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Abstract

Efficient approximate posterior inference in Gaussian processes makes use of exploitable
structure in the covariance function and observed data.

The first chapter reviews one well-known approach to approximate inference in
Gaussian processes, based on representing the posterior through a set of pseudo-data, and
one which is less so, in which the covariance function is approximated as being circular.
The second chapter progresses existing work in which the circulant approximation is
leveraged to better understand the properties of the state of the art pseudo-data inference
scheme. The primary contribution in this chapter is a derivation of a frequency-domain
representation of the low-rank covariance approximation.

The final chapter presents a new method designed to combine the strengths of the
two approximation techniques to solve problems that neither could solve individually.
This novel technique is developed throughout the chapter, its algorithmic properties
analysed and its performance compared to exact inference experimentally.
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Notation

All mathematical objects will be represented using ‘unbolded’ characters. The type of an
object, whether it be a scalar, vector, matrix, function etc, will be stated explicitly.

Probability Theory and Approximate Inference

Probability distributions are specified by their arguments.

p (x) marginal probability of x

p (x1, ..., xN) joint probability of (x1, ..., xN)
p (x2 |x1) conditional probability of x2 given x1

N (x |µ, Σ) probability density of x is that of the multivariate Normal
distribution with mean µ and covariance Σ

x ∼ N (µ, Σ) x is distributed according to a multivariate Normal
distribution with mean µ and covariance Σ

Ep(x) [f (x)] expectation of some function f of x under the distribution p (x)
Covx [ the covariance of x

DKL (q || p) Kullback-Leibler divergence between the distributions q and p

H [p] Shannon-entropy of p

p is not used other than to denote a probability distribution, q is not used other than
to denote an approximate posterior distribution.



xiv Notation

Gaussian processes

XA set of inputs
KA,B (cross) covariance matrix between the inputs XA and XB

fA function values at inputs XA

y (noisy) observations

Misc

O () Bachmann-Landau notation for asymptotic complexity
⊙ the Hadamard product
diag (x) diagonal matrix with vector x on the diagonal
diag (X) column-vector whose elements are the diagonal of the matrix X

circ (x) circulant matrix specified by vector x

toep (x) Toeplitz matrix specified by vector x

A † the conjugate transpose of the matrix A



Chapter 1

Introduction and Review

1.1 Gaussian Processes for Regression

This thesis concerns itself with the application of Gaussian processes (GPs) to the
problem of regression under additive Gaussian white noise, thus it is necessary to define
both unambiguously. A probabilistic definition of (univariate) regression is adopted in
which it is the task of predicting a distribution over plausible outputs f ∈ R given an
input x ∈ R. This is achieved by observing N input-output pairs (x, y)N−1

n=0 , assuming a
stochastic procedure governing their generation, and combining these using the laws of
probability to uncover a distribution over plausible mappings from inputs to outputs,
which is used to solve the regression problem.

The stochastic procedure assumed throughout is that first a function f : R→ R is
drawn from some distribution, then each output is generated as

yn ∼ f (xn) + ϵn, ϵn ∼ N
(
0, β−1

)
. (1.1)

Thus the key modelling problem is to choose a prior distribution over a family of functions
believed to be plausible. One possible approach is to define a parametric family fθ (eg
the polynomials of a particular order) and induce a distribution over functions by placing
a prior distribution over θ. An alternative approach is to place a nonparametric prior
over functions, in which we have an unbounded number of parameters, and the posterior
distribution over functions is represented in terms of the observed data.

Gaussian processes are such a nonparametric device. A GP is formally defined as
follows [Rasmussen and Williams, 2006]:

Definition 1.1.1. A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.
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A GP is therefore completely specified by its mean and covariance, which are pa-
rameterised by functions m : R → R and k : (R,R) → R respectively. Without loss
of generality, I will take the mean function m to be the zero function throughout this
thesis, thus the joint probability of a set of function values fD ∈ RN given a set of inputs
XD ∈ RN is

p (f |XD) = N (fD | 0, KD,D) (1.2)

where (KD,D)m,n = k (xm, xn). k is know as the covariance function or ‘kernel’ and can
be thought of as a measure of similarity between a pair of inputs.

The marginal probability of the observations under this model is thus

p (y |XD) = EfD ∼ N(0,KD,D)
[
N

(
y

∣∣∣ fD, β−1I
)]

= N
(
y

∣∣∣ 0, KD,D + β−1I
)

. (1.3)

To perform inference (compute the distribution over outputs f for inputs X given the
observations y, XD it is necessary only to compute the posterior predictive distribution

p (f# |X#, y, X) = N
(

f#

∣∣∣∣ K#,D

(
KD,D + β−1I

)−1
y, KD,D −QD,D

)
(1.4)

where QD,D := K#,D (KD,D + β−1I)−1
KD,#.

It is the covariance function which defines the characteristics of any particular GP. A
commonly used covariance function is the exponentiated quadratic (EQ) and is defined
as

k (xm, xn) = σ2 exp
(
− 1

2l2 (xm − xn)2
)

, (1.5)

where σ2, l2 > 0 are covariance function parameters that can be learned by maximising
the (log) marginal likelihood (equation 1.3). Choosing a covariance function function
appropriate for the data set at hand is essential for good regression performance and
many approaches have been investigated. For example Wilson and Adams [2013] propose
a covariance function which can approximate any stationary covariance function (sta-
tionarity will be explained later in the chapter) arbitrarily well under certain conditions,
whilst Tobar et al. [2015] take this idea to its logical conclusion and make the covariance
function itself nonparametric. Other approaches include the construction of complicated
covariance functions through the composition of simple covariance functions [Lloyd et al.,
2014] and a Deep GPs [Damianou and Lawrence, 2013], a technique inspired by the
recent emergence of ‘deep learning’, in which multiple Gaussian processes with simple
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covariance functions are composed to yield an object which is conditionally a GP with a
complicated covariance function.

I do not, however, address this important modelling issue in this thesis. Rather, note
that, although the unusually simple form of equations 1.3 and 1.4 make GPs convenient
objects in a small-data scenario, the O (N3) Cholesky decomposition required to compute
the quantities in equations 1.3 and 1.4 prohibits their direct application at scale1.

Accepting that this computational hurdle is not trivially circumvented, there are
essentially two options. We must either abandon the full GP prior over functions and
instead make a new set of modelling assumptions that may be less elegant but result in a
model in which inference is tractable2, or instead exploit structure present in the data to
perform inference approximately. I opt to pursue the second of these options as, although
in practice one tends to take practical considerations into account when defining a model,
a good approximation to the model that best reflects one’s beliefs about the problem at
hand is typically preferable.

The remaining sections of this introductory chapter discuss two complementary
techniques for approximate inference which exploit different types of structure in data.
The final short section will summarise, and outline the contributions and structure of
the rest of the remaining two chapters.

1.2 Exploiting Redundancy

Probably the most well known paradigm for approximating inference in GPs is based
upon the observation that commonly more data is observed than is actually necessary to
represent the posterior distribution, potentially rendering much of the data redundant.
This motivates so-called sparse GP approximations which aim to exploit exactly this
property by augmenting the observed data with a smaller set of pseudo-data and repre-
senting the GP posterior through these. The approaches to this augmentation process
have traditionally been viewed as falling into one of two categories. The first can be
viewed as performing exact inference under an approximate GP prior Quiñonero-Candela
and Rasmussen [2005], whilst the second as performing approximate inference using
Variational Bayes under an exact GP prior Titsias [2009]. Recent work [Bui et al., 2016]

1Chapter 2 of [Rasmussen and Williams, 2006] presents a procedure for evaluating equation 1.3 and
computing the mean and covariance in equation 1.4 using the Cholesky decomposition. In the appendix
they allude to the computational and numerical reasons to prefer this procedure over the naive direct
computation of the inverse and determinant of KD,D.

2I will always discuss the concept of tractability from a practical perspective. Thus whenever a
computation is referred to as ‘intractable’ it is meant that it is not possible to compute given the time
and resources available, rather than it having polynomial asymptotic complexity.
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has unified these two views using Power Expectation Propagation (Power EP) [Minka,
2004, 2001] by demonstrating that approaches in the first category are in fact performing
EP, thus both can be viewed as performing approximate inference under an exact GP
prior.

Adopting the approximate-prior view, whilst the first of these two approaches has
produced some very successful techniques [Snelson and Ghahramani, 2005] it sacrifices
some of the elegant (and highly useful) properties of GPs, in particular the defence
against overfitting offered to GPs by the Bayesian Occam’s Razor [Ghahramani, 2005;
MacKay, 2003]. The approximate GP priors correspond to parametric models which can
be susceptible to the problem of overfitting when the pseudo-data input locations are
optimised with respect to the log marginal likelihood of the data.

The second of these paradigms, however, retains its defence against overfitting. Of
particular interest is [Titsias, 2009] and the methodology by which it can be used to
handle the ‘big data’ problems that are becoming increasingly common [Hensman et al.,
2013]. As this technique will be exploited and investigated throughout this thesis, it is
explained in some detail below.

As discussed above, [Titsias, 2009] develops a framework for directly approximating
the posterior distribution over functions fD | y, XD of a GP using a small set of pseudo-
data. This framework is given a mathematically rigorous treatment in [Matthews et al.,
2015]. The derivation that I present here is based on the opening sections of [Matthews
et al., 2015] but, at the expense of ignoring that some integrals are taken over infinite
dimensional objects, is devoid of measure theory.

Partition the input space R into three disjoint subsets: a set of pseudo-inputs XZ of
size M , the set of input positions for the observed data excluding any input positions
that are also pseudo-inputs XD\Z of size N , and the rest of the index set X∗, therefore
R ≡ XZ ∪XD\Z ∪X∗. Since each element of the index set R corresponds to exactly one
random variable, we define corresponding sets of random variables fZ , fD\Z and f∗ such
that f = {fZ , fD\Z , f∗}. For convenience I will neglect the \Z notation and write the set of
random variables fD\Z as fD. This allows us to, for example, write the joint distribution
over these random variables as p (f) = p (fZ , fD, f∗) = p (f∗ | fZ , fD) p (fD | fZ) p (fZ)
using the chain rule of probability, where the dependence upon the index set has been
neglected.

