
Combining Diverse
Neural Network Language Models

for Speech Recognition

Xianrui Zheng

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Queens’ College August 2019

I would like to dedicate this thesis to my loving parents . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 15,000 words including appendices, bibliography, footnotes,
tables and has fewer than 150 figures.

This project uses some resources from others. Guangzhi Sun provided the forward
RNNLM script, Qiujia Li provided an example of how CMA-ES strategy can be used and
Chao Zhang provided the 50-best list generated by an ASR system. All provided scripts are
extended so that they fit in my framework. More explanation and details about the scripts
created from scratch, extensions made in source codes provided by others and packages used
are included in Section 5.2.

Xianrui Zheng
August 2019

Acknowledgements

I would like to thank Prof Woodland and Dr Chao Zhang for their constant support throughout
the project. This project allows me to explore how fascinating the language modelling is and
its wide applications in nature language processing field. Not only did the supervisors teach
me the knowledge related to this thesis, but they also helped me to develop good behaviours
for doing research. I also want to thank Guangzhi Sun, Qiujia Li and Florian Kreyssig for
their kind support.

Abstract

Language modelling is a crucial part of speech recognition systems. It provides the prior
information of sequences to the automatic speech recognition (ASR) system, which allows
maximum a posteriori decoding. Count based n-gram language models (LM) with various
smoothing techniques have been popular for many years.

Due to the development of hardware and software, the implementation of neural networks
has become increasingly efficient, so that researchers have started to use neural networks to
model texts. Neural network language models (NNLMs) have proven to be better at modelling
the meanings and relationships between words or sub-words. They can also mitigate the
data sparsity issue in n-gram models and take much longer history into consideration. Since
different NNLMs have different assumptions and different architectures, they may be better
at modelling different aspects of language, which means they can be highly complementary.
Therefore, this project focuses on different methods to combine NNLMs. All models
are combined via interpolation and different ways to find the weights for each model are
investigated.

Pre-trained NNLMs have become very popular in recent years. They are trained on much
larger corpora and can be fine-tuned by using in-domain data with specific tasks. Previous
work has shown that fine-tuning pre-trained models can achieve state-of-the-art results in
many NLP tasks such as machine translation and question answering. However, no prior
work using such pre-trained models to perform n-best rescoring task for speech recognition
was found. This thesis will investigate the performance of some pre-trained models before
and after combining with NNLMs that were trained by using in-domain data only (which are
referred to as normal NNLMs).

The experiments in this project show that after the combination of normal NNLMs, the
word-error-rate (WER) is lower than that from any single model. By testing on AMI corpus,
an absolute decrease of 0.5% in WER is observed with eval set by comparing the combined
model with the best NNLM without combination. After interpolating normal NNLMs with
fine-tuned pre-trained models, the best result in this thesis was achieved with a further 0.9%
absolute reduction in eval WER. The combination techniques used in this thesis can be easily
extended to other corpora, or to involve more NNLMs for combination.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Thesis Outline . 2
1.2 Contribution . 3

2 Automatic Speech Recognition (ASR) 5
2.1 Acoustic Modelling with Hidden Markov Model 5

2.1.1 Context-Dependent Acoustic Modelling 7
2.1.2 Training Criterion . 7

2.2 N-gram Language Models . 7
2.2.1 Katz Smoothing . 8
2.2.2 Kneser-Ney Smoothing . 10

2.3 Decoding Process . 11
2.4 Evaluation Metrics for Language Models 12

2.4.1 Perplexity (PPL) . 12
2.4.2 Word Error Rate (WER) . 12

3 Neural Network Language Models 13
3.1 Feed-Forward Neural Network Language Model 13
3.2 Recurrent Neural Network Language Model 15

3.2.1 LSTM . 15
3.2.2 GRU . 17
3.2.3 Truncated Back Propagation Through Time 17

3.3 Transformer Language Model . 17
3.3.1 Decoder Style Transformer NNLM 20
3.3.2 Encoder Style TLM . 22

xii Table of contents

3.4 Training Criterion for all NNLMs in this thesis 23
3.5 Neural Network Language Models in ASR 24

4 Pre-trained Language Models 25
4.1 GPT . 25
4.2 Transformer XL . 26
4.3 BERT . 27

5 Experiments 29
5.1 Setup . 29

5.1.1 Data . 29
5.1.2 ASR System For Generating 50-Best list 30

5.2 Resources for Experiments . 30
5.2.1 Scripts . 30
5.2.2 Packages . 31

5.3 Experiments for individual NNLMs . 31
5.3.1 Experiments for FFLM . 31
5.3.2 Experiment for RNNLM . 33
5.3.3 Experiments for TLM . 35

5.4 Comparison Between Different Individual LMs 38
5.4.1 Differences of PPL . 38
5.4.2 Variation of Log Probabilities . 38

5.5 Combination of Different LMs . 39
5.5.1 Minimize Dev PPL by Combining Word Probabilities 40
5.5.2 Minimize Dev PPL by Combining Sentence Probabilities 42
5.5.3 LM Rescoring Experiments for Speech Recognition 47

