
Let g : RK æ RN be square integrable. Then
⁄

R2K
gT (t

1

)K(t
1

, t
2

)g(t
2

) dt
1

dt
2

=
⁄

R3K
gT (t

1

)H [· ≠ (t
2

≠ t
1

)]HT (· )g(t
2

) dt
1

dt
2

d·

=
⁄

R3K
gT (t

1

)H(t
1

≠ · ) dt
1

HT (t
2

≠ · )g(t
2

) dt
2

d·

=
⁄

RK

....
⁄

RK
HT (t ≠ · )g(t) dt

....
2

d·

Ø 0.

Alternatively, Model 5 can be interpreted in the frequency domain. It is clear that f | H
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H
1,: · · · H i,: · · · Hj,: · · · HN,:

f
1

· · · fi · · · fj · · · fN

úx úx úx úx

FHN,:· · ·FHj,:· · ·FHi,:· · ·FH1,:

F F F F

f
1

...
fi

...
fj

...
fN

Sfi,fj

Sfj ,fj

Sfi,fi

Sfj ,fi

FH1,:
...

FHi,:
...

FHj,:
...

FHN,:

FT
Hi,:Fú

Hj,:

FT
Hj,:Fú

Hj,:

FT
Hi,:Fú

Hi,:

FT
Hj,:Fú

Hi,:

Figure 3.1: Generation of the outputs of in Model 5 and relationships between their
cross-spectral densities

is wide-sense stationary; hence,

Sfi,fj | H(›) = F· {Kfi,fj | H(t + · , t)}(›)

=
Mÿ

m=1

⁄

R2K
Hi,m(· Õ + · )Hj,m(· Õ) exp(≠2fii›T · ) d· Õ d·

=
Mÿ

m=1

⁄

R2K
Hi,m(· ) exp(≠2fii›T · ) d· [Hj,m(· Õ) exp(≠2fii›T · Õ)]ú d· Õ

=
Mÿ

m=1

FHi,m
(›)Fú

Hj,m
(›) (3.2)

= FT
Hi,:(›)Fú

Hj,:(›). (3.3)

Since each Hi,j is modelled nonparametrically, each FHi,j
is modelled nonparametrically.

Model 5 therefore models the cross-spectral densities Sfi,fj
nonparametrically by complex

inner products between the stacked spectra FHi,: and FHj,: associated to fi and fj. This
provides insight in how correlations between the outputs are induced; Figure 3.1 depicts
in more detail how Model 5 generates outputs and how their cross-spectral densities
relate.

Finally, Model 5 can be interpreted as a continuous-time moving average model. Equiv-
alently, consider white noise excitation in Model 4. Then discretising the input space
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results in a model of the form

ft =
ÿ

·œRK

Ht≠· x·

where x is white noise. This is exactly a multi-output moving average model on a
multidimensional input space. Hence Model 5 is a continuous-time Bayesian multi-
output moving average model on a multidimensional input space.

3.3.1 Interpretation and Choice of the Kernel in the
Nonparametric Kernel Model

In this section we resolve an apparent modelling issue concerning Model 5: it is not
clear how to interpret and choose KH and thereby M—recall that KH : RK ◊ RK æ
RNM◊NM .

First, we examine M . We already determined that f | H is a Gaussian process with
zero mean function. Thus Model 5 attains its full expressive power if it can generate
any Kf | H , or equivalenty any F{Kf | H} = Sf | H . To begin with,

SH
f | H = Fú

· {ET [f(t + · )fT (t)]} = F· {E[f(t)fT (t ≠ · )]} = Sf | H

shows that Sf | H is Hermitian. Therefore, by the Complex Spectral Theorem, gener-
ating any Sf | H is equivalent to generating any spectral decomposition. Now, utilising
Equation (3.2) to express

Sf | H(›) =
Mÿ

m=1

FH :,m(›)FH
H :,m(›)

shows that any spectral decomposition can be generated only if M Ø N . Thus M = N is
the minimal M for which Model 5 attains its full expressive power. Conversely, Model 5
has limited expressive power if M < N . More precisely, Equation (3.3) then shows that
at each frequency › at most M outputs can be independent; fi and fj are independent if
and only if Sfi,fj | H(›) = FH

Hj,:FHi,: = 0, and at most M vectors FHi,: can simultaneously
be orthogonal as they are elements of CM . We let M = N in further development of
Model 5.

Second, we examine KH . It turns out that we must be careful in choosing KH . Sup-
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pose the simplest case; that is, let the components of H be independent and share an
exponentiated-quadratic kernel:

KH(t
1

, t
2

) = ‡2

h exp(≠“Ît
1

≠ t
2

Î2)I.

Having already observed that Model 5 induces correlations between its outputs justifies
modelling the components of H independently. We call KH the diagonal multi-output
exponentiated-quadratic kernel. Now, by equivalently considering white noise excitation
in Model 4,

E[f 2

i (t)] =
⁄

R2K
E[HT

i,:(t ≠ ·
1

)x(·
1

)x(·
2

)T H i,:(t ≠ ·
2

)] d·
1

d·
2

=
⁄

R2K
trE[H i,:(t ≠ ·

1

)HT
i,:(t ≠ ·

2

)
¸ ˚˙ ˝

KHi,: [(t≠· 1)≠(t≠· 2)]

x(·
1

)xT (·
2

)
¸ ˚˙ ˝

”(· 1≠· 2)I

] d·
1

d·
2

=
⁄

RK
tr(‡2

hI) d·

= Œ.

Intuitively, this means that the model prior assigns each fi infinitely large error bars, or
equivalently assigns each fi infinite signal power. This is unlike real-world signals, which
have finite power. We therefore let the components of H have a decaying exponentiated-
quadratic kernel [Tobar et al., 2015b] instead:

KH(t
1

, t
2

) = ‡2

h exp(≠–Ît
1

Î2 ≠ –Ît
2

Î2 ≠ “Ît
1

≠ t
2

Î2)I.

We call KH the diagonal multi-output decaying exponentiated-quadratic kernel. Now,
using the notation and identities from Appendix F with composite vector

Ë
tT · T

ÈT
,

E[f 2

i (t)] =
⁄

RK
tr[‡2

h exp(≠2–Ît ≠ ·Î2)I] d·

= I· [(K‡2

h, 4
S

U – ≠–

≠– –

T

V)]

= K‡2

h

fiK/2

(2–)K/2

and so our modelling issue is resolved. We decide to use the diagonal multi-output
decaying exponentiated-quadratic kernel in further development of Model 5.
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H1;1 9 GP(0;KH1;1
) Kf1 jH1;1

= R(H1;1) $H1;1 f1 jH1;1 9 GP(0;Kf1 jH1;1
)

Figure 3.2: Generative process of Model 5 in the case that N = M = K = 1. Illustrates
the interpretation that Model 5 corresponds ordinary Gaussian process regression in
which the kernel is modelled nonparametrically.

Note that the components of KH(t
1

, t
2

) are small for Ît
1

Î or Ît
2

Î much larger than
1/

Ô
–. Therefore for such t

1

or t
2

the posteriors of the components of H are likely to
be near zero; that is, 1/

Ô
– is the e�ective extent of the components of H . Similarly,

the components of KH(t
1

, t
2

) are small for Ît
1

≠ t
2

Î much larger than 1/
Ô

“; thus 1/
Ô

“

determines the e�ective length scale on which the components of H vary.

We can let the e�ective extent and e�ective length scale be di�erent for di�erent dimen-
sions of the input space. We then obtain

KH(t
1

, t
2

) = ‡2

h exp[≠tT
1

At
1

≠ tT
2

At
2

≠ (t
1

≠ t
2

)T �(t
1

≠ t
2

)]I

for positive-semidefinite matrices A and �. Since A and � reflect the relevance of
each input variable, we call KH the diagonal multi-output decaying automatic relevance
determination kernel [MacKay, 2002].

3.3.2 Illustrative Samples of the Nonparametric Kernel
Model

Figure 3.2 shows the generative process of Model 5 in the simplest case that M = N = 1
and K = 1; that is, a sample is defined on a one-dimensional space—for example,
time—and constitutes a single output. This figure illustrates the interpretation that
Model 5 corresponds ordinary Gaussian process regression in which the kernel is modelled
nonparametrically: First, H

1,1 is generated. Then, a kernel for f
1

| H
1,1 is constructed

by computing R(H
1,1) ú H

1,1. Finally, f
1

| H
1,1 is generated by drawing from a Gaussian

process with f
1

| H
1,1’s generated kernel.
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KH1;1
KH1;2

KH2;1
KH2;2

Observation 1 Observation 2

Observation 3 Observation 4

Figure 3.3: Samples from Model 5 in the case that N = M = 2 and K = 1. Shows the
sampled kernel and four observations.

Figure 3.4: Samples from Model 5 in the case that N = M = 2 and K = 2. Shows the
sampled kernel and two observations.
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K(1)
H1;1

K(1)
H2;1

K(2)
H1;1

K(2)
H2;1

K(1)
H1;2

K(1)
H2;2

K(2)
H1;2

K(2)
H2;2

KH
(1)

Observation while kernel is interpolated

KH
(2)

Figure 3.5: Interpolation between two kernels sampled from Model 5 in the case that
N = M = 2 and K = 1. Shows the way an observation changes as its kernel is
interpolated between the two kernels.
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Furthermore, Figure 3.3 shows samples from Model 5 in the case that M = N = 2 and
K = 1—a sample now constitutes two outputs. First, observe that the sampled kernel
is indeed symmetric: KH1,1 and KH2,2 are symmetric and KH1,2 = R(KH2,1). Second,
observe that KH1,2 and KH1,2 attain reasonably peaked maxima at a nonzero lag. Hence
we expect the outputs of a sample to be positively correlated at a nonzero lag; indeed,
Figure 3.3 shows that the red lines essentially lead the blue lines. Thus Model 5 shows an
certain ability to model multi-output time series. In the same way Model 5 is also able
to model multi-output signals defined on multidimensional spaces; Figure 3.4 illustrates
that the case K = 2 generates correlated surfaces.

Finally, Figure 3.5 illustrates that di�erent samples from Model 5 yield di�erent correla-
tion structures between the outputs; in the case that M = N = 2 and K = 1, Figure 3.5
shows the way an observation changes as its kernel is interpolated between two kernels
sampled from Model 5. Observe that kernel K(1)

H corresponds to positively correlated
outputs, whereas kernel K(2)

H corresponds to negatively corresponds outputs; indeed, as
the kernel of the observation is interpolated, the outputs change from being positively
correlated to being negatively correlated.

Appendix D was utilised in generating Figures 3.2 to 3.5.

3.3.3 Expressivity of White Noise Excitation

Thus far is not clear how Model 5’s expressivity compares to that of Model 4. In this
section we shed some light on this matter.

Model 4 shows that f is generated by filtering x with H . This means that frequencies
in x are attenuated according to the spectrum of H . In other words, f consists only
of frequencies that are also present in x. Thus, if x’s spectrum has e�ectively limited
support, then f is limited to only those frequencies. This makes choosing a white noise
kernel for x a great choice; a white noise process has a constant power spectrum and
therefore contains all frequencies, meaning that f can also contain all frequencies.

More concretely, we show that an instance (K(1)

x(1) , K(1)

H(1) , �(1)) of Model 4 can be ex-
pressed as an instance (K(2)

H(2) , �(2)) of Model 5 if K(1)

x(1)(t1

, t
2

) = [R(R) ú RT ](t
2

≠
t

1

) for some R—we call R the root of K(1)

x(1) . This is equivalent to showing that
(K(1)

x(1) , K(1)

H(1) , �(1)) can be expressed as another instance (K(2)

x(2) , K(2)

H(2) , �(2)) of Model 4
where x(2) is white noise.
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Observe that R ú x(2) and H(1) ú R are linear combinations of Gaussian processes.
Hence R ú x(2) and H(1) ú R are also Gaussian processes, which thus can be identified
by their mean functions and kernels. It is readily verified that R ú x(2) and H (1) ú R

have zero mean function. The kernel of R ú x(2) is derived in a similar fashion as
Equation (3.1), yielding KRúx(2)(t

1

, t
2

) = [R(R) ú RT ](t
2

≠ t
1

). Thus x(1)

d= R ú x(2).
Now let KH(2) = KH(1)úR and �(2) = �(1). Then also H(1) ú R

d= H(2) and Á(1)

d= Á(2).
Consequently, by associativity of the convolution operator,

f (1) = H(1) ú x(1) + Á(1)

d= H(1) ú (R ú x(2)) + Á(2)

= (H(1) ú R) ú x(2) + Á(2)

d= H(2) ú x(2) + Á(2)

= f (2)

so that f (1)

d= f (2).

We have established that an instance of Model 4 can be expressed of an instance of
Model 5 if x’s kernel has a root and is thereby stationary. Appendix G shows that
any kernel of exponentiated quadratic form has a root, that the diagonal multi-output
exponentiated-quadratic kernel has a root and that the white noise kernel is its own
root. This sheds some light on the class of kernels of x for which Model 4 and Model 5
have equal expressivity.

We can more generally identify which kernels have roots in the case that M = N = 1.
Suppose that Kx is stationary and Schwartz—that is, rapidly decreasing. Then, by
Bochner’s Theorem, its Fourier transform FKx exists and is real. Therefore F1/2

Kx
is well

defined. As Kx is Schwartz, FKx is also Schwartz and thereby absolutely integrable.
Thus, by

⁄

RK
|FKx(›)| d› =

⁄

RK
|F1/2

Kx
(›)|2 d› < Œ,
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F1/2

Kx
is square integrable and so F≠1{F1/2

Kx
} exists. Let r = F≠1{F1/2

Kx
}. Then

[R(r) ú r](· ) =
⁄

R3K
F1/2

Kx
(›

1

) exp[2fii›T
1

(· Õ ≠ · )]F1/2

Kx
(›

2

) exp(2fii›T
2

· Õ) d›
1

d›
2

d· Õ

=
⁄

R3K
F1/2

Kx
(›

1

)F1/2

Kx
(›

2

) exp(2fii›T
2

· ) exp[2fii(›
1

+ ›
2

)T · Õ]
¸ ˚˙ ˝

”(≠›1≠›2)

d›
1

d›
2

d· Õ

=
⁄

RK
FKx(›) exp(2fii›T · ) d›

= Kx(· )

and so Kx has a root.

In summary, white noise excitation in Model 4 yields great expressivity because the
spectrum of white noise has infinite support. Concretely, an instance of Model 4 can be
expressed as an instance of Model 5 if x’s kernel has a root. In the case that M = N = 1,
a kernel has a root if it is stationary and rapidly decreasing.

3.4 The Approximate Kernel Model

Model 5 is troublesome from a computational perspective. Namely, Kf | H = R(H)úHT

is a convolution between two matrix-valued stochastic processes and it is not clear how
such a quantity can be computed. We therefore develop a model that is approximate to
Model 5, but whose computation is tractable.