Choosing to perform variational inference by minimising the KL-divergence between an
approximating distribution and the true posterior distribution, we wish to find q (f |Xz)
such that

DKL (q (f) || p (f | y)) (1.6)
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is minimised, where the dependencies on X, X∗ and Xz have been dropped for notational
convenience. If one is suspicious of the infinite-dimensional integral required to compute
the KL-divergence, one could suppose that we are dealing with a GP valued only on a
finite subset of R, but one that is nonetheless sufficiently large to be indistinguishable
from R for all practical purposes, in which case the divergence will clearly converge.

Proceeding as is usual in this framework, we re-phrase the problem of minimising the
KL-divergence as that of maximising a lower bound to the evidence by noting that, since
for any arbitrary distributions a and b we have that

DKL (a || b) ≥ 0 (1.7)

with equality iff a is equal to b over the entire support of both distributions,

log p (y) =
∫

q (f) log p (f)
q (f) df + DKL (q (f) || p (f | y)) ≥

∫
q (f) log p (f)

q (f) df =: L (q) .

(1.8)
The evidence lower bound (ELBO) L is tight only when DKL (q (f) || p (f | y)) is min-
imised. Defining the approximate posterior distribution q (f) := p (f∗ | fD, fZ) p (fD | fZ) q (fZ)
we find that

L = Eq(fD) [p (y | fD)]−DKL (q (fZ) || p (fZ)) , (1.9)

and, noting that for any x, y, A, µ, Σ0, Σ1

EN (x | µ,Σ0) [logN (y |Ax, Σ1)] = logN (y |Aµ, Σ1)−
1
2tr

(
AT Σ−1

1 AΣ0
)

, (1.10)

we find that the first term in L (equation 1.9) is

Eq(fD) [p (y | fD)] = Eq(fZ)
[
Ep(fD | fz) [p (y | fD)]

]
= Eq(fZ)

[
logN

(
y

∣∣∣ KD,ZK−1
Z,ZfZ , β−1I

)]
− β

2 tr
(
KD,D −KD,ZK−1

Z,ZKZ,D

)
. (1.11)

Observe that for arbitrary distributions a, b

DKL (a || b) = −H [a]− Ea [log b] (1.12)
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where H is the Shannon Entropy. Expanding the second term in equation 1.9 using this
identity, the first term using the result in equation 1.11, and defining

Σq := (βK−1
Z,ZKZ,DKD,ZK−1

Z,Z + K−1
Z,Z)−1 (1.13)

µq := βΣqK
−1
Z,ZKZ,Dy, (1.14)

we obtain

argmax
q

L

= argmax
q

H (q)− 1
2Eq(fZ)

[
β(y −KD,ZK−1

Z,ZfZ)T (y −KD,ZK−1
Z,ZfZ) + fT

Z K−1
Z,ZfZ

]
= argmax

q
H (q)− 1

2Eq(fZ)
[
fT

Z Σ−1
q fZ − 2βfT

Z K−1
Z,ZKZ,Dy

]
= argmax

q
−DKL (q (fZ) || N (fZ |µq, Σq)) . (1.15)

Thus without having assumed a particular form for q it is clear that the optimal
approximate posterior distribution is

q (fZ) = N (fZ |µq, Σq) (1.16)

as this uniquely minimises the KL-divergence.
From this all other quantities of interest follow in short order. Substituting equation

1.11 and 1.16 into equation 1.9 and again applying the identity in equation 1.10 we find
that the ELBO is

L = logN
(
y

∣∣∣ KD,ZK−1
Z,Zµq, β−1I

)
− β

2 tr (KD,D −QD,D + RD,D)

−DKL (N (µq, Σq) || N (0, KZ,Z)) , (1.17)

where QD,D := KD,ZK−1
Z,ZKZ,D and RD,D := KD,ZK−1

Z,ZΣqK
−1
Z,ZKZ,D.

Let X# ∈ R be a finite set of input locations with corresponding vector of outputs
f#. The approximate posterior predictive distribution

p (f# | y) = Ep(f | y) [p (f# | f)] ≈ Eq(f) [p (f# | f)] (1.18)
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will be Gaussian, and it is therefore sufficient to compute only its mean and covariance.
These sufficient statistics can be found quickly by noting that

f# = K#,ZK−1
Z,ZfZ + ϵ, (1.19)

where

fZ ∼ N (µq, Σq) , (1.20)
ϵ ∼ N (0, K#,# −Q#,#) , (1.21)

Q#,# := K#,ZK−1
Z,ZKZ,#. (1.22)

The posterior predictive mean

µ# := Ep(f | y) [f#] ≈ K#,ZK−1
Z,ZEq(fZ) [fZ ] = K#,ZK−1

Z,Zµq, (1.23)

and similarly the posterior predictive covariance

Σ# := Ep(f | y)
[
f#fT

#

]
− Ep(f | y) [f#]Ep(f | y)

[
fT

#

]
≈ K#,# −Q#,# + R#,# (1.24)

where R#,# := K#,ZK−1
Z,ZΣqK

−1
Z,ZKZ,# are defined analogously to QD,D and RD,D.

The most intensive operation required to compute this posterior approximation is the
matrix multiplication KZ,DKD,Z which requires O (NM2) operations. Assuming that
M ≪ N this can result in a dramatic saving over the O (N3) matrix inversion required
for exact inference.

Figure 1.1 presents a course grained cartoon of manner in which the discussed sparse
approximation breaks. In all four images there are 1000 regularly spaced observations
and 10 regularly spaced pseudo-data. The only factor that changes between them is
the length scale of the EQ covariance function used to generate the plots. In the first
two the length scale is sufficiently large that the posterior distribution is simple enough
to be accurately represented through the 10 pseudo-data. However, in the second pair
of plots the length scale is shorter, resulting in more complicated (‘wiggly’) posterior
distributions that cannot be accurately represented using only 10 pseudo-data. The
primary point that these plots aim to convey is that, in the presence of ‘large’ amount of
data distributed evenly over the input domain of interest, the number of pseudo-data
required to accurately approximate the posterior distribution will be a factor of the
‘length scale’ and smoothness of the covariance function relative to the size of the region
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Figure 1.1 Series of figures demonstrating the decay in performance of the sparse varia-
tional GP approximation [Titsias, 2009] (blue) to the exact posterior distribution of a
GP (red) having observed N = 1000 input-output pairs under Gaussian white-noise with
variance β−1 = 0.1 and an EQ covariance function with σ2 = 1 as log l2 is varied. Lines
represent the (approximate) posterior mean and filled regions represent two marginal
(approximate) posterior standard deviations from the mean. Top row: log l2 = 0,−2, for
these longer length scales the posterior is well approximated by the 10 pseudo-data used.
Bottom row: log l2 = −4,−6. For these cases the pseudo-data are insufficient to capture
the posterior distribution. This is a very course grained visualisation of the fact that as
the GP becomes more complex more pseudo-data are required to represent it if we have
more pseudo-data than data.
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covered by the observed data. This observation provides extremely strong motivation for
the sparse posterior approximation method discussed, but also reveals a short-coming of
the formulation presented. To see this consider the first two functions in figure 1.1, in
which N = 1000 data have been observed. Quite clearly observing another 1000 data
in the range [−1, 1] will leave the posterior distribution essentially unchanged, but will
roughly double the amount of computational resources required to compute the posterior
approximation. Furthermore, we could repeat this process of observing a batch of 1000
new data an unbounded number of times and not really learn anything new, but would
now require an unbounded amount of computation to tell us this under the current
formulation! This unnecessary state of affairs is addressed by the technique presented in
the following section.

1.2.1 Scaling to Large Data Sets

The methodology presented by Hensman et al. [2013] provides exactly the same posterior
approximation as that presented above, but finds the optimal variational parameters
µq, Σq using stochastic optimisation to address the issue of computational complexity in
the presence of an increasingly large amount of redundant observed data. In particular it
observes that the data dependent terms of L can be written as an independent sum over
the data:

L =
N∑

i=1
logN

(
yi

∣∣∣ Ki,ZK−1
Z,Zµq, β−1I

)
− β

2
[
(KD,D)i,i − (QD,D)i,i + (RD,D)i,i

]
−DKL (N (µq, Σq) || N (0, KZ,Z)) . (1.25)

where Ki,Z is the (1×M) cross-covariance matrix between the ith observation input and
each of the pseudo-inputs. A cheap unbiased Monte Carlo estimator for L can now be
constructed by sampling a subset of data uniformly at random, and computing

L̂ ≃ N

T

[
logN

(
yS

∣∣∣ KS,ZK−1
Z,Zµq, β−1I

)
− β

2 tr (KS,S −QS,S + RS,S)
]

−DKL (N (µq, Σq) || N (0, KZ,Z)) (1.26)

where yS is the output vector for the subset, KS,Z , KS,S, QS,S and RS,S are defined in
the same manner as previously and T is the number of samples taken.

Given the estimator for L, to perform inference one could simply compute its gradient
with respect to both µq and Σq, which is trivial to accomplish given modern automatic
differentiation technology, and perform stochastic gradient ascent [Robbins and Monro,



10 Introduction and Review

1951] in L̂. This, however, would not guarantee the symmetry or positive definiteness
of Σq, meaning that further constraints would need to be placed upon it. A superior
approach is investigated in the work on stochastic variational inference by Hoffman
et al. [2013], which elucidates how the natural gradient [Amari, 1998] can be used to
simultaneously improve the rate of convergence of stochastic gradient ascent, reduce the
computational burden associated with ‘gradient’ computations and ensure the positive
definiteness of the resulting covariance matrix. Thus the approach taken in [Hensman
et al., 2013] is to work in terms of the natural parameters

θ1 = Σ−1
q µq (1.27)

θ2 = −1
2Σ−1

q (1.28)

and perform natural gradient ascent as discussed.
The asymptotic complexity of this method is now O (TM2 + M3), the TM2 term

arising from the need to compute QS,S and RS,S and the M3 from still needing to compute
the Cholesky decomposition of several matrices of size M ×M . Crucially, this method no
longer depends explicitly upon the size of the observed data set, but rather on the number
of pseudo-data required to represent the function from which the data are assumed to
have been drawn.