5.6 Fine-Tuning Pre-trained Models . 51
5.6.1 GPT . 51
5.6.2 BERT . 53

5.7 Sensitivity of the Correctness of History 55

6 Conclusion and Future Work 57

References 59

List of figures

2.1 A six states HMM acoustic model for a particular phone (Young et al., 2015) 6

3.1 4-gram FFLM structure . 14
3.2 Structure of RNNLM . 15
3.3 LSTM memory cell with gating units. 16
3.4 Attention in neural machine translation sequence to sequence model 18
3.5 Transformer for translation task . 19
3.6 decoder style TLM . 21
3.7 right attention mask when the sequence length is four. Blue positions

have attention score zero. 21
3.8 traning procedure with right attention mask 22

4.1 Transformer-XL training procedure. Red Lines represents extra information
the model receives from previous segment. 27

5.1 1 layer FFLM with 256 hidden layer size. The points indicate the lowest PPLs 33
5.2 1 layer LSTM with 768 hidden units. The points indicate the lowest PPLs . 34
5.3 Predict each word with the context of the same length 36
5.4 1 layer decoder style Transformer with various sequence length 37
5.5 Decoder style transformer with sequence length set to 80 words. 37
5.6 the log2 probabilities of 11 consecutive words randomly selected from dev set 39
5.7 the log2 probabilities of the same 11 consecutive words in Figure 5.6, but

predicted by backward models . 40
5.8 Non-valid log2 probabilites of 11 words 43
5.9 right mask with sentence reset, blue positions have attention score zero . 45
5.10 Sentence probabilities from forward and backward models of the same type,

all with sentence reset. 20 consecutive sentences are selected from the dev set 46

List of tables

5.1 Summary of AMI dataset . 29
5.2 tri-gram FFLM with 1 hidden layer. Connect represents direct connection,

nhid is the number of hidden units in a feed-forward hidden layer and Mins
is the training time in minutes with a single K80 GPU. 32

5.3 Tri-gram FFLM with 2 hidden layers, the output size of the first hidden layer
is 256. 32

5.4 5-gram right-to-left FFLM . 32
5.5 Comparison between 1 layer LSTM and 1 layer GRU with the same hyper-

parameters. BPTT is set to 12, hidden unit size is 768 and embedding size is
256 . 34

5.6 Comparison of the best result from each model; => represents forward model
and <= represents backward model; Mins indicates the total length of training
time in minutes; FFLM: 1 hidden layer with 256 hidden units; RNNLM: 1
layer LSTM with 32 BPTT steps and 768 hidden units; tri-gram-s: tri-gram
model trained on AMI corpus. Transformer: 8 layers without positional
encoding and layernorm, 8 attention heads, 768 hidden units for linear layers 38

5.7 Combination of forward models. Weights for the first line are 0.613, 0.389,
weights for the second line are 0.084, 0.559, 0.357 and weights for the third
line are 0.039, 0.545 0.342, 0.075. Baseline is the best single model without
combination (RNNLM). 42

5.8 Combining the forward and backward models of the same type in Table 5.6 42
5.9 NNLMs in Table 5.6 with sentence boundary reset 46
5.10 PPL after combining sentence probabilities from forward and backward mod-

els of the same type in Table 5.9. The suffix ‘-C’ indicates the combination
of the forward and backward models of the same type. Forward weight
indicates the interpolation weight for forward model and backward weight is
the weight for backward model. 47

xvi List of tables

5.11 PPL of the combination of all three models in Table 5.10 47
5.12 WER result for all NNLMs in Table 5.9 and the tri-gram models, after

rescoring 13088 utterances in dev set and 12640 utterances in eval set. Tri-
gram-s is trained only on AMI corpus while tr-gram-b is trained on AMI and
Fisher. Oracle is obtained by using HResults rather than sclite, which does
not include pre-processing for modifying hesitations and filtering synonym
etc. Therefore, the oracle results are not fully comparable with other numbers,
and possibly can have higher WERs. 48

5.13 Combine models of the same type with the weights in Table 5.10 and Ta-
ble 5.11. All NNLM-C is the combination of FFLM-C, RNNLM-C and
TLM-C. Baseline is the 1-best result scored by tri-gram-b. 49

5.14 Weights found for each NNLM by CMA-ES and the final WER result, the
LM scale is 16.1. 50

5.15 Allowing forward NNLMs in Table 5.14 to include history from previous
sentences. Interpolation weights are found by CMA-ES. 50

5.16 GPT LM after fine-tuning the last output layer; Baseline is the best single
model (forward RNNLM). LM scale is set to 15.0 for fine-tuned GPT-LM . 52

5.17 GPT + FFLM-C + RNNLM-C + Transformer-C; The weights are 0.55, 0.02,
0.25 and 0.18; LM scale factor is 14.8, both weights and LM scale are found
by CMA-ES . 52

5.18 Combination of all fine-tuned LMs and NNLMs that are trained on AMI
corpus only. All forward NNLMs do not have sentence boundary reset. LM
scale is 15.1. 55

5.19 WER using 1-best history (inside the parenthesis) and using reference his-
tory (outside the parenthesis). All models are forward NNLMs except the
bidirectional BERT. 55

5.20 Combination of all NNLMs with history reference used for all NNLMs that
can use history. LM scale is 15.1. 56

Chapter 1

Introduction

Speech sits at the centre of communication in our society. Modern technologies for analysing
speech require knowledge from fields including but not limited to linguistics, engineering
and psychology. Significant progress has been made in the past.