Recall that H is smooth and that its support is e�ectively limited due to use of the de-
caying exponentiated-quadratic kernel. In that case, as demonstrated by Minka [2000],
we can numerically approximate the integral R(H) ú HT by its expectation conditioned
on some finite number of observations H(T ) where T œ RT ◊K—we call these observa-
tions inducing points. Symbolically,

Kf | H = R(H) ú HT ¥ E[R(H) ú HT | H(T )] = K̃f | H(T )

.

Note that K̃f | H(T )

numerically approximates Kf | H and at the same time maintains
knowledge of its own uncertainty; in this sense K̃f | H(T )

is called a Bayesian numerical
approximation of Kf | H [Tobar et al., 2015b]. Appendix H shows that the analytical
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form of K̃f | H(T )

is given by

K̃fi,fj | H(T )

=
Mÿ

k=1

Ó
1(i ≠ j)I(1,Hi,k)

¸ ˚˙ ˝
prior

≠1(i ≠ j) tr(K≠1

Hi,k(T )

I(2,Hi,k,Hi,k))
¸ ˚˙ ˝

conditioning on inducing points

+ HT
i,k(T )K≠1

Hi,k(T )

I(2,Hi,k,Hj,k)K≠1

Hj,k(T )

Hj,k(T )
¸ ˚˙ ˝

learned through inducing points

Ô
.

We clearly distinguish the prior covariance structure, the covariance structure due to
conditioning on the inducing points and the covariance structure learned through the
inducing points.

We have derived the following approximation of Model 5:

Model 6 (Approximate Kernel Model (AKM)). Draw

H(T ) ≥ N [0, KH(T , T )],
Á ≥ GP [0, �2”(t

1

≠ t
2

)]

independently for some diagonal kernel KH and some diagonal matrix �. Afterwards
let K̃f | H(T )

be such that

Kfi,fj | H(T )

=
Mÿ

k=1

Ó
1(i ≠ j)[I(1,Hi,k) ≠ tr(K≠1

Hi,k(T )

I(2,Hi,k,Hi,k))]

+ HT
i,k(T )K≠1

Hi,k(T )

I(2,Hi,k,Hj,k)K≠1

Hj,k(T )

Hj,k(T )
Ô
.

Finally draw

f | H(T ) ≥ GP(0, K̃f | H(T )

).

Then observations are generated by y = f + Á.

Observe that Model 6 is ordinary Gaussian process regression with a specific kernel and a
prior over the hyperparameters. Thus Model 6 can take advantage of existing literature
on ordinary Gaussian process regression.

Furthermore, the fact that Model 6 approximates Model 5 implies that the prior over the
hyperparameters specified by Model 6 is one that is sensible to use. This is an advantage
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of Model 6 over most other multi-output kernels; priors over hyperparameters are usually
chosen without principled motivation.

3.4.1 Interpretation of the Kernel Approximation

We investigate the kernel approximation in the case that M = N = 1. Denote f = f
1

,
h = H

1,1 and h(T ) = h. Let K
˜h | A be the posterior kernel of the sparse approximation

of h according to [Titsias, 2009] where h are the approximation’s inducing points and
A is their posterior covariance matrix. We compare K̃f | h to K

˜h | A:

K̃f | h(t
1

, t
2

) = I(1,h)(t
1

, t
2

) ≠ tr[K≠1

h I(2,h,h)(t
1

, t
2

)]
+ tr[K≠1

h I(2,h,h)(t
1

, t
2

)K≠1

h hhT ],
K

˜h | A(t
1

, t
2

) = Kh(t
1

, t
2

) ≠ tr[K≠1

h Kh(T , t
2

)Kh(t
1

, T )]
+ tr[K≠1

h Kh(T , t
2

)Kh(t
1

, T )K≠1

h A].

Thus, by Equations (H.1) and (H.2), we establish that

K̃f | h(t
1

, t
2

) =
⁄

RK
K

˜h | A=hhT (t
1

≠ · , t
2

≠ · ) d· .

This means that the approximate integration performed by K̃f | h corresponds to first
sparsely approximating h and then exactly integrating its posterior kernel.

3.4.2 The Case of the Diagonal Multi-Output Decaying
Exponentiated-Quadratic Kernel

Let KH be a diagonal multi-output decaying exponentiated-quadratic kernel. It then
turns out that I(1,Hi,k), I(2,Hi,k,Hj,k) and their Fourier transforms admit simple forms. We
now compute these simple forms, which in Section 3.5 will reveal Model 6’s connection
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to existing work. To begin with, Appendices I.4.3 and I.4.5 show that

I(1,Hi,k)(t
1

, t
2

) = ‡2

h

fiK/2

(2–)K/2

¸ ˚˙ ˝
C(1)

exp
Ë
≠1

2 (– + 2“)
¸ ˚˙ ˝

l≠(1)

Ît
1

≠ t
2

Î2

È
,

= C(1) exp
1
≠1

2 l≠(1)Ît
1

≠ t
2

Î2

2

= I(1)(t
1

≠ t
2

),

I(2,Hi,k,Hj,k)

m,n (t
1

, t
2

) = ‡4

h

fiK/2

(2– + 2“)K/2

exp
C

≠1
2

(– + “)2 ≠ “2

– + “
(ÎT m,: ≠ T n,:Î2

≠ 2ÎT m,: + T n,:Î2)
D

¸ ˚˙ ˝
C

(2)
m,n

exp
C

≠1
2 (– + “)

¸ ˚˙ ˝
l≠(2)

....(t
1

≠ t
2

) ≠ “

– + “
(T m,: ≠ T n,:)

¸ ˚˙ ˝
µ

(2)
m,n

....
2

D

= C(2)

m,n exp
Ë
≠1

2 l≠(2)Î(t
1

≠ t
2

) ≠ µ(2)

m,nÎ2

È

= I(2)

m,n(t
1

≠ t
2

).

Therefore

Ft1≠t2{I(1)}(f) = C(1)

Ô
2fil(1) exp(≠2fi2l(1)ÎfÎ2), (3.4)

Ft1≠t2{I(2)

m,n}(f) = C(2)

m,n

Ô
2fil(2) exp(≠2fi2l(2)ÎfÎ2 + 2fiiµT

m,nf). (3.5)

Now, consider the case that i = j. First, all KHi,j
are equal and so all KHi,j(T )

= K;
thus the kernel approximation simplifies to

Kfi,fi | H(T )

= M [I(1) ≠ tr(K≠1I(2))] +
Mÿ

k=1

HT
i,k(T )K≠1I(2)K≠1Hi,k(T ), (3.6)

which shows that we can equivalently let I(2) Ω (I(2) + I(2)T )/2. Second, note that
C(2)

m,n = C(2)

n,m and ≠µ(2)

n,m = µ(2)

m,n; hence F{I(2)

m,n} = Fú{I(2)

n,m}. Therefore, if i = j, then
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equivalently

Ft1≠t2{I(2)

m,n}(f) = 1
2[Ft1≠t2{I(2)

m,n}(f) + Ft1≠t2{I(2)

n,m}(f)]

= 1
2[Ft1≠t2{I(2)

m,n}(f) + Fú
t1≠t2{I(2)

m,n}(f)]

= C(2)

m,n

Ô
2fil(2) exp(≠2fi2l(2)ÎfÎ2) cos(2fiiµT

m,nf). (3.7)

3.5 Related Work

Model 5 and its approximation Model 6 are closely related to recent work.

First, Model 5 is a generalisation of the Gaussian Process Convolution Model (GPCM)
[Tobar et al., 2015b]; the case N = M = K = 1 recovers their model exactly.

Second, Equations (3.4), (3.6) and (3.7) show that the power spectral densities of the
kernel in Model 6 take the form of spectral mixture kernels (SMKs) [Wilson and Adams,
2013]. In other words, the diagonal entries of the kernel in Model 6 form Fourier pairs
with spectral mixture kernels. Therefore the kernel in Model 6 is a dual multi-output
generalisation of the spectral mixture kernel. Furthermore, recall that Model 6 approxi-
mates Model 5 more accurately as the number of inducing points increases. This reveals
the kernel in Model 5 as a multi-output generalisation of the spectral mixture kernel
with an infinite number of components.

Third, Equations (3.4) to (3.6) show that the kernel in Model 6 is a dual formulation of
the cross-spectral mixture kernel (CSMK) [Ulrich et al., 2015]. Similar to the spectral
mixture kernel, this reveals the kernel in Model 5 as a cross-spectral mixture kernel
with an infinite number of components. Furthermore, the connection between Model 6
and the cross-spectral mixture kernel suggests that results in [Ulrich et al., 2015] might
carry over to Model 6; indeed, inspired by [Ulrich et al., 2015], Appendix E presents an
approximation of stationary multi-output kernel matrices that can be used to e�ciently
perform inference in Model 6 if H(T ) are instead treated as hyperparameters.

Figure 3.6 summarises how Model 5 and Model 6 relate to current literature on flexible
kernel models.



26 The Generalised Gaussian Process Convolution Model

AKM
(Model 6, M = N = 1)

SMK
[Wilson and Adams, 2013]

GPCM
[Tobar et al., 2015b]

AKM
(Model 6)

CSMK
[Ulrich et al., 2015]

NKM
(Model 5)

M
od

el
lim

it

Single-Output Multi-Output

Figure 3.6: Relationship of Model 5 and Model 6 to current literature on flexible kernel
models. Single-headed arrows indicate generalisation and double-headed arrows indicate
duality. “Model limit” refers to taking the model’s number of components to infinity.

3.6 Inference in the Nonparametric Kernel
Model

Performing inference in Model 5 directly is troublesome, because H parametrises the
kernel of Model 5’s likelihood p(y | H) which thus is intractable. Instead, equivalently
consider white noise excitation in Model 4. Model 4’s likelihood p(y | H , x) is Gaussian
with mean function f = H úx. As we show shortly, this likelihood is manageable.

We perform inference in Model 5 by inferring H and x in Model 4 where x is white noise.
This immediately raises a concern: f = H úx requires knowledge of the whole processes
H and x, but x cannot wholly be learned because x(t

1

) and x(t
2

) are independent for
t

1

”= t
2

; that is, we would have to learn x(t) for every t separately, but a computer can
only store x(t) for finitely many t.

To resolve this issue, consider another instance of Model 4 whose excitation is denoted
by x̃. Let x̃ have a diagonal multi-output exponentiated-quadratic kernel. In that case
x̃ is smooth and can therefore be learned by conditioning on x̃(t) for finitely many t

[Titsias, 2009]. Thus we should be able to perform inference in this new instance. Now,
Appendix G shows that x̃’s kernel has a root R. Therefore, by Section 3.3.3, Model 5
can be expressed in terms of this new instance where x̃ = R ú x. Crucially, the fact
that we can learn this new instance then implies that we can learn Model 5 by learning
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R ú x instead of x.

Learning R ú x instead of x has a number of equivalent interpretations. First, R ú x

represents a smoothed version of x where each point is a linear combination of the points
of x. Thus learning one point on R ú x induces knowledge about the whole process x.
Second, R acts as a filter, which means that R ú x represents a band-limited version of
x. Hence we restrict ourselves to only learning frequencies in the band of R; this is an
easier problem than learning all frequencies.

The latter interpretation raises another concern; if H admits frequencies not in the band
of R, then those frequencies cannot be learned. Thus R should be chosen carefully; in
the case that M = N = K = 1, Tobar et al. [2015a] consider how R can be designed to
promote training performance. We decide to simply use

R(t) = exp(≠ÊÎtÎ2)I.

This choice should enable us to learn x; namely, Appendix G shows that this R is
a root of a diagonal multi-output exponentiated-quadratic kernel, and we previously
determined that a process with a diagonal multi-output exponentiated-quadratic kernel
can be learned.

Concretely, we perform approximate inference in Model 5 via a structured mean field
approximation in which we sparsely approximate H and R ú x through inducing points
[Titsias, 2009]. Let Y denote Y observations. Consider the family Q of distributions of
the form

q(H , x, uH1,1 , . . . , uHN,M¸ ˚˙ ˝
UH

, ux̃1 , . . . , ux̃M¸ ˚˙ ˝
U x̃

) = p(H , x | UH , U
˜x)

N,MŸ

i=1,j=1

q(uHi,j
)

MŸ

j=1

q(ux̃j
)

where uHi,j
= Hi,j(T Hi,j

) and ux̃j
= x̃j(T x̃j

) are inducing points for respectively the
processes Hi,j and x̃j = exp(≠ÊÎtÎ2) ú xj. Let

q(uHi,j
) = N (uHi,j

; µHi,j
, �Hi,j

),
q(ux̃j

) = N (ux̃j
; µx̃j

, �x̃j
).
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We then perform approximate inference via

p(H , x, UH , U
˜x | Y )

= argmin
q

DKL[q(H , x, UH , U
˜x) Î p(H , x, UH , U

˜x | Y )]

¥ argmin
qœQ

DKL[q(H , x, UH , U
˜x) Î p(H , x, UH , U

˜x | Y )]

= argmax
qœQ

{log p(Y ) ≠ DKL[q(H , x, UH , U
˜x) Î p(H , x, UH , U

˜x | Y )]}

= argmax
qœQ

F(q).

Since DKL( · Î · ) Ø 0, F(q)—also called the variational free energy, or free energy in
short—is a lower bound on the marginal likelihood; hence performing inference is equiv-
alent to maximising this lower bound. Now, recall that H ’s diagonal multi-output
decaying exponentiated-quadratic kernel implies independence between di�erent Hi,j’s;
as a result,

p(H , x | UH , U
˜x) = p(H | UH)p(x | U

˜x) =
N,MŸ

i=1,j=1

p(Hi,j | uHi,j
)

MŸ

j=1

p(xj | ux̃j
).

Then

F(q) = Eq[log p(Y )] + Eq

S

U log p(H , x, UH , U
˜x | Y )

q(H , x, UH , U
˜x)

T

V

= Eq

S

U log p(H , x, UH , U
˜x, Y )

q(H , x, UH , U
˜x)

T

V

= Eq

S

U log
p(Y | H , x)p(H | UH)p(x | U

˜x) rN,M
i=1,j=1

p(uHi,j
) rM

j=1

p(ux̃j
)

p(H | UH)p(x | U
˜x) rN,M

i=1,j=1

q(uHi,j
) rM

j=1

q(ux̃j
)

T

V

= Eq[log p(Y | H , x)] ≠
N,Mÿ

i=1,j=1

DKL[q(uHi,j
) Î p(uHi,j

)] ≠
Mÿ

j=1

DKL[q(ux̃j
) Î p(ux̃j

)]

= ≠1
2 log[(2fi)N |�|2] ≠ 1

2

Yÿ

i=1

Eq{Î�≠1[Y i,: ≠ y(T i,:)]Î2}
¸ ˚˙ ˝

data reconstruction cost

≠
N,Mÿ

i=1,j=1

DKL[q(uHi,j
) Î p(uHi,j

)]
¸ ˚˙ ˝

≠
Mÿ

j=1

DKL[q(ux̃j
) Î p(ux̃j

)]
¸ ˚˙ ˝

divergence from model

.
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We observe that the variational free energy can interpreted as negative a cost of recon-
structing the data regularised by a divergence from the model prior; thus, maximisation
of the free energy seeks an explanation of the data that is compatible with the model
prior.