1.3 Exploiting Approximately-Circular Structure

This second class of approximation concerns the covariance function directly. I will
show how, from certain conditions on the covariance function and input locations,
exploitable approximately-circular structure will arise in the covariance matrix. This
section provides a few different perspectives showing how this structure arises and
motivating its exploitation as a good approximation.

1.3.1 Approximately Circulant Toeplitz Matrices

Definition 1.3.1. A matrix C ∈ RM×M is called circulant if Cm,n = c(n−m) mod M for
some c ∈ RM .

This definition states that the first row of the matrix C is exactly c, and each
subsequent row is produced by taking the previous row, shifting it one position to the
right and wrapping the last element around into the first position. For example the
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matrix 
0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

 (1.29)

is circulant. I define the operator circ (c) to generate a circulant matrix in the manner
described above from the vector c. For example, circ ([0, 1, 2, 3]) would generate the
above circulant matrix.

These matrices are particularly tractable as their eigenvalues γ are given by the
Discrete Fourier Transform (DFT) of c, and their eigenvectors in stacked form are always
the Inverse Discrete Fourier Transform (IDFT) matrix, therefore

C = FTΓFT † (1.30)

where FT and FT † are the unitary DFT and IDFT matrices respectively and Γ = diag (γ).
Observing that

C−1 =
(
FTΓFT †

)−1
=

(
FT †

)−1
Γ−1FT−1 = FTΓ−1FT †, (1.31)

the inverse of C is therefore found by computing the eigenvalues of C using an FFT
operation, taking O (M log M) time, and then computing their reciprocal in O (M) time
to find Γ−13. Similarly the determinant is

|C| = |FT| |Γ|
∣∣∣FT †

∣∣∣ = |Γ| , (1.32)

the determinant of the diagonal matrix Γ which is also computed in O (M) time. These
matrices are members of the more general class of Toeplitz matrices:

Definition 1.3.2 (Toeplitz matrix). T ∈ RM×M is Toeplitz if Tm,n = tn−m for some
vector t ∈ R2M−1 (which is indexed from −(M − 1) to (M − 1)). We write T = toep (t).

For example,

toep
([

t−3 t−2 t−1 t0 t1 t2

])
=


t0 t1 t2 t3

t−1 t0 t1 t2

t−2 t−1 t0 t1

t−3 t−2 t−1 t0

 . (1.33)

3Note that Γ−1 should not be represented explicitly, as this would require O
(
M2)

memory. Indeed,
it is never necessary to do so.
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We now consider the conditions under which a Toeplitz matrix can be approximated
by a circulant matrix. First consider the band-diagonal Toeplitz matrix with band-width
2B − 1 < 2M − 1

T = toep

[
0 ... 0 t−(B−1) ... t0 ... t(B−1) 0 ... 0

]
︸ ︷︷ ︸

2M−1

 , (1.34)

given which, construct the circulant matrix

C = circ

[
t0 ... t(B−1) 0 ... 0 t−(B−1) ... t−1

]
︸ ︷︷ ︸

M

 . (1.35)

Upon computing the matrices T and C it is clear that T is identical to C everywhere
except the top right and bottom left corners, in which T is zero and C is non-zero. One
can easily imagine that as M becomes large, the difference between the two matrices will
tend to zero in some matrix norm. This idea is formalised in the following lemma.

Lemma 1.3.1. (Asymptotic Equivalence) The matrices T and C are asymptotically
equivalent under the weak (Frobenius) norm. That is

lim
M→∞

M−1∑
m,n=0

|Cm,n − Tm,n|2 = 0. (1.36)

Proof. See [Gray, 2006]4.

1.3.2 Approximately Circulant Covariance Matrices

Primed with the knowledge about the close relationship between Toeplitz and circulant
matrices from section 1.3, I now present the circumstances under which the covariance
matrix KD,D will be Toeplitz, thus motivating its approximation with a circulant matrix.

Note 1.3.1 (Symmetric Toeplitz matrix). A symmetric Toeplitz matrix T ∈ RM×M is
specified by a vector t ∈ RM such that Tm,n = t|n−m|.

4As discussed in [Gray, 2006], it is not necessary to assume that T and C are band-diagonal to obtain
this result. It is in fact sufficient to assume that, in the limit as M →∞, the sequence t−(M−1), ..., t(M−1)

is either square or absolutely summable (ie.
∑∞

m=−∞ |tm|2 or
∑∞

m=−∞ |tm| respectively). These weaker
conditions will not be necessary in practice and are therefore not discussed.
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Definition 1.3.3 (Stationary covariance function). A covariance function k is called
stationary if it is invariant under the simultaneous translation of both of its inputs such
that

k (x, y) = k (x + a, y + a) . (1.37)

Such covariance functions will be denoted more simply by overloading notation 5:

k (x, y) = k (x− y) . (1.38)

The covariance matrix computed using such a covariance function will be symmetric
and Toeplitz if the inputs X ∈ RM are regularly spaced such that xn = an + b for some
a, b ∈ R. To see this note that

(KD,D)m,n = k (xm − xn)

= k (a |n−m|)
= k (a(0− |n−m|))
= (KD,D)0,|n−m| , (1.39)

thus the covariance matrix KD,D can be expressed in terms of the elements of its first
row, making it both symmetric (as with all covariance matrices) and Toeplitz. This
motivates the construction of a circulant approximation to KD,D using the construct in
equation 1.35.

Furthermore, to recover the banded assumption discussed in section 1.3.1 it is necessary
to assume that there exists b > 0 such that ∀ |x| > b, k (x) = 0. This is not a criterion
that common covariance functions (such as the EQ) satisfy exactly, however, many do so
approximately in the following sense.

Definition 1.3.4 (Approximately banded covariance function). A covariance function
k is called approximately banded (AB) if, ∀ϵ > 0, ∃b ∈ [0,∞) such that ∀ |x| > b,
k (x) < ϵ.

Any finite-precision implementation6 of an AB covariance function will yield a banded
covariance function as there will always exist some ϵ > 0 such that any δ ∈ (0, ϵ) will
be truncated to zero by the finiteness of the representation. Much of the work in this
dissertation will appeal to a covariance function being banded based on this observation.

5All covariance functions discussed in this thesis will be stationary, so this abuse of notation will be
used without explicit warning.

6Any implementation on a finite digital computer.
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1.3.3 Circular Covariance Function Approximation

The above result, that certain covariance matrices are approximately circulant, can be
established without appealing to Toeplitz approximations to circulant matrices, but
rather by approximating the covariance function directly. This more general approach
will turn out to be essential for good posterior prediction in Chapter 3.

The approximation is given by

kc (x) = k (|x|) + k (∆− |x|) , (1.40)

for some ∆ > 0 and stationary covariance function k.

Lemma 1.3.2. Given M data {xm = δm : m ∈ {0, ..., M − 1}, δ > 0} and ∆ = Mδ,

(Kc)m,n = kc (xm − xn) (1.41)

is a symmetric circulant matrix.

Proof. Symmetry is trivial to show:

kc (−x) = k (|−x|) + k (∆− |−x|) = k (|x|) + k (∆− |x|) = kc (x) . (1.42)

Recalling that xn = an + b, that Kc is circulant is similarly simple:

(Kc)m,n = kc (a |m− n|) = kc (a |0− (n−m)|) = (Kc)0,|n−m| .

Observing that as ∆→∞, ∆− |x| → ∞, if k is banded then it is recovered from kc

in this limit provided that x is finite.

1.3.4 Circular Input-Domain Approximation

Yet another approach to obtain the approximation is to define a mapping which makes
the input domain itself circular. Specifically define

g (x) := I (x ∈ [0, ∆/2)) x + I (x ∈ [∆/2, ∆)) (x−∆), (1.43)
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and assume that x ∈ [0, ∆). Equivalence with the circular covariance function approxi-
mation kc is shown by evaluating k (g (x)):

k (g (x)) = k (I (x ∈ [0, ∆/2)) x) + I (x ∈ [∆/2, ∆)) (x−∆),

and since the two sets [0, ∆/2) and [∆/2, ∆) are disjoint,

k (g (x)) = k (x) I (x ∈ [0, ∆/2)) + k (x−∆) I (x ∈ [∆/2, ∆)) .

Further assuming that k is banded with band-width b < ∆/2, such that k (x) = 0 for
|x| > b, the indicator functions are redundant and kc is recovered.

This input-domain view, or equivalently the covariance function view, on the circulant
approximation will be appealed to frequently throughout this dissertation. With regards
to terminology when doing so, I will state that the circulant approximation is to be applied,
and subsequently assume that computations are exact under this approximation. For
example, let k be a stationary covariance function to which the circulant approximation
has been applied, and X a vector of regularly sampled inputs, then

KD,D = FTDΓDFT †
D. (1.44)

1.3.5 Efficient Inference under the Circulant Approximation

The discussed circulant approximation has been exploited previously in the GP literature,
for example, embedding the the Toeplitz covariance matrix in a large circulant matrix for
efficient sampling in Geostatistical simulations [Dietrich and Newsam, 1997]. More recent
work [Cunningham et al., 2008] exploits the approximation to accelerate MAP estimation
and the use of the Lapace approximation for inference and learning in Point Process
intensity estimation, [Turner, 2010] exploits the approximation directly to accelerate
inference in GP models for probabilistic amplitude demodulation, whilst [Ulrich et al.,
2015] employs it for use in multi-output GPs.

I now elucidate probably the simplest manner in which the circulant approximation
can be applied for accelerated inference in regularly sampled univariate regression. Let
the input vector X ∈ RN comprise N data in which, without log of generality, xn = n

and let y ∈ RN be arbitrary noisy observations. Letting k be a stationary covariance
function we approximate the prior covariance matrix as

KD,D = FTDΓDFT †
D, (1.45)
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where ΓD := diag (γD) is the diagonal matrix of eigenvalues of the first row of KD,D. It
follows that the log marginal likelihood can be approximated as

log p
(
y

∣∣∣ X, β−1
)

= − 1
2 log

∣∣∣2π
(
ΓD + β−1I

)∣∣∣− 1
2 ỹ †

(
ΓD + β−1I

)−1
ỹ

= − N

2 log 2π − 1
2

N−1∑
n=0

[
log

(
γn + β−1

)
+

(
γn + β−1

)−1
|ỹn|2

]
, (1.46)

where ỹ := FT †
Dy. Covariance function parameter learning can now be performed

efficiently through the application of the chain-rule using one’s preferred reverse-mode
automatic differentiation tool7. The observations can be de-noised using the posterior
predictive mean at the input locations

Ep(fD | y,X,β−1) [fD] = FTDΓD

(
ΓD + β−1I

)−1
ỹ. (1.47)

For efficient computation it is imperative the the computations here be performed from
right to left. To see this observe that ΓD (ΓD + β−1I)−1

ỹ can be computed in linear
time given ỹ (both matrices are diagonal) to yield a new column vector. The final FTD

operation can be performed in O (N log N) time. Were the computation performed in
the reverse order it would be necessary to multiply FTD by a diagonal matrix, requiring
O (N2) operations. This kind of order-dependent asymptotic complexity will frequently
be a subject of primary concern in Chapter 3.