One of the most important areas of speech research is speech recognition, which has
been attracting interest over a long period. Modern Automatic Speech Recognition (ASR)
systems are able to transcribe human speech into text with a large vocabulary (∼100K words).
The ASR system has a wide range of applications, such as broadcast news transcription
(Graff et al., 1997; Woodland et al., 1997a,b) and telephone conversation transcription (Saon
et al., 2016). Generating transcriptions or taking notes for meetings is another demanding
application of ASR (Yu et al., 2000). In most cases, ASR systems need to handle the speech
from speakers with different speaking styles and from different environments with varying
levels of background noise.

Various models have been applied in speech recognition tasks. Due to the improvement
of hardware, more data can be processed and more computationally intensive neural network
models can be applied to this area (Hinton et al., 2012).

With only acoustic information, a speech recognition system may not be able to correctly
identify words, since many words can have similar pronunciations. To improve system
accuracy, we want the system to consider neighbouring words. Therefore, for any input
speech, an ASR system combines the probability of each word provided by an acoustic model
and the probability of the word sequence determined by a language model. The acoustic
model can be an HMM-based model (Gales and Young, 2007; Rabiner, 1989). It usually uses
phone-based models which gives the probability that a given segment of speech is generated
by a particular phone. The language model can be a n-gram model that is trained with a large
text corpus. This thesis focuses on the language modelling part of speech recognition. In

2 Introduction

particular, various neural network language models are explored and combined together for
n-best LM rescoring for speech recognition.

Word Error Rate (WER) is a common way to measure the performance of an ASR system.
Recent advances in language modelling have reduced the WER significantly (Kombrink
et al., 2011; Mikolov and Zweig, 2012; Wen et al., 2013). However, there is still room
for improvement. NNLMs are highly complementary because they all have their own
assumptions embedded into model architectures. Therefore, combining them helps to gather
the advantages of each single model and can improve the rescoring performance. The n-gram
model suffers from data sparsity issue but the parameters can be efficiently estimated with a
large amount of data. A longer history is often helpful for determining the probability of a
word sequence. Some state-of-the-art neural network language models (NNLM), such as the
recurrent neural network language model (RNNLM) and the Transformer language model
(TLM), have the ability to consider much longer histories. The combination of these models
helps to combine their strengths and leave their weaknesses behind.

Many pre-trained language models for general purpose use have been recently released
(Dai et al., 2019; Devlin et al., 2018; Peters et al., 2018; Radford et al., 2018, 2019; Yang
et al., 2019). Due to the increase of computational power and the growth of text datasets
available on the Internet, they can be trained on large datasets with billions of words. After
fine-tuning with in-domain datasets, they are able to be optimized for a specific task. Many
promising results have been discovered in fields such as machine translation and reading
comprehension. Such models are also fine-tuned in this project and combined together with
other NNLMs.

1.1 Thesis Outline

The structure of the thesis is as follows:

• Chapter 2 reviews ASR systems and how language models are used.

• Chapter 3 introduces different types of neural network language models in detail,
including feed-forward NNLMs, Recurrent NNLMs and Transformer NNLMs.

• Chapter 4 outlines 3 state-of-the art pre-trained models with different methods for
pre-training.

• Chapter 5 presents the implementation methods and experimental results.

• Chapter 6 concludes this thesis and discusses the possible future work.

1.2 Contribution 3

1.2 Contribution

This thesis endeavours to combine more neural network language models than previous work,
where typically only one NNLM was used or a combination of one NNLM and a n-gram
model was used for speech recognition language model rescoring task. Also, pre-trained
models are used as part of the combination. The best combined model achieves much better
results than any single model tested in this project, which shows the potential of combining
diverse NNLMs for speech recognition.

Chapter 2

Automatic Speech Recognition (ASR)

This chapter first reviews two components in a traditional HMM-based ASR system, namely
the acoustic model and the language model, followed by how they are used together.

2.1 Acoustic Modelling with Hidden Markov Model

Hidden Markov Model (HMM) based acoustic models have been widely used for many
years. The raw waveform is first converted to acoustic feature vectors. Each vector represents
a segment of speech lasting around 25 milliseconds. Mel-filterbank with Discrete Cosine
Transformation, which is called Mel-Frequency Cepstral Coefficients (MFCC) (Davis and
Mermelstein, 1980), is a popular method for extracting the vectors. The first and second
order differentials of the static MFCC vectors can be used together for augmentation. Other
methods such as perceptual linear predictive (PLP) (Hermansky, 1990) are also widely used.

Each phone has an associated HMM model, which normally has around 5 states. The
first and the last states are non-emitting states and other states in the middle are emitting
states. The existence of the non-emitting states allows HMM phone models to join together.
Figure 2.1 shows an example of the HMM phone model. Here ai j is the transition probability
from state i to state j. Each state has an output probability defined by b j(ot). The joint
probability of the acoustic vector sequence O and the state sequence X given an acoustic
model M in Figure 2.1 can be computed as

P(O,X |M) = a12b2(o1)a22b2(o2)a23b3(o3) . . .a45b5(o6) (2.1)

6 Automatic Speech Recognition (ASR)

In general, with state sequence X = {x(0), . . . ,x(T)}, the joint probability is:

P(O,X |M) = ax(0)x(1)

T

∏
t=1

bx(t)(ot)ax(t)xt+1 (2.2)

The Viterbi algorithm is one option to efficiently find the unknown sequence of states which
maximises the probability P(O,X |M).