Appendix I derives an analytical expression for the variational free energy. Appendix D
discusses some useful techniques concerning implementation of the free energy.

Furthermore, we consider the asymptotic time complexity of computing the free energy.
Denote the number of inducing points for the processes Hi,j and x̃j by THi,j

and Tx̃j

respectively. Let TH = maxi,j THi,j
and Tx̃ = maxj Tx̃j

. Then Appendix I.5 shows that
the time complexity of computing the free energy is given by

O[NMT 3

H + MT 3

x̃ + Y NM(T 2

HTx̃ + KT 2

H + KTHTx̃ + KT 2

x̃ + THT 2

x̃ ) + Y NM2].

Recall that H has e�ectively limited support due to use of the decaying exponentiated-
quadratic kernel; thus likely Tx̃ ∫ TH . Also, likely Tx̃ ∫ M . In that case the asymp-
totic time complexity of computing the free energy simplies to O[MT 3

x̃ + Y NM(K +
TH)T 2

x̃ ].

Finally, we discuss initialisation of the parameters of the variational free energy—that
is, initialisation of µHi,j

, �Hi,j
, µx̃j

and �x̃j
. Optimisation of the free energy is usu-

ally performed via gradient-based methods. This means that the optimiser is likely to
become trapped in a local minimum if the parameters of the free energy are initialised
far from their optimal values. Hence proper initialisation of the parameters is of crucial
importance.

We propose the following initialisation: To begin with, fit the predictive mean to the
data using weighted least squares [Tobar and Turner, 2016]. Appendix I.2 shows that
this is equivalent to performing inference in the following model:

Model 7 (Basis Function Model). Let f be such that

fi(t) =
Mÿ

j=1

µT
Hi,j

K≠1

uHi,j
I(L,Hi,j ,xj)(t)K≠1

ux̃j
µx̃j

for some kernel Kx, some kernel KH and some vectors µHi,j
and µx̃j

. Afterwards
draw Á ≥ GP(0, �2) for some diagonal matrix �. Then observations are generated by
y = f + Á.
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Learning µHi,j
and µx̃j

through Model 7 yields arguably sensible initial values. Finally,
we initialise �Hi,j

and �x̃j
to fractions of their priors KuHi,j

and Kux̃j
.

Observe that Model 7 is a multi-output basis function model that is structured in its
parametrisation. Model 7 is a generalisation of the basis function model presented by
Tobar and Turner [2016]; the case N = M = K = 1 recovers their model exactly.

3.7 Conclusion

The Generalised Gaussian Process Convolution Model enabled us to formulate Model 5.
Model 5 addresses the kernel design problem in multi-output Gaussian processes on mul-
tidimensional input spaces by parameterising the kernel with another Gaussian process.
By modelling the kernel nonparametrically we avoid choosing a kernel of parametric
form; instead, we infer its form from the data.

Finally, Model 5 is intimately connected to other models (Section 3.5). Most notably,
Model 5 enabled us to formulate Model 6, which forms a dual formulation of the cross-
spectral mixture kernel and reveals Model 5 as a cross-spectral mixture kernel with an
infinite number of components.

3.8 Discussion

If Tx̃ ∫ TH and Tx̃ ∫ M , then Section 3.6 shows that the variational free energy of
Model 5 can be computed in O[MT 3

x̃ + Y NM(K + TH)T 2

x̃ ] time. This complexity scales
linearly in Y . However, in many settings—for example, time series—the size of the data
is proportional to the size of the space the data occupies. Now, the inducing points
for x must cover the space the data occupies. Therefore, in such settings, Tx̃ e�ectively
scales with Y , which means that cost of computing the free energy e�ectively scales with
Y 3.
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4.1 Introduction

Many inference problems involve dealing with multiple signals. These problems are best
solved not only by learning signals individually, but also by simultaneously exploiting
dependencies between signals. The signals can be interpreted as the output of multiple
tasks; a problem involving multiple signals is therefore commonly referred to as a multi-
task problem. We will use the terms “multi-output” and “multi-task” interchangeably.

A prominent example of a multi-task problem is the prediction of concentration levels
of pollutants in geostatistics [Álvarez and Lawrence, 2011; Álvarez et al., 2009; Wilson
et al., 2012]. Pollutants are often expensive to sample, which hinders accurately pre-
dicting their concentration levels. Fortunately, pollutants often strongly correlate with
other substances, which can be cheap to sample. The multi-task predictor aims to im-
prove predicting concentration levels of scarcely sampled pollutants by exploiting their
correlation with densely sampled cheap substances.

Numerous multi-task models have been developed, many of which are Gaussian process
models. Now, the Generalised Gaussian Process Convolution Model (Model 4) is also
a multi-output model. This chapter provides an overview of multi-output models from
the geostatistics and machine learning literature and shows how Model 4 fits in.

4.2 Mixing Models

A model for a multi-output signal f can be constructed by assuming that at any t the
output f(t) is explained by the value x(t) of some latent process x with independent
components. If the relationship between f(t) and x(t) is linear, then we arrive at the
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Instantaneous Mixing Model (IMM):

Model 8 (Instantaneous Mixing Model (IMM)). Let H be a matrix. Draw

x ≥ GP(0, Kx),
Á ≥ GP(0, �2)

independently for some diagonal kernel Kx and some diagonal matrix �. Then obser-
vations are generated by y = f + Á = Hx + Á.

Observe that Model 8 corresponds to ordinary Gaussian process regression with a ker-
nel of the form Kf = HKxHT for some matrix H and some diagonal kernel Kx.
Alternatively, Model 8 can be interpreted as a factor analysis model at all t.

Model 8 assumes that f(t) depends only on x(t), meaning that f(t) is independent of
x(tÕ) for tÕ ”= t. This assumption limits the expressivity of f significantly; for example,
f cannot be a smoothed version of x. We therefore relax Model 8 by instead letting
f(t) depend on x(t) for all t. If their relationship is again linear, then we arrive at the
Convolutional Mixing Model (CMM):

Model 9 (Convolutional Mixing Model (CMM)). Let H be a matrix-valued function.
Draw

x ≥ GP(0, Kx),
Á ≥ GP(0, �2)

independently for some diagonal kernel Kx and some diagonal matrix �. Then obser-
vations are generated by y = f + Á = H ú x + Á.

Observe that Model 9 is a generalisation of Model 8, since letting H = ”H Õ for some
constant matrix H Õ yields that

f(t) = (”H Õ ú x)(t) =
⁄

RK
”(t ≠ · )H Õx(· ) d· = H Õx(t).
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Model Form of H Form of Kx Mixing type

ICM [Goovaerts, 1997] H (qQ
q=1

k(q)

x )I Instantaneous
LCM [Goovaerts, 1997]

Ë
H

1

· · · HQ

È
diag(k(1)

x I, . . . , k(Q)

x I) Instantaneous
SLFM [Teh and Seeger, 2005] H Kx Instantaneous
MTGPM [Bonilla et al., 2008] H kxI Instantaneous
LFM [Álvarez et al., 2009] Green’s function Kx Convolutional
CMOGPM [Álvarez and Lawrence, 2011]

Ë
H

1

· · · HQ

È
diag(k(1)

x I, . . . , k(Q)

x I) Convolutional
CGPM [Nguyen and Bonilla, 2014]

Ë
H I

È
Kx Instantaneous

Table 4.1: Identification of multi-output models from the geostatistics and machine
learning literature as specialisations of Models 8 and 9

4.3 The Mixing Model Hierarchy

Many multi-output Gaussian process models from the geostatistics and machine learn-
ing literature can be identified as specialisations of Models 8 and 9; Table 4.1 shows the
identification of the intrinsic coregionalisation model (ICM) [Goovaerts, 1997], the lin-
ear coregionalisation model (LCM) [Goovaerts, 1997], the semiparametric latent factor
model (SLFM) [Teh and Seeger, 2005], the multi-task Gaussian process model (MT-
GPM) [Bonilla et al., 2008], the latent force model (LFM) [Álvarez et al., 2009], the
convolved multi-output Gaussian process model (CMOGPM) [Álvarez and Lawrence,
2011] and the collaborative Gaussian processes model (CGPM) [Nguyen and Bonilla,
2014].

Model 9 is also closely related to Model 4. Specifically, Model 4 is a generalisation of
Model 9 where H is modelled stochastically. This shows that Models 4, 8 and 9 form
a hierarchy—the mixing model hierarchy—in which Model 4 generalises Model 9 and
Model 9 generalises Model 8.

Figure 4.1 organises the main models presented in this thesis, the cross-spectral mixture
kernel (CSMK) [Ulrich et al., 2015], and the models in Table 4.1 according to the mixing
model hierarchy. This yields an overview of many multi-output Gaussian process models
from the geostatistics and machine learning literature that emphasises their distinctive
modelling assumptions. An immediate result is that the cross-spectral mixture kernel
can now be connected to other multi-output models.

An important model that does not fit in the mixing model hierarchy is the Gaussian
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Mixing Model Hierarchy Organisation of Literature

Instantaneous Mixing Model (Model 8)
f = Hx

x ≥ GP(0, Kx)

Convolutional Mixing Model (Model 9)
f = H ú x

x ≥ GP(0, Kx)

GGPCM (Model 4)
f = H ú x

x ≥ GP(0, Kx), H ≥ GP(0, KH)

Convolutional mixing

Stochastic H

LFM [Álvarez et al., 2009],
CMOGPM

[Álvarez and Lawrence, 2011]

NKM (Model 5)

CSMK
[Ulrich et al., 2015]

AKM (Model 6)

Duals M
od

el
lim

it

LCM [Goovaerts, 1997],
SLFM [Teh and Seeger, 2005],

CGPM [Nguyen and Bonilla, 2014]

ICM [Goovaerts, 1997],
MTGPM [Bonilla et al., 2008]

f = Hx

x ≥ GP(0, kxI)

Figure 4.1: Organisation of multi-output models from the geostatistics and machine
learning literature according to the mixing model hierarchy. Single-header arrows indi-
cate generalisation and double-headed arrows indicate equivalence. “Model limit” refers
to taking the model’s number of components to infinity.
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process regression network (GPRN) [Wilson et al., 2012].

4.4 Conclusion

We have presented the mixing model model hierarchy, which organises many multi-
output Gaussian process from the geostatistics and machine learning literature according
to their distinctive modelling assumptions.

Model 4 fits in as a generalisation of Model 9 and Model 8. This shows that many
multi-output Gaussian process models from the current literature can be derived from
Model 4, with the exception being the Gaussian process regression network.





5 | The Deep Kernel Model

5.1 Introduction

Chapter 3 developed the idea that the kernel design problem can be addressed by mod-
elling the kernel nonparametrically. In retrospect, this approach actually replaces the
kernel design problem with another one: we now have to design the kernel of the ker-
nel. Fortunately, we know already how to solve this kernel design problem: we can
parametrise the kernel of the kernel with another Gaussian process. But then we have
to design the kernel of the kernel of the kernel...

This chapter investigates a model that not only models the kernel nonparametrically, but
also the kernel of the kernel, the kernel of the kernel of the kernel, and further “deeper”
kernels. We confine the presentation to one-dimensional signals f on one-dimensional
input spaces.

5.2 The Deep Kernel Model

Consider the Nonparametric Kernel Model (Model 5). In the case of one-dimensional
signals on one-dimensional input spaces Model 5 recovers the Gaussian Process Convo-
lution Model (GPCM) [Tobar et al., 2015b] (Section 3.5):

Model 10 (Gaussian Process Convolution Model [Tobar et al., 2015b]). Draw

h ≥ GP(0, Kh),
x ≥ GP [0, ”(t

1

≠ t
2

)],
Á ≥ GP [0, ‡2”(t

1

≠ t
2

)]

independently for some kernel Kh and some constant ‡. Then observations are generated
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by y = f + Á = h ú x + Á.

Recall that Model 10 corresponds to ordinary Gaussian process regression in which the
kernel is modelled nonparametrically (Section 3.3). We immediately recognise that the
kernel design problem is replaced with another one: we now have to choose Kh—the ker-
nel of the kernel. We investigate whether Kh can be modelled nonparametrically.

Modelling Kh nonparametrically immediately presents a problem. In Section 3.3.1 we
ensured that f has finite variance by letting Kh be a decaying exponentiated-quadratic
kernel. However, if we model Kh nonparametrically, then it is not clear how we must
restrict the prior on Kh to ensure that f has finite variance. We investigate by examining
the case that Kh is a non-decaying exponentiated-quadratic kernel. In that case f has
infinite variance (Section 3.3.1). Now, let w(t) = exp(≠–t2), t œ R and consider the
process wh. It holds that

Kwh(t
1

, t
2

) = E[w(t
1

)h(t
1

)w(t
2

)h(t
2

)]
= w(t

1

)w(t
2

)E[h(t
1

)h(t
2

)]
= exp(≠–t2

1

) exp(≠–t2

2

)‡2

h exp[≠“(t
1

≠ t
2

)2]
= ‡2

h exp[≠–t2

1

≠ –t2

2

≠ “(t
1

≠ t
2

)2],

which is a decaying exponentiated-quadratic kernel. In other words, despite h having a
kernel for which f has infinite variance, multiplication by w yields a kernel for which f has
finite variance. This suggests the following, more robust formulation of the GPCM:

Model 11 (Gaussian Process Convolution Model (Explicit Decay)). Draw

h ≥ GP(0, Kh),
x ≥ GP [0, ”(t

1

≠ t
2

)],
Á ≥ GP [0, ‡2”(t

1

≠ t
2

)]

independently for some kernel Kh and some constant ‡. Let w(t) = exp(≠–t2), w œ R.
Then observations are generated by y = f + Á = wh ú x + Á.
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It now holds that

E[f 2(t)] =
⁄

R2
w(t ≠ ·

1

)w(t ≠ ·
2

)E[h(t ≠ ·
1

)h(t ≠ ·
2

)]E[x(·
1

)x(·
2

)]
¸ ˚˙ ˝

”(·1≠·2)

d·
1

d·
2

=
⁄

R
w2(·)Kh(·, ·) d·,

which clearly is finite if Kh is bounded. In other words, if h has finite variance, then f

has finite variance. Therefore, we can safely model Kh nonparametrically if we ensure
that h has finite variance.