Finally, the uncertainty surrounding fD can be quantified through its marginal
variance

diag
(
Covp(fD | y,X,β−1) [fD]

)
= diag

(
FTD

(
ΓD − Γ2

D

(
ΓD + β−1I

)−1
)

FT †
D

)
= N−1diag

(
ΓD − Γ2

D

(
ΓD + β−1I

)−1
)

. (1.48)

1.4 Outline and Contributions

The next chapter expands on previous work investigating the use of the circulant approx-
imation to analyse the properties of the sparse variational inference framework presented
in this chapter. The primary contribution of this chapter is to provide an accurate
derivation of a quantity of primary concern, and to show that it in doing so several new
issues arise.

7eg. [Abadi et al., 2015] or Autograd (http://github/com/HIPS/autograd)

http://github/com/HIPS/autograd
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The third chapter presents an approach to combining the strengths of the two
approximate inference schemes discussed to accelerate inference in a uni-dimensional
setting. The methodology developed will require no particular structure in the observation
inputs and will have asymptotic complexity far below the O (M3) discussed earlier in
the chapter.





Chapter 2

Analysis of Sparse Variational GP
Approximation

Understanding the properties of the approximate inference scheme presented by Titsias
[2009] is essential for its use in practice. Although it is now well understood that increasing
the number of pseudo-data will only ever improve the quality of the approximation [Bauer
et al., 2016], tightening the ELBO, there is a lack of quantitative understanding of the
failure modes of the approximation. As was shown in the introduction, the quality of
the approximation can drop quite suddenly when the posterior distribution becomes
too complicated for the available pseudo-data to faithfully represent, and it would be
very useful to understand at exactly what point this occurs in terms of the properties of
the covariance function and observed data. This chapter aims to address exactly this
problem.

This chapter builds upon an unpublished technical report produced by Thang Bui
entitled ‘Efficient Probabilistic Time Frequency Analysis’, in which the set up presented
below was devised. This work exploited the circulant approximation to obtain simple
expressions governing the quality of the posterior approximation found using sparse
variational inference for GPs. These are, however, based upon making an assumption
about the number of non-zero eigenvalues that will not generally be valid. The focus of
this chapter is thus directed towards lifting this assumption to enable a more reliable
analysis of the properties of sparse GP approximations.

2.0.1 Background and Preliminaries

Further to the discussion of the variational approximation in the first chapter, it is
important to note that a more concise form for the ELBO can be found than that
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presented previously [Titsias, 2009]:

L = logN
(
y

∣∣∣ 0, KD,D + β−1I
)
− β

2 tr (KD,D −QD,D) , (2.1)

where QD,D := KD,ZK−1
Z,ZKZ,D is clearly a quantity of importance if an analysis of

the properties of the sparse variational approximation is to be made. Noting that the
circulant approximation has previously lead to simple expressions for the quantities of
interest for GPs, it seems reasonable that one might attempt to construct a scenario
in which the circulant approximation could be leveraged to analyse the performance of
other approximation techniques. For this to be undertaken for the sparse variational
approximation, it will be necessary to represent QD,D in the frequency domain. Although
one can readily apply the circulant approximation to K−1

Z,Z , the cross-covariance matrix
KZ,D is more troublesome. It is thus the primary contribution of this chapter to provide
a derivation of a frequency-domain representation for these quantities that requires no
additional assumptions beyond those already made by the circulant assumption.

The DFT matrix FTD ∈ RN×N , where the subscript D indicates that it is the same
size as the observed data covariance matrix, is

(FTD)m,n = 1√
N

e−2πimn/N (2.2)

and the corresponding inverse transform FT †
D ∈ RN×N is its conjugate transpose

(
FT †

D

)
m,n

= 1√
N

e2πimn/N . (2.3)

Analogously the DFT matrices associated with the pseudo-data covariance matrix are

(FTZ)m,n = 1√
M

e−2πimn/M ,
(
FT †

Z

)
m,n

= 1√
M

e2πimn/M . (2.4)

2.1 Approximating QD,D

Consider the situation in which we observe N regularly sampled data {xn}N−1
n=0 such that,

without loss of generality, xn = n. Now generate M pseudo-inputs by sub-sampling the
observation-inputs regularly with period P = N/M ∈ N. An expression for the circulant
approximation to QD,D of the form FTDΛFT †

D is found following using the following
lemma.
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Lemma 2.1.1. The cross-covariance matrix KZ,D ∈ RM×N between the M = N/P

pseudo-inputs XZ and N observations XD under the circulant approximation is

KZ,D = G ΓDFT †
D (2.5)

where G is an M ×N matrix whose (m, n)th element is

(G)m,n = N− 1
2 e−2πimn/M , (2.6)

and ΓD = diag (γD) is the matrix whose diagonal contains the eigenvalues γD of the
circulant approximation to KD,D.

Proof. First consider the matrices A, B, C whose shapes are M ×N , N ×S and M ×M

respectively, and denote as A\i, C\i the matrices resulting from removing the ith row
of A and C respectively. It is readily verified that if C = AB then C\i = A\iB. We
now apply this result iteratively to construct KZ,D from KD,D, specifically by removing
each row whose row number is not in the set {0, P, 2P, ..., (M − 1)P}. Recalling that
approximation KD,D = FTDΓDFT †

D under the circulant approximation, it follows that
we can approximate KZ,D by removing the same rows from FTD as we would KD,D to
yield the matrix G ∈ RM×N , whose (m, n)th element is given by

(G)m,n = N− 1
2 e−2πi(mP )n/N = N− 1

2 e−2πimn/M , (2.7)

thus completing the proof.

Equipped with lemma 2.1.1, the circulant approximation to QD,D can be written as

QD,D = KD,ZK−1
Z,ZKZ,D

= FTD

(
FT †

Z G ΓD

)†
Γ−1

Z

(
FT †

Z G ΓD

)
FT †

D. (2.8)

Considering this expression in stages, beginning with FTZG, we see that

(
FT †

ZG
)

m,n
= (NM)− 1

2
M−1∑
k=0

e2πik(m−n)/M

=


√

M/N : n = pM + m, p ∈ {0, ..., P − 1}
0 : otherwise.

(2.9)

A more intuitive representation of this matrix can be found by expressing it as a
block-matrix. Denote by IM the identity matrix of size M × M , then noting that
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√
M/N = 1/

√
P , it follows that

FT †
ZG = 1√

P

[
IM ... IM︸ ︷︷ ︸

P blocks

]
(2.10)

is the M ×N matrix formed by the horizontal concatenation of P copies of IM/
√

P .
Now consider the following division of ΓD into P 2 blocks, in which 0M denotes the

zero-matrix of size M ×M and Γ(p)
D = diag

([
(γD)pM . . . (γD)pM+M−1

])
is the pth block

of M eigenvalues:

ΓD =


Γ(0)

D 0M . . . 0M

0M Γ(1)
D

... . . .
0M Γ(P −1)

D︸ ︷︷ ︸
P blocks

 . (2.11)

In this form it is clear that right-multiplying FT †
ZG by ΓD yields the M ×N matrix

FT †
ZGΓD = 1√

P

[
Γ(0)

D . . . Γ(P −1)
D︸ ︷︷ ︸

P blocks

]
, (2.12)

comprising P diagonal blocks. It is now possible to find a block-matrix representation
for

(
FT †

ZGΓ †
D

)†
Γ−1

Z

(
FT †

ZGΓD

)
. First left-multiply the previous result by Γ−1

Z to obtain

Γ−1
Z

(
FT †

ZGΓD

)
= 1√

P

[
Γ−1

Z Γ(0)
D . . . Γ−1

Z Γ(P −1)
D︸ ︷︷ ︸

P blocks

]
, (2.13)
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and finally right-multiply by FT †
ZGΓ †

D to obtain
(
FT †

ZGΓ †
D

)†
Γ−1

Z

(
FT †

ZGΓD

)

= 1
P

[
Γ(0)

D . . . Γ(P −1)
D︸ ︷︷ ︸

P blocks

]
†

[
Γ−1

Z Γ(0)
D . . . Γ−1

Z Γ(P −1)
D︸ ︷︷ ︸

P blocks

]

= 1
P


Γ(0)

D Γ−1
Z Γ(0)

D Γ(0)
D Γ−1

Z Γ(1)
D . . . Γ(0)

D Γ−1
Z Γ(P −1)

D

Γ(0)
D Γ−1

Z Γ(1)
D Γ(1)

D Γ−1
Z Γ(1)

D

...
... . . .

Γ(P −1)
D Γ−1

Z Γ(0)
D . . . Γ(P −1)

D Γ−1
Z Γ(P −1)

D︸ ︷︷ ︸
P blocks

 =: Λ, (2.14)

in which each block is diagonal. Λ is restricted to be zero everywhere except for
elements on the diagonal strips which appear with period M throughout the matrix,
however, this matrix is clearly not diagonal in the traditional sense.

2.2 Discussion

In this chapter I have presented a derivation of a method by which to obtain a frequency-
domain representation of QD,D, the quantity of central interest when using sparse GP
approximations. Unfortunately, it turns out that it is not diagonal in the frequency
domain (and consequently not circulant in the time domain) meaning that the use of
this representation to analyse the quality of a GP posterior approximation is not going
to be straightforward. For example it is not obvious how to invert QD,D using this
representation, or to compute its determinant. However, since it is extremely sparse
in the frequency domain, it would seem reasonable that such computations might be
tractable.