1 62 3 4 5a12 a23 a34 a45 a56

a22 a33 a44 a55

o1 o2 o3 o4 o5 o6

Acoustic
Sequence

b2(o1) b2(o2) b3(o3) b4(o4) b4(o5) b5(o6)

a24 a35

Vector

Fig. 2.1 A six states HMM acoustic model for a particular phone (Young et al., 2015)

The output probabilities given any state can be found by using either Gaussian Mixture
Models (GMMs) or a Deep Neural Networks (DNNs). With a DNN, the output values of the
neural network is the state posterior probabilities, which can be converted to the observation
likelihood using Bayes rule. In particular, the DNN can be the time delay neural neural
network (TDNN) (Waibel et al., 1995). A context window is used to collect information from
multiple frames to construct inputs for TDNN. Each succeeding kernel also uses a context
window to collect outputs from different time-steps of the current kernel. The kernel here
can be one fully connected layer. Therefore, TDNN starts from looking at narrow temporal
contexts and increase the size of temporal contexts in later layers. Originally the context
window shifts one frame in time, but it is later shown that the window can shift more frames
(Peddinti et al., 2015). Kreyssig et al. (2018) extends TDNN by adding more fully-connected
layers and residual connections. Each kernel changes from one fully connected layer to three
fully connected layers, and the last two fully connected layers in each kernel can be bypassed
by a residual connection.

2.2 N-gram Language Models 7

2.1.1 Context-Dependent Acoustic Modelling

An isolated speech sound may be influenced by its neighbouring speech sounds. The acoustic
model can be extended to take care of the contextual effects such as coarticulation. For
example, a tri-phone model can be used, which can model the content-dependent units.
Instead of considering only the phone a, the tri-phone model takes the preceding phone and
the succeeding phone of into consideration.

However, there are many possible tri-phones, which can lead to the data sparsity problem.
State tying can be a solution (Bahl et al., 1991; Young et al., 1994), which ties states that
are acoustically indistinguishable. Using phone decision trees (Young and Woodland, 1994)
is one technique to determine which states to tie. The idea is to use a binary tree for each
phone and state position. Each node in the tree asks a phonetic question from a large set of
possible contextual effects, such as "is the right context consonant?", and is selected from a
pre-defined question set by maximising the likelihood increase by splitting the node into two.
Using such questions incorporates phonetic knowledge effectively into a data driven based
clustering method, and allows the unseen tri-phones to be tied based purely on the selected
questions once the trees are constructed.

2.1.2 Training Criterion

Minimum phone error (MPE) criterion (Povey and Woodland, 2002) is used for the dis-
criminative training of HMM acoustic model in this project. Suppose there are R training
observation sequences {O1, . . . ,OR}, the objective to be maximised is:

FMPE(λ) =
R

∑
r=1

∑s Pλ (Or|s)κP(s)κRawAccuracy(s)
∑s′ Pλ (Or|s′)κP(s′)κ

(2.3)

where λ is the parameters in HMM,
Pλ (Or|s)κP(s)κ

∑s′ Pλ (Or|s′)κP(s′)κ
is the posterior sentence probability

scaled by κ , which measures the probability of sentence s being the correct one. P(s) is the
probability from language model.

2.2 N-gram Language Models

Given a sequence of words {w1,w2,w3, . . . ,wt} (abbreviated as w1:t), n-gram language
models predict the ith word by using the previous n−1 words.

In particular, a tri-gram model predicts the current word (wn) based on the previous
two words (wn−2:n−1). For a count-based language model, a simple way to estimate the

8 Automatic Speech Recognition (ASR)

probability is to use maximum likelihood, which finds the relative frequencies:

P(wn|wn−2:n−1) =
C(wn−2:n)

C(wn−2:n−1)
(2.4)

where C(·) finds the frequency of the sequence in the training dataset.
However, data sparsity is a serious issue in language modelling. If a vocabulary has

10000 words, then there would be 100003 = 1 billion possible tri-grams. Therefore, it is not
possible to have examples of many events. The event can be a sequence of three words. If
an event in a test set is unseen in the training set, Equation 2.4 would simply assign a zero
probability to that event. The speech recognition system would have no chance to output the
correct hypothesis if a word sequence contains these unseen events.

Smoothing methods can mitigate the data sparsity problem. The relative frequencies
obtained from seen events can be subtracted and given to unseen events to prevent zero
probability during test time. Instead of assigning a zero probability to an unseen n-gram, the
n-grams with lower orders can be used to estimate the probability. A simple way is to linearly
interpolate individual models trained with different n-gram order. In the case of tri-gram, the
final conditional probability given history can be computed as:

P̃(wi|wi−1:i−2) = λ1P(wi|wi−1:i−2)+λ2P(wi|wi−1)+λ3P(wi) (2.5)

where P(wi|wi−1:i−2), P(wi|wi−1) and P(wi) are estimated using maximum likelihood, and
λi can be estimated by maximising the likelihood of a held-out set. Since P̃(wi|wi−1:i−2)

needs to be a valid probability, the constrain for Equation 2.5 is ∑
3
i λi = 1.