To model Kh nonparametrically, consider the following extension of Model 11:

Model 12 (Deep Gaussian Process Convolution Model of Order N). Draw

h
1

≥ GP(0, Kh),
x

1

≥ GP [0, ”(t
1

≠ t
2

)],
...

xN ≥ GP [0, ”(t
1

≠ t
2

)],
Á ≥ GP [0, ‡2”(t

1

≠ t
2

)]

independently for some kernel Kh and some constant ‡. Let w(t) = exp(≠–t2), t œ R.
Then observations are generated by y where

h
1

= h,

h
2

= wh
1

ú x
1

,

...
hN+1

= whN ú xN ,

f = hN+1

,

y = f + Á.

Observe that each hi+1

| hi is a linear combination of Gaussian processes. Hence hi+1

| hi

is another Gaussian process, which thus can be identified by its mean function and



40 The Deep Kernel Model

kernel:

E[hi+1

(t) | hi] =
⁄

R
w(t ≠ ·)hi(t ≠ ·)E[xi(·)] d· = 0,

Khi+1 | hi
(t

1

, t
2

) = E[hi+1

(t
1

)hi+1

(t
2

) | hi]

=
⁄

R2
w(t

1

≠ ·
1

)hi(t1

≠ ·
1

)w(t
2

≠ ·
2

)hi(t2

≠ ·
2

)E[xi(·1

)xi(·2

)]
¸ ˚˙ ˝

”(·1≠·2)

d·
1

d·
2

=
⁄

R
w[· ≠ (t

2

≠ t
1

)]hi[· ≠ (t
2

≠ t
1

)]w(·)hi(·) d·

= [R(whi) ú whi](t2

≠ t
1

)
= Khi+1(t

1

≠ t
2

).

We have established the following equivalent model:

Model 13 (Deep Kernel Model of Order N). Draw

h ≥ GP(0, Kh),
Á ≥ GP [0, ‡2”(t

1

≠ t
2

)]

independently for some kernel Kh and some constant ‡. Let h = h
1

and w(t) =
exp(≠–t2), t œ R. Afterwards draw

hi+1

| hi ≥ GP{0, [R(whi) ú whi](t2

≠ t
1

)}

in the order i = 1, . . . , N . Then observations are generated by y = f + Á = hN+1

+ Á.

Model 13 shows that the kernel of f = hN+1

is now parametrised by hN , whose kernel is
parametrised by hN≠1

, whose kernel is parametrised by hN≠2

, et cetera. That is, we have
successfully formulated a nonparametric model of the kernel, the kernel of the kernel,
the kernel of the kernel of the kernel, and further “deeper” kernels. Furthermore, it holds
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that

E[f 2(t)] = E[(w{· · · [w(wh
1

ú x
1

) ú x
2

] · · · } ú xN)2(t)]

=
⁄ 5 NŸ

i=1

w
3

t ≠
Nÿ

j=i

·
(1)

j

4
w

3
t ≠

Nÿ

j=i

·
(2)

j

46

E
5
h

1

3
t ≠

Nÿ
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4
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3
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Nÿ
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46 NŸ
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”(·
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i ≠·
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i )
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3
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Nÿ

i=1

·i, t ≠
Nÿ

i=1

·i

4 NŸ

i=1

d·i

=
⁄

R
w2(·

1

)
⁄

R
w2(·

1

+ ·
2

) · · ·
⁄

R
w2

3 Nÿ

i=1

·i

4
Kh1

3 Nÿ

i=1

·i,
Nÿ

i=1

·i

4
d·N · · · d·

2

d·
1

.

Observe that the most inner integral is finite if Kh1 is bounded, in which case all integrals
are finite. In other words, if h

1

has finite variance, then f has finite variance. Therefore
Models 12 and 13 are well defined.

5.2.1 Network Interpretation

The left side of Figure 5.1 depicts the graphical model of Model 13. We recognise the
“deep” kernel structure by the chain of latent hi’s.

The right side of Figure 5.1 depicts the graphical model of Model 13 if the latent processes
hi are expanded into their function values; that is, any hi is instead represented by hi(t)
for all t—uncountably many t. Now, since the kernel of hi+1

is a convolution of hi, it
holds that every hi+1

(t) depends on hi(tÕ) for all tÕ. Hence the resulting graphical model
is a fully connected network with layers of infinite size. This is very reminiscent of neural
networks. The key di�erence between a neural network and Model 13 is that in a neural
network layer i forms the input of layer i + 1, whereas in Model 13 layer i parametrises
layer i + 1.

We can truncate these layers of infinite size to finite size by approximating the kernels
in Model 13 by their expectations conditioned on some finite number of observations.
We then obtain the Approximate Deep Kernel Model:
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Expand into
function values
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...
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( · )· · · · · ·

Kh1

Figure 5.1: Graphical model of Model 13. Shows the resulting network structure if the
latent hi are expanded into their function values.
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Model 14 (Approximate Deep Kernel Model of Order N). Draw

h ≥ GP(0, Kh),
Á ≥ GP [0, ‡2”(t

1

≠ t
2

)]

independently for some kernel Kh and some constant ‡. Let h = h
1

and w(t) =
exp(≠–t2), w œ R. Afterwards draw

Khi+1 | hi
(t

1

, t
2

) = E{[R(whi) ú whi](t2

≠ t
1

) | hi(t)},

hi+1

| hi ≥ GP(0, Khi+1 | hi
)

in the order i = 1, . . . , N . Then observations are generated by y = f + Á = hN+1

+ Á.

Note that Model 14 approximates Model 13 in same way that Model 6 approximates
Model 5.

5.3 Illustrative Samples

In the following we let h
1

have an exponentiated-quadratic kernel.

Figure 5.2 illustrates the generative process of Model 13 in the case that N = 10. Ob-
serve that the produced hi | hi≠1

’s and Khi | hi≠1 ’s change in complexity as the generation
progresses; that is, if by chance hi | hi≠1

is slightly more complicated, then Khi+1 | hi
and

thereby hi+1

| hi tend to be more complicated as well. Thus, in each generation step
Model 13 can either simplify or complicate the kernel, which means that Kf | h10 can be
of a vastly di�erent form than the kernel produced by h

1

; Model 13 therefore seems to
be less restricted by h

1

’s kernel than Model 10 is by h’s kernel.

Figure 5.3 shows observations from Model 13 in the cases that N = 1 and N = 20—a
shallow and deep model respectively. Consider the shallow model. Observe that its
observations exhibit barely any variation in smoothness and degree of periodicity; that
is, their kernels are all of a similar form and their power spectral densities all show
a similar low-pass structure. This is due h

1

’s exponentiated-quadratic kernel, which
imposes smoothness on h

1

and thereby directly on the observation’s kernel. On the
other hand, consider the deep model. Observe that its observations are much richer:
they can be periodic, aperiodic, smoothly varying, or anywhere inbetween. This is
reflected in the generated kernels, which now show great diversity. Furthermore, instead
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of the low-pass structure observed for the shallow model, the power spectral densities
now show low-pass structures, high-pass structures, band-pass structures, and structures
inbetween.

5.4 Conclusion

We have presented Model 13, which not only models the kernel nonparametrically,
but also the kernel of the kernel, the kernel of the kernel of the kernel, and further
“deeper” kernels. Experiments showed that Model 13 exhibits greatly increased expres-
sivity compared to its shallow counterpart Model 10, or equivalently Model 5 where
M = N = K = 1.

5.5 Discussion

We can perform approximate inference in Model 13 along the lines of Section 3.6. Al-
though the free energy allows to be solved for analytically, its resulting complexity is
exponential in the number of layers. Therefore, to perform inference in Model 13, addi-
tional approximations are probably necessary.
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h1 9 GP(0;Kh1) wh1 Kh2 jh1
= R(wh1) $wh1

h2 jh1 9 GP(0;Kh2 jh1
) wh2 jh1 Kh3 jh2

= R(wh2) $wh2

h3 jh2 9 GP(0;Kh3 jh2
) wh3 jh2 Kh4 jh3

= R(wh3) $wh3

h4 jh3 9 GP(0;Kh4 jh3
) wh4 jh3 Kh5 jh4

= R(wh4) $wh4

h5 jh4 9 GP(0;Kh5 jh4
) wh5 jh4 Kh6 jh5

= R(wh5) $wh5

h6 jh5 9 GP(0;Kh6 jh5
) wh6 jh5 Kh7 jh6

= R(wh6) $wh6

h7 jh6 9 GP(0;Kh7 jh6
) wh7 jh6 Kh8 jh7

= R(wh7) $wh7

h8 jh7 9 GP(0;Kh8 jh7
) wh8 jh7 Kh9 jh8

= R(wh8) $wh8

h9 jh8 9 GP(0;Kh9 jh8
) wh9 jh8 Kh10 jh9

= R(wh9) $wh9

h10 jh9 9 GP(0;Kh10 jh9
) wh10 jh9 Kf jh10

= R(wh10) $wh10

f jh10 9 GP(0;Kf jh10
)

Figure 5.2: Generative process of Model 13 in the case that N = 10
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Observation (N = 1) Kernel PSD Observation (N = 20) Kernel PSD

Figure 5.3: Observations from Model 13 in the cases that N = 1 and N = 20. Also
shows the kernels and power spectral densities (PSDs) of the observations.



A | Solution of the Linear
State-Space Model

A.1 Time-Variant Solution

Consider

sÕ(t) = A(t)s(t) + B(t)x(t), (A.1)
f(t) = C(t)s(t) + D(t)x(t).

Let �(t) be a fundamental matrix of the homogeneous system—that is, �Õ(t) = A(t)�(t)
where �(t)’s columns are independent. We proceed to find the general solution via vari-
ation of parameters. Assume a solution of the form s(t) = �(t)c(t). Then application
of the product rule yields that

sÕ(t) = �Õ(t)c(t) + �(t)cÕ(t) = A(t)�(t)c(t) + �(t)cÕ(t)

while substitution into Equation (A.1) yields that

sÕ(t) = A(t)�(t)c(t) + B(t)x(t).
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Hence �(t)cÕ(t) = B(t)x(t). Since �(t) is invertible we have that cÕ(t) = �≠1(t)B(t)x(t).
Therefore

f(t) = C(t)�(t)c(t) + D(t)x(t)

= C(t)�(t)
⁄ t

≠Œ
�≠1(·)x(·)B(t) d· + D(t)x(t)

=
⁄ t

≠Œ
C(t)�(t)�≠1(·)B(t)x(·) d· + D(t)x(t).

Now

D(t)x(t) =
⁄

(≠Œ,Œ)

”(t ≠ ·)D(t)x(·) d·

=
⁄

(≠Œ,t]
”(t ≠ ·)D(t)x(·) d· +

⁄

(t,≠Œ)

”(t ≠ ·)D(t)x(·) d·

=
⁄

(≠Œ,t]
”(t ≠ ·)D(t)x(·) d·

so that finally

f(t) =
⁄

R
[C(t)�(t)�≠1(·)B(t) + ”(t ≠ ·)D(t)]1(· Æ t)
¸ ˚˙ ˝

H(t,·)

x(·) d·

=
⁄

R
H(t, ·)x(·) d·.

A.2 Time-Invariant Solution

Let A(t), B(t), C(t) and D(t) be independent of t; that is, let A(t) = A, B(t) =
B, C(t) = C and D(t) = D. The fundamental matrix is then given by the matrix
exponential

�(t) =
Œÿ

i=0

tiAi

i! ,
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denoted as �(t) = exp tA. To show this, note that by the binomial theorem and a
change of variables

exp[(s + t)A] =
Œÿ

i=0

(s + t)iAi

i!

=
Œ,Œÿ

i=0,j=0

si≠jtjAi

(i ≠ j)!j!

=
Œ,Œÿ

i=0,j=0

sitjAi+j

i!j!

= (exp sA)(exp tA)

so that

�Õ(t) = lim
hæ0

exp[(s + h)A] ≠ exp sA

h

=
A

lim
hæ0

exp hA ≠ I

h

B

exp sA

= A�(t).

Now

I = exp 0 = exp(tA ≠ tA) = (exp tA)[exp(≠tA)]

implies that (exp tA)≠1 = exp(≠tA). Consequently

H(t, ·) = C�(t)�≠1(·)B + ”(t ≠ ·)D
= C(exp tA)(exp ·A)≠1B + ”(t ≠ ·)D
= C(exp tA)[exp(≠·A)]B + ”(t ≠ ·)D
= C exp[(t ≠ ·)A]B + ”(t ≠ ·)D
= H(t ≠ ·).





B | Properties of the Multivariate
Gaussian Distribution

B.1 Marginal and Conditional Distribution

Let
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B.2 Kullback-Leibler Divergence
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C | Multivariate Matrix-Valued
Gaussian Processes

A stochastic process F (t) œ RN◊M , t œ RK is Gaussian if and only if for every T œ RT ◊K

it holds that (vec F )(T ) is multivariate Gaussian distributed where

(vec F )(T ) =

S

WWWU

vec F (T
1,:)

...
vec F (T T,:)

T

XXXV

=
Ë
F

1,1(T 1,:) · · · FN,M(T
1,:) · · · F

1,1(T T,:) · · · FN,M(T T,:)
ÈT

.

The mean function is then defined by

mF (T ) =
Ë
mT

F (T
1,:) · · · mT

F (T T,:)
ÈT

=
Ë
mF1,1(T

1,:) · · · mFN,M
(T

1,:) · · · mF1,1(T T,:) · · · mFN,M
(T T,:)

ÈT

and the kernel by
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T,: , T
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XXXV
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D | Gaussian Processes in Practice

D.1 Implementation of Gaussian Process Models

We briefly discuss some useful techniques concerning the implementation of Gaussian
process models. Assume that all matrices have shape N ◊ N .

First, carefully considering the memory layout of large matrices can be beneficial. Namely,
contiguous memory is accessed more cheaply than non-contiguous memory. This means
that the cost of operations on large matrices greatly depends on the memory layout of
the matrices.

Second, a covariance matrix � can be made positive semidefinite by adding a small
diagonal. In theory, � is always positive semidefinite. However, when it is evaluated
numerically, it can be indefinite or negative definite due round-o� errors introduced by
the floating-point representation of numbers. In that case �’s positive semidefiniteness
can be ensured by adding a diagonal comparable to ÁÎ�ÎŒ where Á is the machine
epsilon. Usually the noise introduced by the diagonal is negligible.

In the case that � is indefinite or negative definite due to noise other than round-o�
errors, the diagonal required to make � positive semidefinite might be so large that the
introduced noise becomes significant. In that case Theorem 1 can be used to compute
the symmetric positive semidefinite matrix nearest to � in Frobenius norm.