Chapter 3

Sparse Circular Approximate
Inference

3.1 Outline

In this chapter I present and analyse a methodology for performing approximate inference
in GPs which leverages both circulant and sparse GP approximations to reduce the
asymptotic complexity of approximate inference in a class of problems which neither can
solve individually. This formulation simultaneously corrects for the circular covariance
introduced at either end of the observed data by the circulant approximation, allows
for the inputs of observed data to be arbitrarily located, and drastically increases the
number of pseudo-data that can be used to represent the posterior distribution relative
to the number that can practically be used in existing variational GP approximations.
As in [Hensman et al., 2013], these gains are achieved at the expense of being able to
perform approximate inference analytically; an iterative optimisation procedure with low
asymptotic complexity is instead required.

Consider again a one dimensional input / output regression problem in which we
have XD ∈ RN inputs and y ∈ RN outputs with no particular structure present in the
values of X. We assume the standard GP regression model in which latent function
values fD ∼ N (0, KD,D) and y ∼ N (fD, β−1I). Clearly the covariance function cannot
be directly approximated as being circulant as it is not Toeplitz. However, if pseudo-data
are introduced into the problem their input locations can be chosen such that Toeplitz
structure is induced.

Work on Tree-Structured GPs (TSGPs) [Bui and Turner, 2014] also addresses exactly
this problem. It is reasonable to ask, therefore, what this new work will add. There are
principally two properties of TSGPs that could be improved upon by the methodology
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that I will present. Firstly TSGPs do not provide a lower bound to the marginal likelihood
or preserve the GP prior. Although this is not necessarily a problem in many scenarios,
it would be desirable to show that approximate inference can be performed in large
scale problems whilst preserving exactly the GP prior over functions. Secondly, learning
covariance function parameters using the TSGP could be problematic for large problems
as each iteration of an optimisation procedure requires a pass over the entire data set,
whereas I will present a methodology in which data can be mini-batched to provide cheap
gradient estimates for the covariance function parameters.

I will now outline the toy regression problem that will be used throughout the
remainder of this chapter and discuss the issue of posterior predictive inference under the
approximate posterior distributions that result. The rest of the chapter will be devoted
to the development of approximate inference techniques, beginning with the posterior
mean and followed by the more thorny issue of the posterior covariance.

3.1.1 Toy Experiment Setup

Figure 3.1 illustrates the toy set up that will be used repeatedly throughout this section
for proof-of-concept experimentation. 75 pseudo-inputs are spaced regularly on [−15, 15).
750 observed data, drawn jointly from a single GP whose kernel is an Exponentiated
Quadratic with length scale l2 = 1 and variance σ2 = 1, are split into three groups of
250 observations whose input locations are drawn from uniform distributions on [−10, 5],
[−3, 3] and [6, 10] respectively. Observation noise with variance β−1 = 10−1 is added.

The pseudo-input locations in the toy scenario are defined such that coverage of all
of the observed data is provided, but also so that there are regions at either end of the
region covered by the pseudo-data where there is no observed data. This is intentional as
it will mean that, when the prior covariance matrix for the pseudo-data KZ,Z is circularly
approximated, the correlations will have minimal impact on the posterior distribution.
This point will be discussed further later in the chapter.

I will perform approximate inference in this problem set up using the variational
approaches discussed in the preceding chapters, with modifications to exploit the circulant
structure introduced in this section. Specifically, an optimal approximate posterior
distribution q (fZ) = N (fZ |µq, Σq) will be found in such a manner that the asymptotic
complexity of inference and posterior prediction is held well below than O (M2) and only
depends linearly upon the number of observed data.
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Figure 3.1 Toy problem setup. Pseudo-inputs are positioned such that coverage of the
regions containing observed data is provided.

3.1.2 Posterior Predictive Inference

Posterior predictive inference in the mean is particularly efficient when KZ,Z is circulant.
Recall that the posterior predictive mean is

Ef∼q [f#] = K#,ZK−1
Z,Zµq. (3.1)

Diagonalising KZ,Z we obtain

Ef∼q [f#] = K#,ZFTZΓ−1
Z FT †

Zµq (3.2)

which, when computed from right to left, requires two O (M log M) FFT operations, one
O (M) multiplication of a vector by a diagonal matrix and a final O (MN#) operation,
where N# is the number of observations at which we wish to make predictions.

The overall tractability of the posterior predictive covariance

Covf∼q [f#] = K#,# −Q#,# + R#,#, (3.3)
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where Q#,# := K#,ZK−1
Z,ZKZ,# and R#,# := K#,ZK−1

Z,ZΣqK
−1
Z,ZKZ,#, is dependent upon

the particular parameterisation chosen for Σq. However, the first two terms are indepen-
dent of Σq and K#,# is easily evaluated, as is Q#,# by diagonalising KZ,Z .

3.2 Inference in the Posterior Mean

A key observation is that the optimisation of the ELBO (equation 1.17) with respect
to the mean µq can be performed independently of the covariance Σq. This problem is
equivalent to maximising

Lµ := −β

2
(
y −KD,ZK−1

Z,Zµq

)T (
y −KD,ZK−1

Z,Zµq

)
− 1

2µT
q K−1

Z,Zµq. (3.4)

As discussed in section 1.2, the solution to this maximisation problem is

µq = σ−2
n KZ,Z

(
σ−2

n KZ,DKD,Z + KZ,Z

)−1
KZ,D y, (3.5)

however, since KD,Z is not Toeplitz and therefore not approximately circulant, the
multiplication KZ,DKD,Z remains intractable for large (pseudo) data sets as the operation
has asymptotic complexity O (NM2). Furthermore, as a consequence of not being able
to make a circulant approximation to each term in the inversion (βKZ,DKD,Z + KZ,Z)−1,
it retains the usual O (M3) asymptotic complexity associated with matrix inversion. It
is therefore not practical to find the solution in an analytic manner and we must resort
to an iterative optimisation.

[Hensman et al., 2013] utilised stochastic gradient ascent in the natural parameters to
find the optimal q-distribution. Unfortunately this will not be possible in our case as the
covariance Σq will be further constrained, beyond simply being symmetric and positive
semidefinite (PSD), through the efficient parameterisations discussed in subsequent
sections. As such different optimisation procedures must be considered.

3.2.1 Conjugate Gradients

The method of Linear Conjugate Gradients (CG) [Fletcher and Reeves, 1964] is formulated
to solve minimisation problems of the form

min
x

xT Ax− bT x + c. (3.6)
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By expanding out equation 3.4, it is immediately clear that Linear CG can be directly
applied to the minimisation of −Lµ, and thus the maximisation of Lµ, with

A := K−1
Z,Z + σ−2

n K−1
Z,ZKZ,DKD,ZK−1

Z,Z (3.7)

and
b := σ−2

n K−1
Z,ZKZ,Dy. (3.8)

Algorithm 3.1 The Linear Conjugate Gradients algorithm as presented in [Nocedal
and Wright, 2006].

r0 ← b− Ax0
p0 ← r0
k ← 0
loop

αk ←
rT

k rk

pT
k

Apk

xk+1 ← xk + αkpk

rk+1 ← rk − αkApk

if rk+1 is sufficiently small then exit loop.
βk ←

rT
k+1rk+1

rT
k

rk

pk+1 ← rk+1 + βkpk

k ← k + 1
end loop

return xk+1

Algorithm 3.1 shows the computation required to compute the Linear CG procedure.
The most computationally intensive terms are clearly pT

k Apk and Apk, which would both
have asymptotic complexity O (M2N) if implemented naively by first computing A and
then computing the multiplication Apk. A more efficient procedure can be obtained
by exploiting the structure present in A. Algorithm 3.2 presents a procedure by which
the required computations can be performed using only four O (M log M) (inverse)
FFT operations, two O (MN) operations (KD,Zλ1 and KZ,Dλ2) and a handful of O (M)
operations.

3.2.2 Optimisation with Stochastic Gradients

The Linear CG algorithm discussed previously has the disadvantage of scaling linearly
with the amount of data observed, which is less than ideal when handling large modern
data sets. Although the O (MN) operations are readily parallelised, an ideal procedure
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Algorithm 3.2 Algorithm to compute pT
k Apk and Apk efficiently by exploiting the

structure present in A as it is defined in equation 3.7.
Require: pk, KD,Z and ΓZ where ΓZ is the diagonal matrix of eigenvalues of the circulant

approximation to KZ,Z .
λ1 ← FTZΓ−1

Z FT †
Zpk

λ2 ← KD,Zλ1

λ3 ← FTZΓ−1
Z FT †

ZKZ,Dλ2
pT

k Apk ← pT
k λ3 + pT

k λ1
Apk ← λ3 + λ1

return Apk, pT
k Apk

would utilise the stochastic gradients obtained that can be obtained when mini-batches
of the data are processed.

Algorithm 3.3 The AdaGrad optimisation algorithm [Duchi et al., 2011] applied to
maximise Lµ.
Require: Initial posterior mean µ0 ∈ RM and learning rate η > 0.

G← {0}M

µ← µ0
for t = 1, 2, ... until convergence do

g ← ∇µLµ (µ)
for j ∈ {0, ..., M − 1} do

Gj ← Gj + g2
j

µj ← µj + ηgj/
√

Gj

end for
end for
µq ← µ

The ‘vanilla’ stochastic decent (SGD) procedure is one such procedure, but its
performance is known to rely heavily on a good choice of learning rate and the particular
decay schedule chosen to satisfy the Robbins-Monro conditions [Robbins and Monro,
1951]. Several algorithms have been developed in recent years to attempt to deal with
these problems including AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012] and Adam
[Kingma and Ba, 2014]. Each algorithm requires access only to an unbiased estimate of
the gradient of the function of interest w.r.t. the parameters being optimised, and each
explicitly avoids the need to access any higher order derivatives.

The gradient of Lµ w.r.t. µq is

∇Lµ = K−1
Z,Z

(
βKZ,D

(
y −KD,ZK−1

Z,Zµq

)
− µq

)
(3.9)
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which can again be computed with four FFT operations, two O (MN) operations and
a few O (M) operations. The difference in complexity between this procedure and CG
is that the data may be mini-batched, resulting in the two O (MN) terms becoming
dramatically faster to compute as N is much smaller. The results presented below use the
AdaGrad algorithm as it was found to perform better than AdaDelta or Adam with little
tuning of the parameters of the procedures. More attention to optimising the parameters
of AdaDelta or Adam may have resulted in better performance than AdaGrad.