Back-off methods are also smoothing techniques that can estimate probabilities from
sparse data. These methods consider the lower order n-gram models when an n-gram is
unseen in the training set, which is different from interpolated models since back-off models
do not use lower order n-gram models when an n-gram has positive counts. Two well-known
back-off methods are reviewed:

2.2.1 Katz Smoothing

Katz (1987) extends the Good-Turing discounting method (Good, 1953). Let nr be the
number of n-grams that appear r times, i.e.

nr := ∑
wt−n+1:t : c(wt−n+1:t)=r

1

2.2 N-gram Language Models 9

where c(wt−n+1:t) is the number of times the n-gram wt−n+1:t appears in the training set.
When the number of words in the dataset is N, Turing’s estimate for the probability of a
particular n-gram wt−n+1:t is

PT =
c∗(wt−n+1:t)

N
(2.6)

where

c∗(wt−n+1:t) = (c(wt−n+1:t +1))
nc(wt−n+1:t)+1

nc(wt−n+1:t)
(2.7)

The ratio between c∗(wt−n+1:t) and c(wt−n+1:t) is denoted as c∗(wt−n+1:t)
c(wt−n+1:t)

. Instead of directly
using this ratio as the discount coefficient for an n-gram that appears in the training set. Katz
(1987) suggests a modified discount coefficient dr, such that

dr = 1, for r > k (2.8)

which means no discount will be applied to counts greater than k and k = 5 is a good choice
in practice (Katz, 1987).

For 1≤ r ≤ k, The equation

∑
1≤r≤k

nr(1−dr)
r
N

=
n1

N
(2.9)

needs to be satisfied. Applying this constrain to the equation

(1−dr) = µ

(
1− r∗

r

)
(2.10)

where r∗ = (r+1)nr+1
nr

, the unique solution to dr is

dr =

r∗

r
− nk+1

n1

1− (k+1)nk+1

n1

for 1≤ r ≤ k (2.11)

When c(wt−n+1:t) > 0, P(wt |wt−n+1:t−1) = dc(wt−n+1:t)
c(wt−n+1:t)

c(wt−n+1:t−1)
. When an n-gram

wt−n+1:t does not appear in the training set, the conditional probability P(wt |wt−n+1:t−1)

10 Automatic Speech Recognition (ASR)

depends on a lower order n-gram conditional distribution P(wt |wt−n+2:t−1), i.e.

P(wt |wt−n+1:t−1) = αP(wt |wt−n+2:t−1) (2.12)

where

α = α(wt−n+1:t−1) =
1−∑wt :c(wt−n+1:t)>0 P(wm|wt−n+1:t−1)

1−∑wm:c(wt−n+1:t)>0 P(wt |wt−n+2:t−1)
(2.13)

If c(wt−n+1:t−1) = 0, then P(wt |wt−n+1:t−1) = P(wt |wt−n+2:t−1). Summarising all equa-
tions together, the conditional probability for wt given wt−n+1:t−1 can be written as

P(wt |wt−n+1:t−1) = dc(wt−n+1:t)
c(wt−n+1:t)

c(wt−n+1:t−1)
+

(1−H(c(wt−n+1:t)))α(wt−n+1:t−1)P(wt |wt−n+2:t−1)

(2.14)

where

H(c(wt−n:t)) =

1 if c(wt−n:t)> 0

0 otherwise
(2.15)

Since Katz smoothing only uses lower order n-gram probabilities when an n-gram is
unseen, it is considered as a back-off model.

2.2.2 Kneser-Ney Smoothing

Kneser-Ney smoothing (Kneser and Ney, 1995) is an extension of absolute discounting
(Ney et al., 1994). Using absolute discounting, the conditional probability of word wt given
previous n−1 words wt−n:t−1 is

Pabs(wt |wt−n+1:t−1) =
max{c(wt−n+1:t)−D,0}

∑wi c(wt−n+1:t)
+

D
∑wi c(wt−n+1:t)

N+(wt−n+1:t−1·)Pabs(wt |wt−n+2:t−1)

(2.16)

where N+(wt−n+1:t−1·) = |{wt : C(wt−n+1:t−1 : wt)> 0}|,
Some words only follow some specific words, say word y can appear after x. With

absolute discounting, the smoothed probability may be too high if the uni-gram probability
p(y) is taken for backing-off. Kneser-Ney smoothing is able to back off to a low uni-gram
probability in this case. An example given by Chen and Goodman (1998) indicates that
San Francisco may appear many times in the training set, but Francisco can only occur

2.3 Decoding Process 11

after San. Although the number of times Francisco appears in the training set is high, the
uni-gram probability P(Francisco) should be low, since it only follows San. Therefore, the
uni-gram probability of a word may be better to be proportional to the number of words that
it follows, rather than proportional to the number of occurrence.

The conditional probability can be written in the following form:

P(wt |wt−n+1:t−1) =


max{c(wt−n+1:t)−D,0}

∑wi c(wt−n+1:t)
if c(wt−n+1:t)> 0

γ(wt−n+1:t−1)P(wt |wt−n+2:t−1) otherwise
(2.17)

where γ(wt−n+1:t−1) is the normalization term which guarantees P(wt |wt−n+1:t−1) sums to
one. After some derivation, the term P(wt |wt−n+2:t−1) can be written in the following form:

P(wt |wt−n+2:t−1) =
N+(·wt−n+2:t)

N+(·wt−n+2:t−1·)
(2.18)

where

N+(·wt−n+2:t) = |wt−n+1 : c(wt−n+1:t)> 0|
N+(·wt−n+2:t−1·) = |(wt−n+1,wt) : c(wt−n+1:t)> 0|

2.3 Decoding Process

The ASR system finds the word sequence Ŵ such that:

Ŵ = argmaxW P(O|W)P(W)

= argmaxW

(
∑
X

∑
Q

p(O,X |Q)P(Q|W)P(W)

)
(2.19)

where X is the set of all possible states, Q is the possible phone sequence given word sequence
W and O is the acoustic vector sequence. P(O,X |Q) can be computed by the acoustic model,
P(Q|W) is pronunciation probability and P(W) is the prior from the language model. The
summation over Q and X are computationally infeasible. Therefore, the Viterbi algorithm
can be used in decoding process to find the approximation of Equation 2.19, which replaces
the summation by maximisation. Based on the acoustic model, dictionary and language
model, a finite state graph can be constructed and Viterbi decoding (Viterbi, 1967) can search
this graph for finding the most probable state sequence.