Third, quantities of the form A�≠1B where � is a covariance matrix should not be
computed by first computing �≠1 = X explicity. Namely, the error in AXB due to
round-o� errors can be large, especially when � is ill-conditioned [Trefethen and Bau,
1997]. A numerically more stable approach is to first compute the Cholesky decomposi-
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tion � = LLT where L is lower triangular. Then

A�≠1B = A(LLT )≠1B = (AL≠T )(L≠1B)

where the systems AL≠T and L≠1B can be solved using respectively back substitution
and forward substitution. The Cholesky decomposition has time complexity O(N3) and
back substitution and forward substitution have time complexity O(N2) [Trefethen and
Bau, 1997]. Thus A�≠1B can be computed in O(N3) time.

Fourth, the determinant � of a covariance matrix can e�ciently be computed via its
Cholesky decomposition � = LLT . Specifically, as L is lower triangular,

|�| = |L|2 =
NŸ

i=1

L2

i,i.

Thus the determinant can be computed in O(N3) time.

D.2 Nearest Symmetric Positive-Semidefinite
Matrix

Lemma 1 (Polar Decomposition of Symmetric Matrix). Let A be symmetrix and let
B = Z�ZT be its spectral decomposition. Then there exists an orthogonal matrix U

such that

A = UZSZT

where S = diag(|�
1,1|, . . . , |�N,N |).

Proof. Let L be diagonal such that Li,i = sign �i,i. Then LL = I. Therefore

A = Z�ZT = ZLL�ZT = ZLZT
¸ ˚˙ ˝

U

Z L�¸˚˙˝
S

ZT

where L� = diag(|�
1,1|, . . . , |�N,N |) and

UUT = ZLZT ZLZT = ZLLZT = ZZT = I.
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Lemma 2. Let A be symmetric and let B be antisymmetric. Then ÎA + BÎ2

F =
ÎAÎ2

F + ÎBÎ2

F .

Proof. To begin with, AT B = ≠ABT ; thus tr(AT B) + tr(ABT ) = 0. Therefore

ÎA + BÎ2

F = tr[(A + B)T (A + B)]
= tr(AT A) + tr(AT B) + tr(BT A) + tr(BT B)
= tr(AT A) + tr(BT B)
= ÎAÎ2

F + ÎBÎ2

F .

Lemma 3. Let A be a matrix and let U be orthogonal. Then ÎUAUT Î2

F = ÎAÎ2

F .

Proof. Direct computation yields that

ÎUAUT Î2

F = tr(UAUT UAT UT )
= tr(UAAT UT )
= tr(UT UAAT )
= tr(AAT )
= ÎAÎ2

F .

The following proof is based on the proof by Higham [1988].

Theorem 1 (Nearest Symmetric Positive-Semidefinite Matrix). Let A be a matrix and
B = (A + AT )/2. Furthermore, let B = Z�ZT be B’s spectral decomposition and
let B = UZSZT be B’s polar decomposition (Lemma 1). Finally, let AF = (B +
ZSZT )/2. Then

1. AF is symmetric positive semidefinite and

2. for any other symmetric positive semidefinite matrix X it holds that ÎA ≠ XÎ2

F Ø
ÎA ≠ AF Î2

F .
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Proof. First, we verify that AF is symmetric positive semidefinite. Trivially, AF is
symmetric. To see that AF is positive semidefinite, consider

AF = 1
2(B + ZSZT ) = 1

2(Z�ZT + ZSZT ) = Z
� + S

2 ZT . (D.1)

By Lemma 1,

� + S

2 = diag
A

�
1,1 + |�

1,1|
2 , . . . ,

�N,N + |�N,N |
2

B

, (D.2)

whose diagonal elements are all nonnegative. Therefore, for any x, it holds that

xT AF x = xT Z

A
� + S

2

B
1/2

A
� + S

2

B
1/2

ZxT =
......

A
� + S

2

B
1/2

ZT x

......

2

2

Ø 0.

Second, let X be symmetric positive semidefinite. We then show that ÎA ≠ XÎ2

F Ø
ÎA ≠ AF Î2

F . To begin with, let C = (A ≠ AT )/2. Then A = B + C where B is
symmetric and C is antisymmetric. Thus, by Lemma 2,

ÎA ≠ XÎ2

F = Î(B ≠ X) + CÎ2

F = ÎB ≠ XÎ2

F + ÎCÎ2

F Ø ÎB ≠ XÎ2

F .

Let Y = ZT XZ. As X is positive semidefinite, Y is also positive semidefinite and so
Yi,i Ø 0. Therefore, by Lemma 3,

ÎA ≠ XÎ2

F Ø ÎB ≠ XÎ2

F

= ÎZ�ZT ≠ XÎ2

F

= ÎZ(� ≠ ZT XZ)ZT Î2

F

= Î� ≠ Y Î2

F

Ø ÿ

i:�i,i<0

(�i,i ≠ Yi,i)2

Ø ÿ

i:�i,i<0

�2

i,i.

This lower bound holds for any positive semidefinite X. Therefore, if AF achieves this
lower bound, then the result follows.
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To this end, let X = AF . As AF is symmetric, C = 0 and so

ÎA ≠ AF Î2

F = Î� ≠ Y Î2

F

where Y = ZAF ZT . Now, Equation (D.1) and Equation (D.2) show that

Y = diag
A

�
1,1 + |�

1,1|
2 , . . . ,

�N,N + |�N,N |
2

B

.

Hence

ÎA ≠ AF Î2

F = Î� ≠ Y Î2

F

=
Nÿ

i=1

A

�i,i ≠ �i,i + |�i,i|
2

B
2

=
ÿ

i:�i,i<0

A

�i,i ≠ �i,i + |�i,i|
2

B
2

=
ÿ

i:�i,i<0

�2

i,i.





E | Circulant Approximation of
Stationary Multi-Output Kernel
Matrices

E.1 Introduction

Let K : RK ◊ RK æ RN◊N be a stationary multi-output kernel and let KF be K

evaluated for points that lie on an evenly-spaced grid {t
(1)

1

, . . . , t
(1)

Y1 }◊· · ·◊{t
(K)

1

, . . . , t
(K)

YK
}.

The total number of points is then given by Y
1

· · · YK = Y . Assume that all Yi are
even.

Consider computation of |KF | and a product of the form P = UT K≠1

F V for some
NY ◊ P matrix U and NY ◊ Q matrix V . Computing |KF | directly costs O(N3Y 3)
time (Appendix D). This does not scale for large Y . Furthermore, inverting KF costs
O(N3Y 3) time and then computing UT K≠1

F V costs O(PQN2Y 2) time, resulting in time
complexity O(PQN2Y 2 + N3Y 3). This also does not scale for large Y .

This chapter develops an approximation of KF based on the facts that KF is stationary
and is evaluated for points on a grid [Ulrich et al., 2015]. We show that this approxi-
mation can be leveraged to compute |KF | and UT K≠1

F V with complexities that scale
favourably in Y .
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Figure E.1: Circulant approximation of a stationary kernel. Shows how the space “wraps
around” at the edge of the grid. Also shows that the approximation is excellent for points
not in the vicinity of the edge.

E.2 Circulant Approximation of Toeplitz
Matrices

Let k : R æ R be a stationary kernel and let Kf be k evaluated for points that lie on
an evenly-spaced grid {t

1

, . . . , tY }. Then, by k’s stationary and the fact that the points
lie on a grid,

Kf = stoep[k(t
1

≠ t
1

), . . . , k(t
1

≠ tY )].

A banded Toeplitz matrix can be approximated by a particular circulant matrix where
the approximation becomes more accurate as the matrix becomes large [Gray, 2006].
More specifically, if k has e�ectively limited support, then we can approximate

Kf = stoep[k(t
1

≠ t
1

), . . . , k(t
1

≠ tY/2

), k(t
1

≠ tY/2+1

), k(t
1

≠ tY/2+2

), . . . , k(t
1

≠ tY )]
¥ stoep[k(t

1

≠ t
1

), . . . , k(t
1

≠ tY/2

), k(t
1

≠ tY/2+1

), k(t
1

≠ tY/2

), . . . , k(t
1

≠ t
2

)]
= circ[k(t

1

≠ t
1

), . . . , k(t
1

≠ tY/2

), k(t
1

≠ tY/2+1

), k(t
1

≠ tY/2

), . . . , k(t
1

≠ t
2

)]. (E.1)

We call this approximation the circulant approximation of Kf . Essentially, the approx-
imation lets the space in which distance is measured now “wrap around” at the edge of
the grid. As a consequence, points near the edge of the grid correlate. However, if the
kernel is local, then correlations between points not in the vicinity of the edge are pre-
served; in that case Kf ’s circulant approximation is an excellent approximation for most
points. Figure E.1 illustrates the circulant approximation of a stationary kernel.
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Finally, the Y ◊Y unitary discrete Fourier transform matrix FY diagonalises any Y ◊Y

circulant matrix [Gray, 2006]. Thus, by Kf = KT
f , it holds that Kf ¥ FY �FH

Y =
FH

Y �FY where � is diagonal.

E.3 Circulant Approximation of Stationary
Multi-Output Kernel Matrices

In the same way that a Toeplitz matrix has a circulant approximation, a block Toeplitz
matrix has a block circulant approximation. We use this observation to approximate
KF .

We construct KF in a particular way. Specifically, let K(0)(t, tÕ) = K(t, tÕ) and let

t(>i) =
Ë
ti+1

· · · tK

ÈT
,

t(>i)Õ =
Ë
tÕ
i+1

· · · tÕ
K

ÈT
,

K(i)(t(>i), t(>i)Õ) =

S

WWWU

K(i≠1)(t(i)
1

, t(>i), t
(i)
1

, t(>i)Õ) · · · K(i≠1)(t(i)
1

, t(>i), t
(i)
Yi

, t(>i)Õ)
... . . . ...

K(i≠1)(t(i)
Yi

, t(>i), t
(i)
1

, t(>i)Õ) · · · K(i≠1)(t(i)
Yi

, t(>i), t
(i)
Yi

, t(>i)Õ)

T

XXXV

for i = 1, . . . , K. Then KF = K(K). Now, K is stationary and the points for which we
evaluate K lie on a grid; thus we can use Equation (E.1) to approximate

K(i)(t(>i), t(>i)Õ)
= stoep[K(i≠1)(t(i)

1

, t(>i), t
(i)
1

, t(>i)Õ), . . . , K(i≠1)(t(i)
1

, t(>i), t
(i)
Yi

, t(>i)Õ)]
¥ circ[K(i≠1)(t(i)

1

, t(>i), t
(i)

w(i)
(1)

, t(>i)Õ), . . . , K(i≠1)(t(i)
1

, t(>i), t
(i)

w(i)
(Yi)

, t(>i)Õ)]

where w(i)(ji) = min{j, Yi≠ji+2}. Then, by decomposing each K(i)(t(>i), t(>i)Õ) as

K(i)(t(>i), t(>i)Õ) ¥
Yiÿ

ji=1

C(i,ji)
˙ ˝¸ ˚
circ( 0, . . . , 0¸ ˚˙ ˝

ji ≠ 1 times

, 1, 0, . . . , 0¸ ˚˙ ˝
Yi ≠ ji times

) ¢ K(i≠1)(t(i)
1

, t(>i), t
(i)

w(i)
(ji)

, t(>i)Õ),
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we obtain that

K(K) ¥
YKÿ

jK=1

C(K,jK) ¢ K(K≠1)(t(K)

1

, t
(K)

w(K)
(jK)

)

¥
YK ,YK≠1ÿ

jK=1,jK≠1=1

C(K,jK) ¢ C(K≠1,jK≠1) ¢ K(K≠1)(t(K≠1)

1

, t
(K)

1

, t
(K≠1)

w(K≠1)
(jK≠1)

, t
(K)

w(K)
(jK)

)

...

¥
YK ,...,Y1ÿ

jK=1,...,j1=1

C(K,jK) ¢ · · · ¢ C(1,j1) ¢ K(0)(t(1)

1

, . . . , t
(K)

1

¸ ˚˙ ˝
t1

, t
(1)

w(1)
(j1)

, . . . , t
(K)

w(K)
(jK)¸ ˚˙ ˝

tw(j)

)

=
YK ,...,Y1ÿ

jK=1,...,j1=1

C(K,jK) ¢ · · · ¢ C(1,j1) ¢ K(t
1

, tw(j)

).

Let F (i) = FYi
¢ · · · ¢ FY1 ¢ I. Then

F (K)K(K)F (K)H

¥
YK ,...,Y1ÿ

jK=1,...,j1=1

(FYK
C(K,jK)FH

YK¸ ˚˙ ˝
�(K,jk)

) ¢ · · · ¢ (FY1C(1,j1)FH
Y1¸ ˚˙ ˝

�(1,jk)

) ¢ K(t
1

, tw(j)

) (E.2)

where all �(i,j) are diagonal because all C(i,j) are circulant by definition. Thus F (K)K(K)F (K)H

is approximately block diagonal. Let

Bm1,...,mK
=

YK ,...,Y1ÿ

jK=1,...,j1=1

�(K,jk)

mK ,mK
· · · �(1,j1)

m1,m1K(t
1

, tw(j)

). (E.3)

Then Equation (E.2) tells us that Bm1,...,mK
is the d(m

1

, . . . , mK)’th block on the diag-
onal of F (K)K(K)F (K)H where

d(m
1

, . . . , mK) = (mK ≠ 1)(YK≠1

· · · Y
1

) + . . . + (m
2

≠ 1)Y
1

+ (m
1

≠ 1) + 1.
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Finally, let m(i)(d) be such that m(i)[d(m
1

, . . . , mK)] = mi.1 Then KF is approximated
by

KF ¥ F (K)H diag(Bm(1)
(1),...,m(K)

(1)

, . . . , Bm(1)
(Y ),...,m(K)

(Y )

)F (K). (E.4)

E.4 Approximating Determinants

We can use Equation (E.4) to e�ciently approximate |KF |. We first derive an approxi-
mation of |KF | and then show that this approximation can be computed e�ciently.