3.2.3 Toy Experiments and Results
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Figure 3.2 Comparison of the posterior mean found using exact inference, AdaGrad and
CG after 150 × 750 data observations each. The results found with CG are (visually)
indistinguishable from those found using exact inference. AdaGrad clearly has yet to
converge in sections of the input domain without observed data.

Figure 3.2 shows the posterior mean converged to by both AdaGrad (with mini-
batches comprising 75 data) and CG. The approximate posterior mean computed using
150 iterations of CG is visually indistinguishable from the exact posterior mean. The
results using AdaGrad are, however, less impressive; although the approximate posterior
mean obtained is good in sections of the input domain containing observations, inference
has broadly failed where there is missing data. The quality of extrapolation, however,
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appears to depend strongly upon the width of the section of missing data. For example,
the AdaGrad posterior mean is substantially more accurate on [−5,−3] than on [3, 6]
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Figure 3.3 The log of the expected absolute error in sections of input domain containing
data (left) and sections not containing data (right). Graphs computed after each algorithm
has seen 750 data (one iteration for CG, 10 iterations of AdaGrad with 75 data in each
mini-batch). Expectations approximated using Simpson’s rule quadrature.

Figure 3.3 shows how the performance of inference varies depending upon whether
we consider the in-sample (x ∈ {[−10,−5], [−3, 3], [6, 10]}) or out-of-sample (x ∈
{[−15, 10), (−5,−3), (3, 6), (10, 15]}) regions of the input domain. The left hand plot
shows that CG obtains substantially better performance, even on the in-sample regions,
but that AdaGrad does manage to obtain small errors in these regions of the input
domain. The right hand plot reinforces quantitatively what is discerned qualitatively
from visual inspection of figure 3.2, that AdaGrad performs poorly in out-of-sample
regions of the input domain. Experiments in which optimisation was performed using
AdaGrad with full batches showed similar results to those with mini-batches.

3.3 Stationary Posterior Approximation

I now move on to consider how to efficiently approximate the posterior covariance. Were
Σq simply constrained to be symmetric and PSD, it would be necessary to store M(M +
1)/2 unique real numbers. This is undesirable as it would induce a component of our
approximate inference scheme with O (M2) asymptotic complexity. A parameterisation
of the covariance matrix must therefore be chosen in which the number of parameters
scales linearly with M . There are a couple of obvious initial choices; that the covariance
matrix chosen to be (band) diagonal or circulant. The first of these choices is clearly
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going to yield a poor approximation to the posterior covariance in all situations in which
the covariance function is not highly localised. The second option, however, merely
implies stationarity and some circular covariance at either end of the pseudo-data. The
added circular covariance is inconsequential as we have already prescribed to have extra
pseudo-data at either end of the observed data to prevent the circular approximation
to the prior covariance interfering with the approximate posterior distribution around
the observed data. The assumption of stationarity is in general a poor one as posterior
covariances are highly non-stationary; for example missing data in a regularly-sampled
time series should induce higher uncertainty in the value of the pseudo-outputs whose
input locations are close to those of the missing data than is present in the rest of the
time series. By definition this cannot be captured by a stationary posterior distribution.

However, for example if only one observation is occasionally missing, it may be the
case that the amount of extra uncertainty is minimal meaning that a stationary Σq is
reasonable. The other issue with a circular Σq is that, as we have introduced extra
pseudo-data outside of the observed data, there are essentially blocks of ‘missing data’ at
either end of the time-series. If we assume that the time-series is long in comparison to
the length of the overhanging pseudo-data this may not be a problem from the perspective
of learning kernel parameters as it should introduce only a small amount of bias into the
ELBO.

Despite the potential problems associated with a circulant Σq, I will proceed to
investigate its properties as it may be useful in certain cases and results in particularly
tractable forms for the ELBO and its gradients.

Firstly define

LΣ := −β

2 tr
(
KD,ZK−1

Z,ZΣqK
−1
Z,ZKZ,D

)
− 1

2tr
(
K−1

Z,ZΣq

)
+ 1

2 log |Σq| , (3.10)

the components of the ELBO L which depend upon Σq. Now constraining Σq to be
circulant such that

Σq := FTZΓqFT †
Z (3.11)

for some diagonal Γq with positive elements {γm}M−1
m=0 , and applying the circulant approx-

imation to the prior covariance

KZ,Z = FTZΓZFT †
Z , (3.12)
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we find that LΣ simplifies significantly:

LΣ ≈ −
1

2β−1 tr
(
KD,ZFTZΓ−1

Z ΓqΓ−1
Z FT †

ZKZ,D

)
− 1

2tr
(
Γ−1

Z Γq

)
+ 1

2

M∑
m=0

log γm

= − 1
2β−1

M−1∑
m=0

N−1∑
n=0

(γq)m

(γZ)2
m

∣∣∣∣(K̃Z,D

)
m,n

∣∣∣∣2 − 1
2tr

(
Γ−1

Z Γq

)
+ 1

2

M∑
m=0

log γm (3.13)

where K̃Z,X := FT †
ZKZ,D. Here use has been made of the identities

FTZFT †
Z = I,

tr
(
FTZΓFT †

Z

)
= tr (Γ) ,∣∣∣FTZΓFT †
Z

∣∣∣ = |Γ| ,

where A ∈ RM×M is some arbitrary conformal matrix.
The second and third terms in equation 3.13 clearly have asymptotic complexity

O (M), whereas the first term has asymptotic complexity O (NM log M) as there are N

DFT computations required to compute both K̃Z,X .
Noting that the first term in equation 3.13 contains a sum over n, we can obtain a

cheap unbiased estimator by mini-batching the data. I use the following single-sample
Monte Carlo estimator of the quantity

LΣ ≈ −
N

2β−1

M−1∑
m=0

(γq)m

(γZ)2
m

∣∣∣∣(K̃Z,D

)
m,n

∣∣∣∣2 − 1
2tr

(
Γ−1

Z Γq

)
+ 1

2

M∑
m=0

log γm (3.14)

where the index n is drawn from a uniform distribution over {0, ..., N − 1}.
The gradient of LΣ w.r.t. Γq is

∇ΓqLΣ = −1
2

[
βΓ−1

Z K̃Z,DK̃D,ZΓ−1
Z + Γ−1

Z − Γ−1
q

]
⊙ I, (3.15)

where ⊙I denotes the Hadamard product with the identity matrix (this element-wise
product appears as Γq is constrained to be diagonal). Since only the diagonal of ∇ΓqLΣ

is required, only the diagonal of the first term need be computed:

β
(
Γ−1

Z K̃Z,DK̃D,ZΓ−1
Z

)
m

= β(γZ)−2
m

N−1∑
n=0

∣∣∣∣(K̃Z,D

)
m,n

∣∣∣∣2 . (3.16)

The most computationally intensive operation required, with asymptotic complexity
O (NM log M), is the N inverse DFTs needed to compute K̃Z,D. Again the complexity
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can be reduced dramatically to O (M log M) by considering a single-sample Monte Carlo
estimate

LΣ ≈ −
1
2

[
NβΓ−1

Z AΓ−1
Z + Γ−1

Z − Γ−1
q

]
, (3.17)

where A ∈ RM×M is a diagonal matrix whose mth element is

Am,m = (γZ)−2
m

∣∣∣∣(K̃Z,D

)
m,n

∣∣∣∣2 . (3.18)

Furthermore, noting that the element-wise product distributes over the sum operator,
we can immediately see from equation 3.15 that the exact solution for the eigenvalues of
the posterior covariance matrix is

Γq =
(
σ−2

n Γ−1
Z K̃Z,DK̃D,ZΓ−1

Z ⊙ I + Γ−1
Z

)−1
(3.19)

which again has asymptotic complexity O (NM log M) as all of the inversion operations
are taken over diagonal matrices and therefore only require computation time linear in
M .

3.3.1 Toy Experiments and Results

To highlight the nature of the posterior covariance approximation that a circulant
approximation provides, I investigate the solution on the toy data set described at the
start of the chapter.

Figure 3.4 shows the convergence of the optimisation procedure is swift, only around
fifteen data are processed before convergence to the exact solution is reached. It is
particularly interesting that the variance of the estimator appears to be negligible as
there is minimal optimisation noise (the ‘learning curve’ of the optimiser is smooth and
apparently noise-free).

Figure 3.5 shows the circulant solution converged to by the optimiser, which fails to
adjust to the heteroscedasticity in the exact posterior. 1 As shown in the right hand
image, the circulant posterior slightly overestimates the marginal variance in regions
of the input domain where data has been observed, while severely underestimating the
marginal variance where there are no observations.

In summary, a circulant approximation to the covariance of the approximation
posterior results in tractable inference with O (M log M) complexity when the mini-

1The exact circulant solution is not depicted as it is visually indistinguishable from the solution
converged to by the optimiser.
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Figure 3.4 Convergence of the log of the negative ELBO as AdaGrad is iterated with
a mini-batch size of 1 and learning rate 2.0. Convergence to the exact solution, whose
ELBO is depicted as a constant line at its solution, is achieved after approximately
15 iterations. Interestingly the variance introduced by mini-batching appears to be
negligible.
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Figure 3.5 Filled regions represent marginal posterior variance. Red fill is computed under
the exact posterior whilst blue is computed under the circulant approximate posterior.
The mean was found using the Conjugate Gradients algorithm described in the previous
section. Left: The marginal variance computed using the circulant covariance appears to
be accurate in regions of high data density but as expected fails to accurately adapt to
the additional uncertainty where there is no data. Right: Zoomed in to the input range
[2, 4]. The circular approximation has very slightly over-estimated the marginal variance
where there is a large amount of data (roughly, inputs < 3), and severely underestimated
it where there is none (roughly, inputs > 3).
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batches are used, but undesirably low posterior variance estimates wherever there is
missing data.

3.4 Non-Stationary Posterior Approximation

Although a circulant parameterisation appears to be a computationally convenient choice
for Σq, it is clearly insufficient to capture important aspects of the posterior distribution of
a GP in most scenarios, namely variations in posterior variance. It is therefore necessary
to consider other types of parameterisation for Σq that are more expressive but remain
tractable.