12 Automatic Speech Recognition (ASR)

2.4 Evaluation Metrics for Language Models

Two methods are considered for measuring the performance of different language models,
namely perplexity and WER.

2.4.1 Perplexity (PPL)

Given a sequence of words w1:t , the perplexity (PPL) is computed as:

PPL = 2−
1
t log2 P(w1:t) (2.20)

The joint probability in Equation 2.20 can be rewritten as:

P(w1:t) =
t

∏
i=1

P(wi|w1:i−1) (2.21)

where the decomposed conditional probabilities can be obtained by the language models.
Therefore, for a dataset with N words, the language model PPL is

PPL = 2−
1
N ∑

N
i=1 log2 P(wi|w1:i−1) (2.22)

A better language model should on average assign higher probabilities to the correct
words, which means they should have a lower PPL. The PPL is a task independent metric for
evaluating language models. When comparing different language models using PPL, it is
necessary to use the same words in the output dictionary, since the language model with a
smaller number of words in the dictionary can lead to lower PPL.

2.4.2 Word Error Rate (WER)

After aligning the reference transcription and the hypothesised word sequence, which min-
imises the Levenshtein distance, a common way to measure the performance of a LM in an
ASR task is to find the word error rate (WER). The WER can be calculated by Equation 2.23.

WER =
S+D+ I

N
×100% (2.23)

where S is the number of substitution errors, D is the number of deletion errors and I is the
number of insertion errors.

Chapter 3

Neural Network Language Models

Traditional n-gram models often face the curse of dimensionality due to insufficient train-
ing data available. To better represent the relationship between words, a lot of research
has focused on representing words in a continuous vector space. Typically examples are
Continuous-Bag-Of-Words and Skip-Gram introduced by Mikolov et al. (2013a), which use
a large amount of unstructured data to train a high quality vector representations of words.
Words with similar meanings should be close to each other in the projected continuous vector
space.

3.1 Feed-Forward Neural Network Language Model

The Feed-Forward Neural Network Language Model (FFLM) performs better than many
previous language models (Goodman, 2001). It learns word feature vectors simultaneously
with the parameters of the model (Bengio et al., 2003). The word feature vectors and the
other parameters are tuned together in order to minimise the negative log-likelihood 1 of the
training data. It is similar to n-gram model since it also uses the previous n− 1 words as
history. The difference is that the output probability of a n-gram FFLM model is conditioned
on the feature vectors of the previous n−1 words.

The model structure of a 4-gram FFLM is shown in Figure 3.1. The inputs are the
previous three words, which can be called context words.

The following steps describe the model structure in more details:

1. A shared matrix C maps the 1-of-K encoding of context words into a continuous vector
space, i.e. Embedding(w) = C 1-of-K(w). Let |V | be the dictionary size and m be the
word feature size. Then C ∈ Rm×|V |. For simplicity Embedding(w) will be denoted

1equivalent to minimising perplexity

14 Neural Network Language Models

wt−1 wt−2 wt−3

Embedding of !wt−1 Embedding of !wt−2 Embedding of !wt−3

1L Hidden (Tanh activation)

Softmax

Share parameters

ith output = P(wt = i |wt−1, wt−2, wt−3)

Fig. 3.1 4-gram FFLM structure

as C(w). In an n-gram model the context words wt−1, · · · ,wt−n+1 will be mapped to
C(wt−1), · · · ,C(wt−n+1).

2. The concatenation of the context vectors forms the word features layer activation vector
x = (C(wt−1),C(wt−1), · · · ,C(wt−n+1)), where x ∈ R(n−1)m.

3. If the hidden layer has h nodes, the un-normalised log probabilities for word wi is
computed as

y = b+Wx+U tanh(d+Hx)
with parameters b,W,U and H, where b ∈R|V | is the output bias, d ∈Rh is the hidden
layer biases, W ∈ R|V |×(n−1)m helps to directly connect embeddings to the softmax
output layer. U ∈R|V |×h is the weight matrix between the hidden and output layers and
H ∈ Rh×(n−1)m is the weight matrix projecting word embeddings x to hidden layer.

4. The final output is then obtained by the softmax equation

P(wt |wt−1,wt−2, · · · ,wt−n+1) =
expywt

∑i expyi

Unlike traditional count-based n-gram models where the number of model parameters
grows exponentially with the n-gram order, the number of parameters of the FFLM grows
linearly when the order N increases.