Note that F (K)HF (K) = I. Thus, by Equation (E.4),

|KF | ¥ |F (K)H || diag(Bm(1)
(1),...,m(K)

(1)

, . . . , Bm(1)
(Y ),...,m(K)

(Y )

)||F (K)|

=
YŸ

d=1

|Bm(1)
(d),...,m(K)

(d)

|. (E.5)

We now show that Equation (E.5) can be computed e�ciently. To begin with, we show
that all Bm1,...,mK

can be computed e�ciently. Let S(0)(t) = K(t
1

, t) and let

t
(>i)
w(j)

=
Ë
t
(i+1)

w(i+1)
(ji+1)

· · · t
(K)

w(K)
(jK)

ÈT
,

S(i)
m1,...,mi

(t(>i)
w(j)

) =
Yiÿ

ji=1

�(i,ji)

mi,mi
S(i≠1)

m1,...,mi≠1(t(i)

w(i)
(ji)

, t
(>i)
w(j)

) (E.6)

for i = 1, . . . , K. Then one verifies that S(K)

m1,...,mK
= Bm1,...,mK

. Now, fix i and fix

1
That is, let m(i)

(d) = 1 + [Â(d ≠ 1)/(Yi≠1 · · · Yi)Ê mod Yi]. Then

m(i)
(d)

---
d=d(m1,...,mK)

= 1 +

37
d ≠ 1

Yi≠1 · · · Y1

8
mod Yi

4----
d=d(m1,...,mK)

= 1 +

37
(mK ≠ 1)(YK · · · Yi) + . . . + (mi+1 ≠ 1)Yi

+ (mi ≠ 1) +

�����mi≠1 ≠ 1

Yi≠1
+ . . . +

�����m1 ≠ 1

Yi≠1 · · · Y1

8
mod Yi

4

= 1 +

Ë
(mK ≠ 1)(YK · · · Yi) + . . . + (mi+1 ≠ 1)Yi + mi ≠ 1

È
mod Yi

= mi.
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m
1

, . . . , mi≠1

and ji+1

, . . . , jK . It holds that [Gray, 2006]

�(i,ji)

mi,mi
= (FYi

C(i,ji)FH
Yi

)mi,mi

=
Yiÿ

n=1

1(ji ≠ n) exp
C

≠2fi
Ô≠1(mi ≠ 1)(n ≠ 1)

Yi

D

= exp
C

≠2fi
Ô≠1(mi ≠ 1)(ji ≠ 1)

Yi

D

.

Hence, by Equation (E.6),

S(i)
m1,...,mi

(t(>i)
w(j)

)
¸ ˚˙ ˝

Ami

=
Yiÿ

ji=1

S(i≠1)

m1,...,mi≠1(t(i)

w(i)
(ji)

, t
(>i)
w(j)

)
¸ ˚˙ ˝

Bji

exp
C

≠2fi
Ô≠1(mi ≠ 1)(ji ≠ 1)

Yi

D

.

Note that all Ami
and Bji

are N ◊ N matrices. Importantly, observe that A
:,n,nÕ =

DFT B
:,n,nÕ . Thus, the fast Fourier transform algorithm can be used to compute a

single A
:,n,nÕ in O(Yi log Yi) time. By doing this for every (n, nÕ) we can compute

S(i)
m1,...,mi

(t(>i)
w(j)

) for all mi in O(N2Yi log Yi) time. Hence, we can compute S(i)
m1,...,mi

(t(>i)
w(j)

)
for all m

1

, . . . , mi and ji+1

, . . . , jK in

O(Y
1

· · · Yi≠1

Yi+1

· · · YKN2Yi log Yi) = O(N2Y log Yi)

time, which shows that recursively applying Equation (E.6) to compute S(K)

m1,...,mK
=

Bm1,...,mK
for all m

1

, . . . , mK costs

O[N2Y (log Y
1

+ . . . + log YK)]

time. This time complexity is bounded by O(N2Y log Y ).

Finally, Equation (E.5) shows that after all Bm1,...,mK
have been computed, |KF | can

be computed in O(N3Y ) time (Appendix D). Therefore, the resulting complexity of
computing |KF | is O(N2Y log Y + N3Y ). The complete procedure to compute |KF | is
outlined in Algorithm 1.
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Algorithm 1 E�cient approximation of the determinant of a multi-output stationary
kernel matrix. Runs in O(N2Y log Y + N3Y ) time.

1: function determinant(K, {t
(1)

1

, . . . , t
(1)

Y1 } ◊ · · · ◊ {t
(K)

1

, . . . , t
(K)

YK
})

2: for i = 1, . . . , K do
3: for m

1

= 1, . . . , Y
1

to mi≠1

= 1, . . . , Yi≠1

and
ji+1

= 1, . . . , Yi+1

to jK = 1, . . . , YK do
4: for n = 1, . . . , N and nÕ = 1, . . . , N do
5: A

:,n,nÕ Ω DFT B
:,n,nÕ

Û Via fast Fourier transform algorithm
Û S(0)(t) = K(t

1

, t), Ami
= S(i)

m1,...,mi
(t(>i)

w(j)

) and Bji
=

S(i≠1)

m1,...,mi≠1(t(i)

w(i)
(ji)

, t
(>i)
w(j)

) where w(i)(ji) = min{j, Yi ≠ji +2}
6: for m

1

= 1, . . . , Y
1

to mK = 1, . . . , YK do
7: Compute |S(K)

m1,...,mK
|

8: return rY
d=1

|S(K)

m(1)
(d),...,m(K)

(d)

| Û m(i)(d) = 1 + [Â(d ≠ 1)/(Yi≠1

· · · Yi)Ê mod Yi]

E.5 Approximating Products Involving an
Inverse

We can also use Equation (E.4) to e�ciently approximate a product of the form P =
UT K≠1

F V for some NY ◊P matrix U and NY ◊Q matrix V . We first derive an approx-
imation of P and then show that this approximation can be computed e�ciently.

Consider Pp,q. Recall that by Equation (E.4), F (K)K(K)F (K)H is approximately block
diagonal with blocks Bm1,...,mK

; hence F (K)K≠(K)F (K)H is approximately block diagonal
with blocks B≠1

m1,...,mK
. Thus

Pp,q = (U
:,p)T

¸ ˚˙ ˝
uT

K≠(K) V
:,q

¸˚˙˝
v

= (F (K)u)H(F (K)K≠(K)F (K)H)(F (K)v)

¥
Yÿ

d=1

Ë
u

(d≠1)N+1

· · · udN

È
B≠1

m(1)
(d),...,m(K)

(d)

Ë
v

(d≠1)N+1

· · · vdN

ÈT
. (E.7)

We now show that Equation (E.7) can be computed e�ciently. First, we show that
all B≠1

m1,...,mK
can be computed e�ciently. Appendix E.4 showed that all Bm1,...,mK

can be computed in O(N2Y log Y ) time. Therefore all B≠1

m1,...,mK
can be computed in
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O(N2Y log Y + N3Y ) time.

Second, we show that F (K)u and thereby F (K)v from Equation (E.7) can be computed
e�ciently. It holds that

F (K)u = (FYK
¢ · · · ¢ FY1 ¢ I)u

= (FYK
¢ IYK≠1 ¢ · · · ¢ IY1 ¢ IN)

¸ ˚˙ ˝
T YK

· · · (IYK
¢ · · · ¢ IY2 ¢ FY1 ¢ IN)

¸ ˚˙ ˝
T Y1

u.

Observe that each T Yi
is of the form I

Z
(1)
i

¢ FYi
¢ I

Z
(2)
i

where Z
(1)

i = YK · · · Yi+1

and
Z

(2)

i = Yi≠1

· · · Y
1

N . Inspection of

(FYi
¢ I

Z
(2)
i

)x =

S

WWWWU

FYi,1,1IZ
(2)
i

· · · FYi,1,Yi
I

Z
(2)
i... . . . ...

FYi,Yi,1IZ
(2)
i

· · · FYi,Yi,Yi
I

Z
(2)
i

T

XXXXV
x = y

shows that

FYi

5
xz x

z+Z
(2)
i

· · · x
z+(Yi≠1)Z

(2)
i

6T

¸ ˚˙ ˝
every Z

(2)
i ’th element of x, starting at z

=
5
yz y

z+Z
(2)
i

· · · y
z+(Yi≠1)Z

(2)
i

6T

¸ ˚˙ ˝
every Z

(2)
i ’th element of y, starting at z

(E.8)

for z = 1, . . . , Z
(2)

i , which completely specifies y. The fast Fourier transform algorithm
can be used to compute Equation (E.8) in O(Yi log Yi) time, which means that y can be
computed in O(Z(2)

i Yi log Yi) time. Similarly, by directly applying the definition of the
Kronecker product we see that (I

Z
(1)
i

¢ FYi
¢ I

Z
(2)
i

)x = y yields the y such that

(FYi
¢ I

Z
(2)
i

)
5
x

(z≠1)Z
(2)
i Yi+1

x
(z≠1)Z

(2)
i Yi+2

· · · x
zZ

(2)
i Yi

6T

¸ ˚˙ ˝
z’th consecutive group of Z

(2)
i Yi consecutive elements of x

=
5
y

(z≠1)Z
(2)
i Yi+1

y
(z≠1)Z

(2)
i Yi+2

· · · y
zZ

(2)
i Yi

6T

¸ ˚˙ ˝
z’th consecutive group of Z

(2)
i Yi consecutive elements of y

for z = 1, . . . , Z
(1)

Yi
, which again completely specifies y. Hence multiplication by any T Yi

can be done in O(Z(1)

Yi
Z

(2)

Yi
Yi log Yi) = O(NY log Yi) time. Thus F (K)u and F (K)v can
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be computed in

O[NY (log Y
1

+ . . . + log YK)].

time. This complexity is bounded by O(NY log Y ).

Finally, Equation (E.7) shows that after all B≠1

m1,...,mK
, F (K)u and F (K)v have been

computed, Pp,q can be computed in O(N2Y ) time. Therefore, since all B≠1

m1,...,mK
have

to be computed only once, the resulting complexity of computing P is O[N2Y log Y +
N3Y + PQ(NY log Y + N2Y )]. The complete procedure to compute P is outlined in
Algorithm 2.

E.6 Conclusion

We have derived procedures to e�ciently approximate the determinant of a stationary
multi-output kernel matrix and a product involving an inverse stationary multi-output
kernel matrix. These procedures have respectively time complexities O(N2Y log Y +
N3Y ) and O[N2Y log Y +N3Y +PQ(NY log Y +N2Y )]. Importantly, these complexities
scale favourably in Y .
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Algorithm 2 E�cient approximation of a product involving an inverse stationary multi-
output kernel matrix. Runs in O[N2Y log Y + N3Y + PQ(NY log Y + N2Y )] time.

1: function product(K, {t
(1)

1

, . . . , t
(1)

Y1 } ◊ · · · ◊ {t
(K)

1

, . . . , t
(K)

YK
}, U , V )

2: for i = 1, . . . , K do
3: for m

1

= 1, . . . , Y
1

to mi≠1

= 1, . . . , Yi≠1

and
ji+1

= 1, . . . , Yi+1

to jK = 1, . . . , YK do
4: for n = 1, . . . , N and nÕ = 1, . . . , N do
5: A

:,n,nÕ Ω DFT B
:,n,nÕ

Û Via fast Fourier transform algorithm
Û S(0)(t) = K(t

1

, t), Ami
= S(i)

m1,...,mi
(t(>i)

w(j)

) and Bji
=

S(i≠1)

m1,...,mi≠1(t(i)

w(i)
(ji)

, t
(>i)
w(j)

) where w(i)(ji) = min{j, Yi ≠ji +2}
6: for m

1

= 1, . . . , Y
1

to mK = 1, . . . , YK do
7: Compute S≠(K)

m1,...,mK

8: for p = 1, . . . , P and q = 1, . . . , Q do
9: U

:,p Ω transform U
:,p

10: U
:,q Ω transform U

:,q

11: Pp,q Ω qY
d=1

Ë
U

(d≠1)N+1,p · · · UdN,p

È
S

≠(K)

m(1)
(d),...,m(K)

(d)

Ë
V

(d≠1)N+1,q · · · VdN,q

ÈT

Û m(i)(d) = 1 + [Â(d ≠ 1)/(Yi≠1

· · · Yi)Ê mod Yi]
12: return P
13: function transform(x)
14: for i = 1, . . . , K do
15: for z

1

= 1, . . . , Z
1

do Û Z
1

= YK · · · Yi+1

16: for z
2

= 1, . . . , Z
2

do Û Z
2

= Yi≠1

· · · Y
1

N

17:

Ë
yz2 yz2+Z2 · · · yz2+(Yi≠1)Z2

ÈT

Ω Y
≠1/2

i DFT
Ë
yz2 yz2+Z2 · · · yz2+(Yi≠1)Z2

ÈT

Û Via fast Fourier transform algorithm
Û y =

Ë
x

(z1≠1)Z2Yi+1

x
(z1≠1)Z2Yi+2

· · · xz1Z2Yi

ÈT

18: return x



F | Exponentiated Quadratic
Forms

F.1 Introduction

This chapter develops notation that makes working with exponentiated quadratic forms
more convenient.

F.2 General Form

Let x œ RN . Denote an exponentiated quadratic form

p(x) = C exp
1
≠1

2xT Ax + xT b + c
2

by (C, A, b, c). We call x the composite vector of variables, or composite vector in
short.

Lemma 4 (Product Identity (General Form)). Let p
1

and p
2

be two exponentiated
quadratic forms. Then

p
1

p
2

= (C
1

, A
1

, b
1

, c
1

)(C
2

, A
2

, b
2

, c
2

) = (C
1

C
2

, A
1

+ A
2

, b
1

+ b
2

, c
1

+ c
2

).

Proof. Direct computation yields that

p
1

p
2

= C
1

C
2

exp
1
≠1

2xT A
1

x + xT b
1

≠ 1
2xT A

2

x + xT b
2

+ c
2

= C
1

C
2

exp
Ë
≠1

2xT (A
1

+ A
2

)x + xT (b
1

+ b
2

) + (c
1

+ c
2

)
È

= (C
1

C
2

, A
1

+ A
2

, b
1

+ b
2

, c
1

+ c
2

).
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Lemma 5 (Integration Identity (General Form)). Let the composite vector be
Ë
xT

1

xT
2

ÈT

and consider

p = (C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V ,

S

Ub
1

b
2

T

V
T

, c).

Denote integration over the subset of variables x
1

by Ix1(p):

Ix1(p)(x
2

) =
⁄

(C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V ,

S

Ub
1

b
2

T

V , c)
1 Ë

xT
1

xT
2

È 2
dx

1

.

Then

Ix1(p) =
A

C
(2fi)N/2

|A
1,1|1/2

, A
2,2 ≠ A

2,1A
≠1

1,1A1,2, b
2

≠ A
2,1A

≠1

1,1b1

, c + 1
2bT

1

A≠1

1,1b1

B

.

Proof. An exponentiated quadratic form can be integrated as follows:
⁄

RN
exp

1
≠1

2xT Ax + bT x + c
2

dx

= exp
11

2bT A≠1b + c
2 ⁄

RN
exp

1
≠1

2xT Ax + bT x ≠ 1
2bT A≠1b

2
dx

= (2fi)N/2

|A|1/2

exp
11

2bT A≠1b + c
2 ⁄

RN

(2fi)≠N/2

|A|≠1/2

exp
1
≠1

2xT Ax + bT x ≠ 1
2bT A≠1b

2
dx

= (2fi)N/2

|A|1/2

exp
11

2bT A≠1b + c
2 ⁄

RN
N (x; A≠1b, A) dx

= (2fi)N/2

|A|1/2

exp
11

2bT A≠1b + c
2
.