The obvious way forward is to combine tractable matrices such that the resulting Σq is
non-stationary. I will consider two types of matrices; diagonal and circulant. The matrix
resulting from the combination of these matrices must be symmetric, PSD, and both
its inverse and determinant must be easily computed. This unfortunately precludes the
summation of two such matrices as, although the result will be symmetric, computing the
determinant and inverse becomes difficult. To see this, consider that for some circulant
matrix K with positive eigenvalues Γ and diagonal matrix W whose diagonal elements
are {wm}M−1

m=0 ,

(K + W )−1 =
(
FTΓFT † + W

)−1
= FT

(
Γ + FTWFT †

)−1
FT †. (3.20)

Intuitively, the problem is that the manner in which we have previously been able to
invert a circulant matrix easily is to perform the inverse in the frequency domain, in
which everything that we have needed to invert is diagonal and therefore simple to invert.
The diagonal matrix W is not diagonal in the frequency domain as it is not circulant. A
similar argument holds for computing the determinant of the summation:

|K + W | =
∣∣∣FTΓFT † + W

∣∣∣ =
∣∣∣Γ + FTWFT †

∣∣∣ (3.21)

Thus it appears to be the case that we cannot exploit the particularly simple structure
of the two matrices if we sum them.

Multiplication of a circulant matrix by a pair of diagonal matrices, however, is much
more tractable. Considering Σq := WKW , we can easily see that it is symmetric by
noting that K is symmetric, from which it follows that

(WKW )m,n = wmwnKm,n = wnwmKn,m = (WKW )n,m. (3.22)
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It must also be PSD, for which it is necessary to show that xT (WKW )x ≥ 0 for any
vector x [Rasmussen and Williams, 2006]. This can be seen to be the case by first
recalling that K has positive eigenvalues by definition, and is therefore itself PSD. Thus
we know that for any vector z, zT Kz > 0, hence xT (WKW )x = (Wx)T K(Wx) > 0.

Furthermore, the inverse can be computed as

(WKW )−1 = W −1K−1W −1 (3.23)

and the determinant
|WKW | = |K| |W |2 . (3.24)

Having established the candidacy of the proposed form, it is necessary now to consider
further constraints on the values taken by W and K. By noting that observing additional
data should never increase the magnitude of the covariance, the largest values admissible
in the posterior covariance should be those given by the prior. One way to enforce this is
to allow the circulant matrix to take on arbitrary values and constrain W based on them
to prevent larger values than the prior covariance being present in WKW . However,
a simpler approach is simply to define K := KZ,Z , the prior covariance between the
pseudo-inputs, and to require that ∀m ∈ {0, ..., M − 1}, wm ∈ [0, 1]2.

3.4.1 Efficient ELBO Evaluation

Under this parameterisation, the ELBO w.r.t. terms involving Σq is

LΣ := − 1
2β−1 tr

(
KD,ZK−1

Z,ZWKZ,ZWK−1
Z,ZKZ,D

)
− 1

2tr
(
K−1

Z,ZWKZ,ZW
)

+ log |W |
(3.25)

The first and third terms are easy to evaluate efficiently by applying the circulant decompo-
sition to KZ,Z , resulting in leading order asymptotic time-complexities of O (NM log M)
and O (M) respectively, where N is either the total number of data or the size of the
mini-batches used.

It is not immediately clear, however, how to efficiently compute the second trace
term. To devise a procedure for the efficient computation of this quantity, consider the
following slightly more general problem. 3

2The problem is converted back into an unconstrained optimisation via the monotonic transform
w = log(1 + exp(ŵ)). ŵRM is then optimised in place of w

3I would like to thank Wessel Bruinsma for some discussions that helped lead towards my derivation
of lemma 3.4.1. After deriving it I was disappointed to discover that it is, in fact, a widely known
property of the Hadamard product.
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Let A, B ∈ RM×M be arbitrary circulant matrices specified by vectors a, b ∈ RM .
Furthermore let V, W ∈ RM×M be diagonal matrices defined by vectors v, w ∈ RM

respectively. We wish to evaluate the trace

tr (AV BW ) . (3.26)

Naively this has asymptotic time-complexity O (M3), but this can be reduced by simply
exploiting the circulant structure of A and B to express the computation as

tr (AV BW ) = tr
(
FTΓaFT †V FTΓbFT †W

)
, (3.27)

which has asymptotic time-complexity O (M2 log M). With some additional insight, it
emerges that the computation can in fact be achieved in O (M log M) time. To see this
a couple of simple lemmas are required.

Lemma 3.4.1. Let v, w ∈ RM be the diagonal elements of V := diag (v) and W :=
diag (w). Given the matrices C, D ∈ RM×M with arbirary values,

tr (CV DW ) = tr (WCV D) = wT (C ⊙DT )v. (3.28)

Proof.
tr (CV DW ) = tr (WCV D) (3.29)

holds as a consequence of the invariance of the trace under cyclic permutations. From
here the proof follows by expanding the trace elementwise.

tr (WCV D) =
M−1∑
m=0

wm

M−1∑
n=0

Cm,nvnDn,m

=
M−1∑
m=0

wm

M−1∑
n=0

vnCm,n

(
DT

)
m,n

=
M−1∑
m=0

wm

M−1∑
n=0

vn

(
C ⊙DT

)
m,n

= wT
(
C ⊙DT

)
v
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Lemma 3.4.2. Let a, b ∈ RM define the circulant matrices A := circ (a), B := circ (b).
A ⊙ BT is another circulant matrix C := circ (c) where the mth element of c ∈ RM is
ambM−m−1.

Proof. The proof requires simply that we show that circulant matrices are closed under
transposition and Hadamard product and that c is defined correctly.

Closure under transposition can be shown constructively by first defining f ∈ RM

with elements {f0 f1 ... fM−1}. Now construct g ∈ RM such that gm = fM−m−1. It is
then simple to verify that

circ (f)T = circ (g) .

Closure under the Hadamard product is shown by observing that for circulant matrices
circ (f), circ (g)

(circ (f)⊙ circ (g))m,n =circ (f)m,n circ (g)m,n

=f(n−m) mod Mg(n−m) mod M .

Define hm := fm + gm, then

(circ (f)⊙ circ (g))m,n = h(n−m) mod M = circ (h)m,n .

Now applying Lemma 3.4.1 to equation 3.26 yields

tr (AV BW ) = wT
(
A⊙BT

)
v. (3.30)

Recalling that we defined A and B to be circulant, it follows from lemma 3.4.2 that
A⊙BT must also be circulant. Thus it follows that

tr (AV BW ) = wT FTΓFT †v, (3.31)

where Γ := diag (γa⊙b) and (γa⊙b)m = ambM−m−1. This quantity now requires two
O (M log M) (I)FFT operations and two O (M) operations (multiplication of a vector
by a diagonal matrix and inner product between two vectors), thus the asymptotic
complexity is O (M log M) to leading order.

Applying this result to the (previously awkward) trace term in the KL-divergence
yields

tr
(
K−1

Z,ZWKZ,ZW
)

= wT
(
K−1

Z,Z ⊙KZ,Z

)
w = wT FTZΛFT †

Zw (3.32)
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where Λ := diag (λ) and λ ∈ RM contains the eigenvalues of the circulant matrix
K−1

Z,Z ⊙KZ,Z .
Combining this with the asymptotic complexities for the other terms in LΣ, the leading

order asymptotic complexity is O (NM log M). With single-sample mini-batching this
drops to O (M log M).

3.4.2 Efficient Gradient Computation

Having established that the all terms on the ELBO depending upon w can be computed
efficiently, it is important to establish that gradients can also be computed efficiently.
Considering each terms equation 3.25 as it appears,

− 1
2β∇W ⊙Itr

(
KD,ZK−1

Z,ZWKZ,ZWK−1
Z,ZKZ,D

)
=

[
KZ,ZWK−1

Z,ZKZ,DKD,ZK−1
Z,Z

]
⊙ I.

(3.33)
Observing that due to the diagonal constraint on W we require only the diagonal elements
of the result, the required computations simplify to

diag
(
KZ,ZWK−1

Z,ZKZ,DKD,ZK−1
Z,Z

)
= diag

([
KZ,ZWK−1

Z,ZKZ,D

] [
KD,ZK−1

Z,Z

])
, (3.34)

where bracketing has been introduced to indicate the most efficient manner in which
to perform the computations. We can now see that the vector of gradients w.r.t. w is
simply the following Hadamard product between column vectors:

[
KZ,ZWK−1

Z,ZKZ,D

]T
⊙

[
KD,ZK−1

Z,Z

]
, (3.35)

where each vector requires O (M log M) time to compute if single-sample mini-batching
is used such that KZ,D ∈ RM×1.

The gradients of the trace term in equation 3.25 can be computed efficiently by
exploiting the result in equation 3.32 to obtain

diag
(
∇W ⊙Itr

(
K−1

Z,ZWKZ,ZW
))

= 2FTZΛFT †
Zw, (3.36)

and finally
diag (∇W ⊙I log |W |) =

[
w−1

0 ... w−1
M−1

]T
. (3.37)

To leading order, the gradient computations are therefore require O (M log M) operations.
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3.4.3 Concavity of the Objective Function

It is important to know whether or not the solution found to an optimisation problem is
likely to be sensitive to the manner in which the problem is initialised. The previous
two problems involved quadratic forms in which the maximisation of the ELBO is well
known to be concave, meaning that there is only one local maximum in the objective
function, the global maximum. It is not obvious, however, that the objective function is
concave in this instance. To show concavity it is necessary to show that the Hessian H

of the objective function w.r.t. the parameters being optimised is negative semidefinite
[Nocedal and Wright, 2006], such that for any vector x

xT Hx ≤ 0. (3.38)

To show this, I first appeal again to lemma 3.4.1 to re-write equation 3.25 as

LΣ = −β

2 wT
([

K−1
Z,ZKZ,DKD,ZK−1

Z,Z

]
⊙KZ,Z

)
w − 1

2wT
(
K−1

Z,Z ⊙KZ,Z

)
w + log |W | .