3.2 Recurrent Neural Network Language Model 15

3.2 Recurrent Neural Network Language Model

Even though the FFLM can mitigate the data sparsity problem by using word feature vectors,
the context it can consider is still limited to the n−1 preceding words. The RNNLM (Mikolov
et al., 2010) is one approach to consider much longer word history, i.e.

wt−1 wt−2 wt−3

Embedding of !wt−1

Hidden Layer (LSTM/GRU)

Softmax

ith output = P(wt = i |wt−1, ht−2)

!ht−2

Fig. 3.2 Structure of RNNLM

As shown in Figure 3.2, an RNNLM only takes the word at time t− 1 as input when
predicting the word at time t. However, the output of the hidden layer from the previous time
step (ht−2) is concatenated with the embedding of the current input wt−1 to form the input
to the hidden layer. This architecture gives the RNNLM the potential to consider contexts
with unlimited size. However, there are several difficulties when trying to learn long-term
dependencies with neural networks (Bengio et al., 1994).

One of the difficulties is the vanishing gradient problem. If the hidden layer is a feed-
forward layer with a sigmoid activation function, the gradient could decay very quickly when
it propagates back through the network.

3.2.1 LSTM

Long Short-Term Memory neural network architecture can mitigate the vanishing gradient
problem (Sundermeyer et al., 2012). The memory cells have the ability to keep and forget
history information.

16 Neural Network Language Models

With fully connected hidden layer, the hidden output ht−1 is computed as:

ht−1 = σ(Axt−1 +Bht−2) (3.1)

where xt−1 is the feature vector of wt−1, ht−2 is the hidden output from the previous step and
A, B are weights. σ is the sigmoid activation function.

σ

σ

σ

ht

xt ht−1

xt
ht−1

xt
ht−1

xt
ht−1

f h

f m

ct
if

io

ii

Fig. 3.3 LSTM memory cell with gating units.

After changing to an LSTM memory cell, the output of ht−1 requires more computation
(shown in Figure 3.3):

ii = σ(W f
i xt +Wr

i ht−1 +Wm
i ct−1 +bi)

i f = σ(W f
f xt +Wr

f ht−1 +Wm
f ct−1 +b f)

io = σ(W f
oxt +Wr

oht−1 +Wm
o ct +bo)

(3.2)

where ii, i f , io are input, forget and output gates respectively, xt is the feature vector for word
wt , W are full weight matrices and b are biases. The memory cell ct and the hidden layer
output ht are then calculated as:

ct = i f ⊙ ct−1 + ii⊙ f m(W f
c xt +Wr

cht−1 +bc)

ht = io⊙ f h(ct)
(3.3)

where ⊙ represents element-wise multiplication.

3.3 Transformer Language Model 17

The memory cell c has a gated connection between consecutive steps. Also the current
information xt and past information ht−1 also contribute to the current memory cell ct . Since
the current hidden state uses the output gate and an non-linear activation function to extract
information from the current memory cell, older history is easier to be taken account of when
predicting the current word.

3.2.2 GRU

The gated recurrent unit (Chung et al., 2014) can also be used to reduce the vanishing gradient
problem. It requires fewer computation than an LSTM, which can be shown in the following
equations:

i f = σ(W f
f xt +Wr

f ht−1 +b f)

io = σ(W f
oxt +Wr

oht−1 +bo)

ĥt = f (W f
hxt +Wr

h(i f ⊙ht−1)+bh)

ht = io⊙ht−1 +(1− io)⊙ ĥt

(3.4)

Comparing to the equations for LSTM, the equations for GRU do not include an output
gate. Therefore, the number of parameters to update is smaller. Chung et al. (2014) shows
that GRUs performs similar to LSTMs in many tasks.

3.2.3 Truncated Back Propagation Through Time

Back propagation through time (BPTT) (Werbos, 1990) is commonly used for training
RNNLMs, which is an extension to the original back propagation. The errors can be traced
back to the start of a data stream. Since an activation function such as sigmoid multiplies the
gradient by a factor less than one when propagating back, the vanishing gradient problem is
likely to appear after the gradient propagates back for too many steps. The truncated version
of BPTT unfolds the RNNLM to a fixed number of steps (Mikolov et al., 2010). In this way,
the model is updated more frequently and can prevent vanishing gradient to some extent.

3.3 Transformer Language Model

The attention mechanism was introduced in the context of machine translation in 2014
(Bahdanau et al., 2014). Bahdanau et al. (2014) proposed to use the attention weights for the
encoder outputs from bi-directional recurrent neural network.

18 Neural Network Language Models

h1 h2 h3 hT

h1 h2 h3 hT

X1 X2 X3 XT

st−1 st

+
at,1 at,2 at,3

at,4

yt−1 yt

Fig. 3.4 Attention in neural machine translation sequence to sequence model

As shown in Figure 3.4, xt is the source language input, yt is the translated target language
output, st is the RNN hidden state and the concatenation of forward state

−→
ht and backward

state
←−
ht in the encoder part forms annotation vector ht . The probability of each translated

word given input sentence is computed as:

p(yt |y1:t−1,x) = g(yt−1,st ,ct)

where ct is the context vector, which is the weighted sum of the annotations h1:T :

ci =
T

∑
j=1

αi jh j

and the weights αi j is calculated as

αi j =
exp(ei j)

∑
T
k=1(eik)

where ei j is the output of a feed-forward neural network alignment model which scores the
relationship between h j and si−1.

Transformer models also use an attention mechanism, but the attention weights are
computed differently compared to the recurrent model. Both encoder and decoder parts in
Transformer require attention weights.