Now,

≠ 1
2

S

Ux
1

x
2

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

Ux
1

x
2

T

V +
S

Ux
1

x
2

T

V
T S

Ub
1

b
2

T

V + c

= ≠1
2xT

1

A
1,1x1

+ xT
1

Ë
b

1

≠ 1
2(A

1,2 + AT
2,1)

¸ ˚˙ ˝
A1,2

x
2

È
+

1
xT

2

b
2

≠ 1
2xT

2

A
2,2x2

+ c
2
.
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Thus

Ix1(p)(x
2

) = C
(2fi)N/2

|A
1,1|1/2

exp
Ë1
2(b

1

≠ A
1,2x2

)T A≠1

1,1(b1

≠ A
1,2x2

)

+ (xT
2

b
2

≠ 1
2xT

2

A
2,2x2

+ c)
È

= C
(2fi)N/2

|A
1,1|1/2

exp
Ë
≠1

2xT
2

(A
2,2 ≠ A

2,1A
≠1

1,1A1,2)x2

+ xT
2

(b
2

≠ A
2,1A

≠1

1,1b1

) + (c + 1
2bT

1

A≠1

1,1b1

)
È

and so the result follows.

Lemma 6 (Linear Expansion Property (General Form)). Let the composite vector beË
xT

1

xT
2

ÈT
and consider

p
0

= (C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V ,

S

Ub
1

b
2

T

V , c).

Then the exponentiated quadratic forms

p
1

1 Ë
xT

1

xT
2

xT
3

ÈT 2
= p

0

1 Ë
(x

1

+ Bx
3

)T xT
2

ÈT 2
,

p
2

1 Ë
xT

1

xT
2

xT
3

ÈT 2
= p

0

1 Ë
xT

1

(x
2

+ Bx
3

)T
ÈT 2

are given by

pi = (C,

S

WWWU
A

A
1,iB

A
2,iB

BT Ai,1 BT Ai,2 BT Ai,iB

T

XXXV ,

S

WWWU

b
1

b
2

BT bi

T

XXXV , c)

for respectively i = 1, 2.
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Proof. The exponent of p
1

can be simplified as follows:

≠ 1
2

S

Ux
1

+ Bx
3

x
2

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

Ux
1

+ Bx
3

x
2

T

V +
S

Ux
1

+ Bx
3

x
2

T

V
T S

Ub
1

b
2

T

V + c

= ≠1
2

S

Ux
1

x
2

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

Ux
1

x
2

T

V ≠ 1
2

S

UBx
3

0

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

Ux
1

x
2

T

V

≠ 1
2

S

Ux
1

x
2

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

UBx
3

0

T

V ≠ 1
2

S

UBx
3

0

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

UBx
3

0

T

V

+
S

Ux
1

x
2

T

V
T S

Ub
1

b
2

T

V +
S

UBx
3

0

T

V
T S

Ub
1

b
2

T

V + c

= ≠1
2

S

Ux
1

x
2

T

V
T S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V

S

Ux
1

x
2

T

V ≠ 1
2

S

Ux
3

0

T

V
T S

U0 BT A
1,2

0 BT A
2,2

T

V

S

Ux
1

x
2

T

V

≠ 1
2

S

Ux
1

x
2

T

V
T S

UA
1,1B 0

A
2,1B 0

T

V

S

Ux
3

0

T

V ≠ 1
2

S

Ux
3

0

T

V
T S

UBT A
1,1B 0

0 0

T

V

S

Ux
3

0

T

V

+
S

Ux
1

x
2

T

V
T S

Ub
1

b
2

T

V +
S

Ux
3

0

T

V
T S

UBT b
1

0

T

V + c

= ≠1
2

S

WWWU

x
1

x
2

x
3

T

XXXV

T S

WWWU

A
1,1 A

1,2 A
1,1B

A
2,1 A

2,2 A
2,1B

BT A
1,1 BT A

1,2 BT A
1,1B

T

XXXV

S

WWWU

x
1

x
2

x
3

T

XXXV +

S

WWWU

x
1

x
2

x
3

T

XXXV

T S

WWWU

b
1

b
2

BT b
1

T

XXXV + c.

Thus

p
1

= (C,

S

WWWU
A

A
1,1B

A
2,1B

BT A
1,1 BT A

1,2 BT A
1,1B

T

XXXV ,

S

WWWU

b
1

b
2

BT b
1

T

XXXV , c).

The case p
2

follows similarly.

Lemma 7 (Compression Property (General Form)). Let the composite vector be
Ë
xT

1

xT
2

xT
2

ÈT

and consider

p
1

= (C,

S

WWWU

A
1,1 A

1,2 A
1,3

A
2,1 A

2,2 A
2,3

A
3,1 A

3,2 A
3,3

T

XXXV ,

S

WWWU

b
1

b
2

b
3

T

XXXV , c).
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Then the exponentiated quadratic form

p
2

1 Ë
xT

1

xT
2

ÈT 2
= p

1

1 Ë
xT

1

xT
2

xT
2

ÈT 2

is given by

p
2

= (C,

S

U A
1,1 A

1,2 + A
1,3

A
2,1 + A

3,1 A
2,2 + A

2,3 + A
3,2 + A

3,3

T

V ,

S

U b
1

b
2

+ b
3

T

V , c).

Proof. The exponent of p
1

can be simplified as follows:
S

WWWU

x
1

x
2

x
2

T

XXXV

T S

WWWU

A
1,1 A

1,2 A
1,3

A
2,1 A

2,2 A
2,3

A
3,1 A

3,2 A
3,3

T

XXXV

S

WWWU

x
1

x
2

x
2

T

XXXV +

S

WWWU

x
1

x
2

x
2

T

XXXV

T S

WWWU

b
1

b
2

b
3

T

XXXV + c

= xT
1

A
1,1x + xT

1

(A
1,2 + A

1,3)x2

+ xT
2

(A
2,1 + A

2,3)x1

+ xT
2

(A
2,2 + A

2,3 + A
3,2 + A

3,3)x2

+ xT
1

b
1

+ xT
2

(b
2

+ b
3

) + c

=
S

Ux
1

x
2

T

V
T S

U A
1,1 A

1,2 + A
1,3

A
2,1 + A

3,1 A
2,2 + A

2,3 + A
3,2 + A

3,3

T

V

S

Ux
1

x
2

T

V +
S

Ux
1

x
2

T

V
T S

U b
1

b
2

+ b
3

T

V + c.

Hence the result follows.

F.3 Kronecker-Structured Form

Let the composite vector be
Ë
xT

1

· · · xT
M

ÈT œ RMN . Denote a exponentiated quadratic
form of the form (C, A ¢ IN , 0, 0) by (C, A). This is a Kronecker-structured exponenti-
ated quadratic form.

Lemma 8 (Product Identity (Kronecker-Structured Form)). Let p
1

and p
2

be two
Kronecker-structured exponentiated quadratic forms. Then

p
1

p
2

= (C
1

, A
1

)(C
2

, A
2

) = (C
1

C
2

, A
1

+ A
2

).

Proof. Follows from Lemma 4 and bilinearity of the Kronecker product.

Lemma 9 (Integration Identity (Kronecker-Structured Form)). Let the composite vector
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be
Ë
xT

1

xT
2

ÈT
where x

1

œ RKN and x
2

œ RMN . Consider

p = (C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V).

Denote integration over the subset of variables x
1

by Ix1(p):

Ix1(p)(x
2

) =
⁄

(C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V ,

S

Ub
1

b
2

T

V , c)
1 Ë

xT
1

xT
2

ÈT 2
dx

1

.

Then

Ix1(p) =
A

C
(2fi)KN/2

|A
1,1|N/2

, A
2,2 ≠ A

2,1A
≠1

1,1A1,2

B

.

Proof. Direct computation yields that

Ix1 [(C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V)] = Ix1 [(C,

S

UA
1,1 ¢ I A

1,2 ¢ I

A
2,1 ¢ I A

2,2 ¢ I

T

V , 0, 0)]

=
A

C
(2fi)KN/2

|A
1,1 ¢ I|1/2

,

A
2,2 ¢ I ≠ (A

2,1 ¢ I)(A
1,1 ¢ I)≠1(A

1,2 ¢ I), 0, 0
B

=
A

C
(2fi)KN/2

|A
1,1|N/2

, (A
2,2 ≠ A

2,1A
≠1

1,1A1,2) ¢ I, 0, 0
B

=
A

C
(2fi)KN/2

|A
1,1|N/2

, A
2,2 ≠ A

2,1A
≠1

1,1A1,2

B

.

Lemma 10 (Linear Expansion Property (Kronecker-Structured Form)). Let the com-
posite vector be

Ë
xT

1

xT
2

ÈT
and consider

p
0

= (C,

S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V).
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Then the exponentiated quadratic forms

p
1

1 Ë
xT

1

xT
2

xT
3

ÈT 2
= p

0

1 Ë
(x

1

+ Bx
3

)T xT
2

ÈT 2
,

p
2

1 Ë
xT

1

xT
2

xT
3

ÈT 2
= p

0

1 Ë
xT

1

(x
2

+ Bx
3

)T
ÈT 2

are given by

pi = (C,

S

WWWU
A

A
1,iB

A
2,iB

BT Ai,1 BT Ai,2 BT Ai,iB

T

XXXV)

for respectively i = 1, 2.

Proof. Follows from Lemma 6 and bilinearity of the Kronecker product.

Lemma 11 (Compression Property (Kronecker-Structured Form)). Let the composite
vector be

Ë
xT

1

xT
2

xT
2

ÈT
and consider

p
1

= (C,

S

WWWU

A
1,1 A

1,2 A
1,3

A
2,1 A

2,2 A
2,3

A
3,1 A

3,2 A
3,3

T

XXXV).

Then the exponentiated quadratic form

p
2

1 Ë
xT

1

xT
2

ÈT 2
= p

1

1 Ë
xT

1

xT
2

xT
2

ÈT 2

is given by

p
2

= (C,

S

U A
1,1 A

1,2 + A
1,3

A
2,1 + A

3,1 A
2,2 + A

2,3 + A
3,2 + A

3,3

T

V).

Proof. Follows from Lemma 7 and bilinearity of the Kronecker product.

Finally, we prove one additional identity.

Lemma 12 (Direct Integration Identity (Kronecker-Structured Form)). Let the com-
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posite vector be
Ë
xT

1

xT
2

ÈT
where x

1

œ RKN and x
2

=
Ë
yT

1

· · · yT
M

ÈT œ RMN . Then

Ix1 [(C, 2
S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V)](x
2

) = C
fiKN/2

|A
1,1|N/2

exp
I

≠
M,Mÿ

m1=1,m2=1

A
2,2,m1,m2yT

m1ym2

+
K,Kÿ

k1=1,k2=1

A≠1

1,1,k1,k2

A
Mÿ

m=1

A
2,1,k1,mym

BT

A
Mÿ

m=1

A
2,1,k2,mym

B J

.

Proof. Direct computation yields that

Ix1 [(C, 2
S

UA
1,1 A

1,2

A
2,1 A

2,2

T

V)] =
A

C
fiKN/2

|A
1,1|N/2

, 2(A
2,2 ≠ A

2,1A
≠1

1,1A1,2)
B

= C
fiKN/2

|A
1,1|N/2

exp{≠x
2

T [(A
2,2 ≠ A

2,1A
≠1

1,1A1,2) ¢ IN ]x
2

}

= C
fiKN/2

|A
1,1|N/2

exp{≠x
2

T (A
2,2 ¢ IN)x

2

+ xT
2

(A
2,1 ¢ IN)(A≠1

1,1 ¢ IN)

[(A
1,2 ¢ IN)x

2

]}.

Hence the result follows.

F.4 Conclusion

We have developed notation that makes working with exponentiated quadratic forms
more convenient. Importantly, the notation reduces manipulation of exponentiated
quadratic forms to relatively simple matrix operations.



G | Roots of Kernels

First, using the notation and identities from Appendix F with composite vector
Ë
tT · T

ÈT
,

any kernel of exponentiated quadratic form has a root:

R

CA

‡
|2A|1/4

fiK/4

, 2A, 0, 0
BD

ú
A

‡
|2A|1/4

fiK/4

, 2A, 0, 0
B

= I·

S

U

Q

a‡
|2A|1/4

fiK/4

, 2
S

U A ≠A

≠A A

T

V , 0, 0
R

b

Q

a‡
|2A|1/4

fiK/4

, 2
S

U0 0
0 A

T

V , 0, 0
R

b

T

V

= I·

S

U

Q

a‡2

|2A|1/2

fiK/2

, 2
S

U A ≠A

≠A 2A

T

V , 0, 0
R

b

T

V

=
A

‡2

|2A|1/2

fiK/2

fiK/2

|2A|1/2

, 2[A ≠ A(2A)≠1A], 0, 0
B

= (‡2, A, 0, 0).

Second, consider the diagonal multi-output exponentiated-quadratic kernel. Its diagonal
entries are of exponentiated quadratic form and thus have roots. Now, for any diagonal
H it holds that

R(H) ú HT = diag[R(H
1,1) ú H

1,1, . . . , R(HN,N)].

Thus the diagonal entries having roots implies that the diagonal multi-output exponentiated-
quadratic kernel has a root. Specifically, if

K(t
1

, t
2

) = ‡2 exp(≠“Ît
1

≠ t
2

Î2)I,
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then K(t
1

, t
2

) = [R(R) ú R](t
2

≠ t
1

) where

R(t) = ‡
(4“)K/4

fiK/4

exp(≠2“ÎtÎ2)I.

Finally, the white noise kernel is its own root:

[R(”I) ú ”I](t) =
⁄

RK
”(tÕ ≠ t)I”(tÕ)I dtÕ = ”(t)I.