(3.39)
First note that the Schur Product Theorem states that the Hadamard product of two

positive definite matrices is also positive definite, which implies an analogous relationship
between PSD matrices and the Hadamard product. To show that the Hessians of the
first two terms −β

2 wT
([

K−1
Z,ZKZ,DKD,ZK−1

Z,Z

]
⊙KZ,Z

)
w and −1

2wT
(
K−1

Z,Z ⊙KZ,Z

)
w are

negative semidefinite, it is therefore sufficient to show that each of the three matrices
KZ,Z , K−1

Z,Z and K−1
Z,ZKZ,DKD,ZK−1

Z,Z are PSD (due to the negation of each of the terms).
KZ,Z is trivially PSD as it is defined to be a valid covariance matrix, whilst K−1

Z,Z must
also be PSD as its eigenvalues are the reciprocal of the eigenvalues of KZ,Z , whose
eigenvalues must be positive as it is PSD. Also for any arbitrary vector x

xT
(
K−1

Z,ZKZ,DKD,ZK−1
Z,Z

)
x =

(
KD,ZK−1

Z,Zx
)T (

KD,ZK−1
Z,Zx

)
≥ 0. (3.40)

Finally, the Hessian of − log |W | = diag
(
[w−2

0 ... w−2
M−1]

)
, and its negation is therefore

negative semidefinite.
It has been shown that each term individually is log concave owing to the corresponding

Hessians being PSD, thus establishing that their summation, LΣ, is also concave. This
result is important as it removes the need to perform experiments in the following section
to establish sensitivity of the final solution obtained to the initialisation.
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3.4.4 Toy Experiments and Results

As there is not a closed form solution available w, the only variational parameter that
considered in this section, it is not possible to compare against the ground truth as found
in the previous two sections. However, a good approximation to the ground truth can be
found using the BFGS optimisation procedure [Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970]. Although the asymptotic complexity of BFGS is super-linear in
the parameters, and is therefore not suitable for the large-scale inference to which this
method will ultimately be applied, it is useful in this small-scale experiment to judge
whether the procedures which are more scalable converge to a near-optimal solution.
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Figure 3.6 Optimisation convergence results for non-stationary Σq. The constant red
and teal lines are the log marginal likelihood of the GP and ELBO of the stationary Σq

approximation (from the previous section) respectively. The constant green line is the
solution found by BFGS. The blue line is the learning curve associated with learning using
AdaGrad and full-batches of data, whilst the black line is AdaGrad with mini-batches of
size 1. AdaGrad converges to the solution found by BFGS whether full or mini-batches
are used. The solution found by the non-stationary posterior distribution is substantially
better in terms of the ELBO than the solution found using a stationary approximate
posterior.

Figure 3.6 shows the results, in terms of the convergence in ELBO, of an experiment in
which the approximate posterior mean was first found using the CG procedure described
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in section 3.2. Each element of w was then initialised to 0.9 and optimised w.r.t. the
ELBO using BFGS, AdaGrad with full batches and AdaGrad with mini-batches of size 1
and step-size 0.5.

BFGS converged such that the gradient w.r.t. each of the elements of w was less than
10−5 after 236 iterations. AdaGrad was run for 10000 iterations with both full batches
and mini-batches, meaning that the full-batch optimisation was run for 10000 epochs
whereas the mini-batch optimisation was run for just over 13 epochs. There certainly
appears to be little advantage to computing the gradient w.r.t. all of the data in this
scenario, as the batched optimisation converges after approximately 2000 iterations /
epochs, whereas the mini-batched takes 4000 iterations or just over 5 epochs. As the
mini-batched optimisation with AdaGrad is the procedure that is ultimately of most
interest (as it is most scalable), and does not appear to suffer from any major deficiencies
relative to batch optimisation with BFGS / AdaGrad, the rest of the analysis in this
section focusses on that approach.

Figure 3.7 indicates that the posterior marginal variance (PMV) estimates provided
by the non-stationary Σq are, at least qualitatively, closer to those of the exact posterior
distribution than those provided by the stationary Σq. Where the optimal stationary Σq

is unable to represent location-dependent PMV, and thus erred on the side of correctly
estimating the posterior variance in regions of high data-density, the non-stationary Σq

finds a solution that provides much more realistic PMV estimates in regions with no
data. It has the particularly pleasing property of reverting to the prior marginal variance
in the tails of the input space (approximately −12.5 < x < 12.5).

Figure 3.8 indicates that the expected KL-divergence between the posterior marginals
of the non-stationary approximate posterior and the exact posterior has different prop-
erties from those of the divergence between the stationary approximation posterior
marginals and the exact posterior marginals. Whereas the expected in-sample KL-
divergence is lower than the expected out-of-sample KL-divergence for the stationary
approximation, the order is reversed for the non-stationary approximation.

Figure 3.9 clarifies the nature of the approximate posterior by decomposing Σq :=
WKZ,ZW = KZ,Z ⊙ (W 1W ) and displaying the component matrices. Intuitively, the
effect of W can be thought of as decorrelating the prior covariance KZ,Z in the manner
which best reflects the posterior, subject to the constraint that the extent to which the
covariance between the mth and nth observations is reduced is a product of a factor only
depending on the mth (wm) and a separate factor depending only upon the nth (wn),
yielding (Σq)m,n = wmwn (KZ,Z)m,n.
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Figure 3.7 Posterior marginal variances of the stationary and non-stationary approxi-
mations overlaid on the exact posterior marginal variance (PMV). The non-stationary
approximation over-estimates the PMV more than the stationary approximation in
regions where there is a lot of data, however, in regions where there is no data the
non-stationary approximation vastly out-performs the stationary approximation, yielding
PMVs that are broadly consistent with the exact posterior marginals.
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Iteration
0 2000 4000 6000 8000 10000

Lo
g 

ex
pe

ct
ed

 K
L

-3

-2

-1

0

1

2

3

4

5

6

in
out
in (stationary)
out (stationary)

Figure 3.8 Log of the expectation of the KL-divergence between the approximate posterior
marginal distribution and the exact posterior marginal distribution as optimisation using
single-sample mini-batches proceeds. Results are separated between regions containing
data (‘in’) and regions not containing data (‘out’). Dashed lines show the final expected
KL-divergence achieved by the stationary approximation as a point of reference.

In summary, this experiment demonstrates the superiority of the proposed non-
stationary approximation over the stationary approximation in terms of the ELBO and
marginal posterior variance.

3.5 Conclusions and Future Work

In this chapter I have presented an approach to approximate inference in Gaussian
Processes which has asymptotic complexity O (NM + M log M) (or simply O (M log M)
with mini-batching), which is a substantial improvement over the O (NM2 + M3) (or
O (M3) with mini-batching) associated with the state-of-the-art sparse GP approxima-
tions. This acceleration is achieved by applying the same variational framework presented
in [Titsias, 2009], constraining the pseudo-data to lie on a grid and exploiting the ap-
proximate circulant structure this imposes. Crucially, this approach does not impose
any constraints on the input locations of the observed data. Due to the necessarily
constrained parameterisation of Σq in which the number of parameters is linear in the
number of pseudo-data, we sacrifice the tightness of the original ELBO. However, for
complicated posterior distributions it may be infeasible to use an unconstrained Σq in
conjunction with sufficiently many pseudo-data to retain a tight ELBO. It is in such a
scenario that the presented approximation method with flourish, as it will allow the use
of sufficiently many pseudo-data and thus provide a tighter bound.
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Figure 3.9 Top left: Prior covariance matrix KZ,Z . Top right: W 1 W . Bottom: Approxi-
mate posterior covariance matrix WKZ,ZW = KZ,Z ⊙ (W1W ).
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Furthermore, an annoying property of the circulant approximation, namely that it
introduces unwanted covariance structure at either end of the data set, has been resolved
by extending the domain on which the pseudo-inputs are located outside of the domain
on which data is observed. Whilst the additional covariance structure has not vanished, it
no longer affects posterior predictions made where there is observed data, and predictions
can, in principle, be made accurately arbitrarily far away from the observed data by
extending the pseudo-data grid out further.

There are several directions in which this work could be taken. The most obvious is
to investigate different parameterisations of Σq which remain tractable whilst offering
a better approximation to the posterior distribution. One can, for example, introduce
extra parameters into the approximation for Σq by multiplying either side by circulant
/ diagonal matrices. Specifically let W2 and K2 be diagonal and circulant matrices
respectively, then

Σq := W2K2WKZ,ZWK2W2 (3.41)

remains a tractable posterior covariance in the sense that its determinant and inverse are
easily evaluated (although the trace term in the KL-divergence must now be approximated
using Monte Carlo, which may hinder inference). It would also be useful to resolve the
problems found with out-of-sample inference in the mean when optimising the posterior
mean approximation with mini-batched AdaGrad in section 3.2. Although CG resolved
these problems and still runs on O (NM) time, it is not designed to be used with
mini-batches and is therefore unsuitable for heavily over-sampled data sets.

Additionally, one of the primary advantages of the TSGP is that it scales ‘truly’
linearly with the number of pseudo-data by exploiting the local nature of the covariance
functions to which it is applied. Such scaling is not achieved here as the primary focus of
the work has been directed towards achieving computations in the GP prior that scale
almost linearly in M . The only terms that have O (NM) asymptotic complexity are
those involving the cross-covariance matrix KD,Z . For AB covariance functions such as
the EQ and Spectral Mixture, however, this will be very sparse meaning that much of the
computation that is currently performed is redundant and can be avoided quite simply.

Another useful avenue of investigation would be found in determining how to exploit
this inference scheme in higher dimensions. The number of pseudo-data necessarily
increases exponentially with the dimensionality of the input space (if no additional
constraints are imposed upon the covariance function) owing to the requirement that
they lie on a regular grid, thus it is unlikely that high-dimensional input spaces could
be handled directly. If, however, a low-dimensional representation of a data set can be
found, for example using the methodology presented in [Snelson and Ghahramani, 2012]
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or [Calandra et al., 2014], it may then be feasible to construct a grid of pseudo-data.
4. Tangentially, if there is additive structure present in the covariance function then
pseudo-data can be placed separately in each dimension, circumventing the exponentially
poor scaling. Furthermore, extensions to non-Gaussian likelihoods such as those used in
GP classification or the Chained GP framework [Saul et al., 2016] would also be useful
and readily implemented.

4The first of these approach preserves stationarity, whereas the latter would make the resulting kernel
non-stationary
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