H | Approximate Kernel Model

We derive an analytical expression for K̃f | H(T )

. Recall that H ’s components are mod-
elled independently. Then

K̃fi,fj | H(T )

=
Mÿ

k=1

⁄

RK
E[Hi,k(t

1

≠ · )Hj,k(t
2

≠ · ) | H(T )] d·

where, denoting hi = Hi,k, hj = Hj,k, uhi
= hi(T ) and uhj

= hj(T ),
⁄

RK
E[Hi,k(t

1

≠ · )Hj,k(t
2

≠ · ) | H(T )] d·

=
⁄

RK
{Khi,hj | uhi

,uhj
(t

1

≠ · , t
2

≠ · )

≠ E[hi(t1

≠ · ) | uhi
]E[hj(t1

≠ · ) | uhj
]} d·

=
⁄

R2K
[1(i ≠ j)Khi

(t
1

≠ · , t
2

≠ · )

+ Khi
(t

1

≠ · , T )M (hi,hj)Khj
(T , t

2

≠ · ) d·

= 1(i ≠ j)
⁄

RK
Khi

(t
1

≠ · , t
2

≠ · ) d·
¸ ˚˙ ˝

I(1,hi)
(t1,t2)

(H.1)

+
T,Tÿ

m=1,n=1

M (hi,hj)

m,n

⁄

RK
Khi

(t
1

≠ · , T m,:)Khj
(T n,:, t

2

≠ · ) d·
¸ ˚˙ ˝

I
(2,hi,hj )
m,n (t1,t2)

(H.2)

and

M (hi,hj) = K≠1

uhi
uhi

uT
hj

K≠1

uhj
≠ 1(i ≠ j)K≠1

uhi
.
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Hence,

K̃fi,fj | H(T )

=
Mÿ

k=1

Ë
1(i ≠ j)I(1,Hi,k) + tr(M (Hi,k,Hj,k)T I(2,Hi,k,Hj,k))

È

=
Mÿ

k=1

Ó
1(i ≠ j)[I(1,Hi,k) ≠ tr(K≠1

Hi,k(T )

I(2,Hi,k,Hi,k))]

+ HT
i,k(T )K≠1

Hi,k(T )

I(2,Hi,k,Hj,k)K≠1

Hj,k(T )

Hj,k(T )
Ô
.



I | Variational Free Energy of the
Nonparametric Kernel Model

I.1 Introduction

This chapter derives an analytical expression for the variational free energy of Model 5.
We also determine the asymptotic time complexity of computing the free energy.

Recall that the free energy is given by

F(q) = ≠1
2 log[(2fi)N |�|2] ≠ 1

2

Yÿ

i=1

Eq{Î�≠1[Y i,: ≠ y(T i,:)]Î2}
¸ ˚˙ ˝

Eq [log p(Y | H,x)]

≠
N,Mÿ

i=1,j=1

DKL[q(uHi,j
) Î p(uHi,j

)] ≠
Mÿ

j=1

DKL[q(ux̃j
) Î p(ux̃j

)].

In more detail, the Kullback-Leibler divergences are given by (Appendix B.2)

DKL[q(uHi,j
) Î p(uHi,j

)] = 1
2

C

tr(K≠1

uHi,j
�Hi,j

) + µT
Hi,j

K≠1

uHi,j
µHi,j

+ log
|KuHi,j

|
|�Hi,j

| ≠ N

D

,

(I.1)

DKL[q(ux̃j
) Î p(ux̃j

)] = 1
2

C

tr(K≠1

ux̃j
�x̃j

) + µT
x̃j

K≠1

ux̃j
µx̃j

+ log
|Kux̃j

|
|�x̃j

| ≠ N

D

(I.2)
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and the likelihood is given by

Eq[log p(Y | H , x)] = ≠1
2 log[(2fi)N |�|2] ≠ 1

2

Yÿ

i=1

Ó
Y T

i,:�≠2Y i,: ≠ 2Y T
i,:�≠2Eq[y(T i,:)]

+ tr{�≠2Eq[y(T i,:)yT (T i,:)]}
Ô
.

It thus remains to determine the predictive mean Eq[y(t)] and predictive autocovariance
Eq[y(t

1

)yT (t
2

)]. Note that the latter is only evaluated on its diagonal.

Recall that Hi,j and x̃j denote the number of inducing points for the processes THi,j
and

Tx̃j
respectively. Also recall that TH = maxi,j THi,j

and Tx̃ = maxj Tx̃j
. Finally, recall

that Y denotes the number of observed data points. Then Equations (I.1) and (I.2)
have respectively time complexities O(T 3

H) and O(T 3

x̃ ) (Appendix D). Thus F(q) has
time complexity O[NMT 3

H + MT 3

x̃ + Y N(Cµ + C
�

)] where Cµ and C
�

represent the
number of operations required to compute respectively Eq[yi(t)] and Eq[yi(t)yi(t)].

In the remainder of this chapter we utilise the notation and identities from Appendix F
without further notion.

I.2 Predictive Mean

We have that

Eq[yi(t)] = Eq{[(H ú x)(t)]i} =
Mÿ

j=1

⁄

RK
Eq[Hi,j(t ≠ · )xj(· )] d·

¸ ˚˙ ˝
T

(1)
i,j

where, denoting h = Hi,j and x = xj,

T
(1)

i,j =
⁄

h(t ≠ · )p(h | uh) dhq(uh) duh

x(· )p(x̃ | ux̃) dxq(ux̃) dux̃ d·

=
⁄

R2
Kh(t ≠ · , T h)K≠1

uh
µhKx,x̃(· , T x̃)K≠1

ux̃
µ d·

= µT
h K≠1

uh

⁄

RK
Kh(T h, t ≠ · )Kx,x̃(· , T x̃) d·

¸ ˚˙ ˝
I(L,h,x)

(t)

K≠1

ux̃
µx̃.
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In summary,

Eq[yi(t)] =
Mÿ

j=1

µT
Hi,j

K≠1

uHi,j
I(L,Hi,j ,xj)(t)K≠1

ux̃j
µx̃j

.

The integral I(L,·,·) is computed in Appendix I.4.

To begin with, there is a one-time cost of constructing and inverting all KuHi,j
and Kux̃j

,
which has time complexity O[M(T 3

H +KT 2

H +KT 2

x̃ +T 3

x̃ )]. Afterwards, all I(L,Hi,j ,x̃j) are
constructed in O(MKTHTx̃) time and the predictive mean is computed in O[M(T 2

H +
THTx̃ + T 2

x̃ )]. Hence O(Cµ) = O[M(T 2

H + KTHTx̃ + T 2

x̃ )].

I.3 Predictive Autocovariance

We have that

Eq[yi(t1

)yj(t2

)] =
M,Mÿ

k=1,l=1

⁄

R2K
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≠ ·
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)] d·
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=
Mÿ
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⁄
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Eq[Hi,k(t
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Mÿ

l=1,l ”=k

⁄
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+
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⁄
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¸ ˚˙ ˝
T
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T
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T
(2)
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Then, denoting hi = Hi,k, hj = Hj,k and x = xk,

T
(2)

i,j,k =
⁄
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where

M (hi,hj) = K≠1

uhi
[1(i ≠ j)�hi

+ µhi
µT

hj
]K≠1

uhj
≠ 1(i ≠ j)K≠1

uhi
,

M (x̃) = K≠1
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[�x̃ + µx̃µT

x̃ ]K≠1

ux̃
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.

Thus T
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In summary,

Eq[yi(t1

)yj(t2

)] =
Mÿ

k=1

µT
Hi,k

K≠1

uHi,k
I(L,Hi,k,xk)(t

1

)K≠1

ux̃k
µx̃k

Mÿ
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µT
Hj,l

K≠1

uHj,l
I(L,Hj,l,xl)(t

2

)K≠1

ux̃l
µx̃l

¸ ˚˙ ˝
T (1)

+ 1(i ≠ j)
Mÿ

k=1

I(Q1,Hi,k,xk)(t
1

, t
2

)

+ 1(i ≠ j)
Mÿ

k=1

tr[M (x̃k)T I(Q2,Hi,k,xk)(t
1

, t
2
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+
Mÿ

k=1

tr[M (Hi,k)T I(Q3,Hi,k,Hj,k,xk)(t
1

, t
2

)]

+
Mÿ

k=1

tr[M (Hi,k,Hj,k)T I(Q4,Hi,k,xk)(t
1

)M (x̃k)I(Q4,Hj,k,xk)T (t
2

)].
¸ ˚˙ ˝

T (2)

The integrals I(·)
· are computed in Appendix I.4.

To begin with, there is a one-time cost of constructing and inverting all KuHi,j
and Kux̃j

,
which has time complexity O[M(T 3

H + KT 2

H + KT 2

x̃ + T 3

x̃ )], and a one-time cost of com-
puting all M (Hi,j ,Hi,j) and M (x̃j), which has time complexity O[M(T 3

H + T 3

x̃ )]. Thus, the
resulting one-time cost has time complexity O[M(T 3

H + KT 2

H + KT 2

x̃ + T 3

x̃ )]. Afterwards,
all I(Q2,Hi,j ,xj), I(Q3,Hi,j ,Hi,j ,xj) and I(Q4,Hi,j ,xj) are constructed in O[M(KT 2

H + KTHTx̃ +
KT 2

x̃ )] time and T (1) and T (2) are computed in respectively O[M(T 2

H +THTx̃ +T 2

x̃ )+M2]
and O(M [T 2

HTx̃ + THT 2

x̃ ]) time. Hence

O(C
�

) = O[M(T 2

HTx̃ + KT 2

H + KTHTx̃ + KT 2

x̃ + THT 2

x̃ ) + M2].

I.4 Integrals I(·)
·

In this section we compute the integrals I(·)
· from Appendix I.3.
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I.4.1 Kernels

First, let the composite vector be
Ë
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tT
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·
ÈT

. Then
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) =
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1

≠ ·Î2 ≠ ÊÎt
2

≠ ·Î2) d·

= I· [(1, 2

S

WWWU

Ê 0 ≠Ê

0 Ê ≠Ê

≠Ê ≠Ê 2Ê

T

XXXV)]

=
A

fiK/2

(2Ê)K/2

, 2
S

UÊ 0
0 Ê

T

V ≠ 1
Ê

S

UÊ

Ê
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Ê
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V
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≠Ê Ê
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).

Second, let the composite vector be
Ë
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ÈT
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(t

1

, t
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)
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Finally, let the composite vector be
Ë
tT

1

tT
2

ÈT
. Then
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1
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2
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h exp(≠–Ît
1

Î2 ≠ –Ît
2

Î2 ≠ “Ît
2
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1
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S

U– + “ ≠“

≠“ – + “

T

V).

I.4.2 Integral I(L,·,·)
·,·

Let the composite vector be
Ë
tT T T

h,i,: T T
x̃,j,: · T

ÈT
and let L = – + “ + Ê. Then
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I.4.3 Integral I(Q1,·,·)

Let the composite vector be
Ë
tT

1

tT
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· T
ÈT
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I.4.4 Integral I(Q2,·,·)
·,·

Let the composite vector be =
Ë
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1

, T x̃,i,:)Kx̃,x(T x̃,j,:, ·
2

) d·
1

d·
2

= I· 1,· 2 [(‡2

h, 2

S

WWWWWWWWWWWWU

– + “ ≠“ 0 0 ≠– ≠ “ “

≠“ – + “ 0 0 “ ≠– ≠ “

0 0 0 0 0 0
0 0 0 0 0 0

≠– ≠ “ “ 0 0 – + “ “

“ ≠– ≠ “ 0 0 “ – + “

T

XXXXXXXXXXXXV

)

(1, 2

S

WWWWWWWWWWWWU

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Ê 0 ≠Ê 0
0 0 0 0 0 0
0 0 ≠Ê 0 Ê 0
0 0 0 0 0 0

T

XXXXXXXXXXXXV

)(1, 2

S

WWWWWWWWWWWWU

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Ê 0 ≠Ê

0 0 0 0 0 0
0 0 0 ≠Ê 0 Ê

T

XXXXXXXXXXXXV

)],

= I· 1,· 2 [(‡2

h, 2

S

WWWWWWWWWWWWU

– + “ ≠“ 0 0 ≠– ≠ “ “

≠“ – + “ 0 0 “ ≠– ≠ “

0 0 Ê 0 ≠Ê 0
0 0 0 Ê 0 ≠Ê

≠– ≠ “ “ ≠Ê 0 L “

“ ≠– ≠ “ 0 ≠Ê “ L

T

XXXXXXXXXXXXV

)

= ‡2

h

fiK

(L2 ≠ “2)K/2

exp
Ë
≠–Ît

1

Î2 ≠ –Ît
2

Î2 ≠ “Ît
1

≠ t
2

Î2 ≠ ÊÎT x̃,i,:Î2 ≠ ÊÎT x̃,j,:Î2

+ (L2 ≠ “2)≠1

Ó
LÎ(– + “)t

1

≠ “t
2

+ ÊT x̃,i,:Î2

+ LÎ≠“t
1

+ (– + “)t
2

+ ÊT x̃,j,:Î2

≠ 2“[(– + “)t
1

≠ “t
2

+ ÊT x̃,i,:)T (≠“t
1

+ (– + “)t
2

+ ÊT x̃,j,:]
ÔÈ

.



92 Variational Free Energy of the Nonparametric Kernel Model

I.4.5 Integral I(Q3,·,·,·)
·,·

Let the composite vector be =
Ë
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Now
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Furthermore, denote t
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so that

I
(Q3,hk,hl,x)

i,j (t
1
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2
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h

fiK/2
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C
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1
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≠ 2ÎT hk,i,: + T hl,j,:Î2)
D

.

I.4.6 Integral I(Q4,·,·)
·,·

Let the composite vector be
Ë
tT T T

h,i,: T T
x̃,j,: · T

ÈT
. Then

I
(Q4,h,x)

i,j (t) =
⁄

RK
Kh(t ≠ · , T h,i,:)Kx,x̃(· , T x̃,j,:) d·

= I· [(‡2

h, 2

S

WWWWWWU

– + “ ≠“ 0 ≠– ≠ “

≠“ – + “ 0 “

0 0 0 0
≠– ≠ “ “ 0 – + “

T

XXXXXXV
)(1, 2

S

WWWWWWU

0 0 0 0
0 0 0 0
0 0 Ê ≠Ê

0 0 ≠Ê Ê

T

XXXXXXV
)]

= I· [(‡2

h, 2

S

WWWWWWU

– + “ ≠“ 0 ≠– ≠ “

≠“ – + “ 0 “

0 0 Ê ≠Ê

≠– ≠ “ “ ≠Ê L

T

XXXXXXV
)]

= ‡2

h

fiK/2

LK/2

exp[≠–ÎtÎ2 ≠ –ÎT h,i,:Î2 ≠ “Ît ≠ T h,i,:Î2 ≠ ÊÎT x̃,j,:Î2

+ L≠1Î(– + “)t ≠ “T h,i,: ≠ ÊT x̃,j,:Î2].

I.5 Conclusion

We have derived an analytical expression for the variational free energy of Model 5. The
asymptotic time complexity of computing the free energy including one-time costs is
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given by

O[NMT 3

H + MT 3

x̃ + Y N(Cµ + C
�

) + one-time costs]
= O[NMT 3

H + MT 3

x̃ + Y NM(T 2

HTx̃ + KT 2

H + KTHTx̃ + KT 2

x̃ + THT 2

x̃ ) + Y NM2

+ M(T 3

H + KT 2

H + KT 2

x̃ + T 3

x̃ )]
= O[NMT 3

H + MT 3

x̃ + Y NM(T 2

HTx̃ + KT 2

H + KTHTx̃ + KT 2

x̃ + THT 2

x̃ ) + Y NM2].
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