3.3 Transformer Language Model 19

Outputs

Embedding + Positional Encoding

Output Probabilities

Masked Multi-Head
Attention

Softmax

Layer Norm

Feed Forward

Layer Norm

Linear

N�×
Layer Norm

Multi-Head Attention

+

+

+

Inputs

Embedding + Positional Encoding

Feed Forward

Layer Norm

N�× Layer Norm

Multi-Head Attention

+

+

Fig. 3.5 Transformer for translation task

The attention function requires three inputs, namely query (Q), key (K) and value (V).
Normally they are matrices of the same size. The output of the attention function is computed
as:

Attention(Q,K,V) = softmax(
QKT
√

dk
)V (3.5)

Multi-head attention can jointly attend to different representation subspaces at different
locations, which is more powerful than a single attention (Vaswani et al., 2017). With head
number h, it projects Q, K and V to dimension dk with h times. The dimension dk is chosen
to be dmodel/h where dmodel is the embedding size:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO (3.6)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i) and WQ

i , WK
i and WV

i both have dimen-
sion Rdmodel×dk and WO ∈ Rdmodel×dmodel . Since the dimension dk is reduced as the number of
heads increases, the computational cost is similar to finding attention with a single head.

The other common elements in both encoder and decoder are the Add & Norm layer,
Feed Forward layer, and Positional Encoding.

20 Neural Network Language Models

The Add & Norm first adds a residual connection between hidden representation of words
to the output from the multi-head attention layer. Then layer normalization (Ba et al., 2016)
is applied to the total sum of the output. In order to use residual connections throughout the
network, the output from each layer is the same as the embedding size.

The Feed Forward layer consists of two linear transformations with a ReLU activation
in between:

FFN(x) = max(0,xW1 +b1)W2 +b2 (3.7)

where W1 ∈Rdmodel×dff and W2 ∈Rdff×dmodel and d f f is the size of the first linear transforma-
tion.

Positional Encoding injects some position information to the input sequence. It has
the same size as the word embeddings so that they can be summed together. Vaswani et al.
(2017) use fixed positional encoding as follows:

PE(pos,2i) = sin(
pos

100002i/dmodel
) (3.8)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
) (3.9)

Using Transformer structure for language modelling only requires one of the encoder or
decoder parts from Transformer architecture shown in Figure 3.5. The training procedures
and the task objectives are different for different styles. Both encoder style and decoder style
Transformer language models will be reviewed in the following sections.

3.3.1 Decoder Style Transformer NNLM

Normally, the decoder style transformer LM is an autoregressive model, which does not
allow the model to see future words when predicting the current word. It does not have the
encoder part of the Transformer shown in Figure 3.5. Without taking the encoder output
as the one of the inputs to the transformer layer, the structure of the decoder part can be
simplified. It only consists of one Mask Multi-Head Attention with residual connections
and one Feed-Forward sublayer with residual connections. Figure 3.6 shows the structure
of the decoder style TLMs.

In decoder style TLM, a right attention mask is needed to make sure the model
only sees the left context. This is because the TLM reads the sequence w1:t−1 for predicting
sequence w2:t . The attention mask ensures that the model is a left-to-right language model.

3.3 Transformer Language Model 21

wt−n:t

Embedding of ! Positional Encodingwt−n:t +

Softmax

ith output = P(wt = i |wt−1, ht−2)

Masked Multi-Head
Attention

Layer Norm

Feed Forward

+

+
Layer Norm

Linear

N�×

Fig. 3.6 decoder style TLM

If the model reads a sequence of four words (or subwords), the mask can be seen in
Figure 3.7. Inputs w1:4 are used to predict outputs w2:5. When predicting word w2, the model
can only see the information from word w1 and nothing else. And word w3 is predicted
base on words w1:2 only. Without the mask, the information from word w2 will leak and the
training becomes trivial.

Fig. 3.7 right attention mask when the sequence length is four. Blue positions have
attention score zero.

Each Transformer layer outputs a hidden representation of the context created by the
words on the left of the word the model wants to predict. The training procedure for a decoder
style transformer with sequence of four words is shown in Figure 3.8. The data stream will

22 Neural Network Language Models

be divided into disjoint groups, each group contains four words. For example, w1:n is divided
into {[w1:4], [w5:8], [w9:12], . . .}. Each group i is sent to the model in order in step i, and the
parameters are updated for each step. When the mini-batch size is one, the RNNLM needs
to compute P(wt |ht−1) first before finding P(wt+1|ht) with the new input wt . Finding only
one probability distribution at a time makes the training speed slow. For a Transformer with
sequence length four, the model can find the probabilities for four consecutive target words
at once, which improves the training speed. Therefore, it would be sensible to train a deep
transformer language model (Irie et al., 2019).

�⋮ �⋮ �⋮ �⋮

�wt−3 �wt−2 �wt−1 �wt

�wt−4 �wt−3 �wt−2 �wt−1
(a) training step i

�⋮ �⋮ �⋮ �⋮

�wt+1 �wt+2 �wt+3 �wt+4

�wt �wt+1 �wt+2 �wt+3
(b) training step i+1

Fig. 3.8 The forward procedure propagates from the bottom to the top. Each orange level
represents the output hidden representation of a Transformer layer. The bottom level is
the word embeddings plus positional encodings. The top level is the softmax to find the
probability of each word given history. Solid lines show the paths with non-zero attention
scores, which represent the dependencies between hidden representations in a level and
hidden representations in the level above.

3.3.2 Encoder Style TLM

An encoder style TLM can predict the current word with bi-directional context (with both
previous words and future words). The difference between the structures of encoder style
and decoder style TLM is that the Masked Multi-Head Attention in Figure 3.6 not have
attention mask now, which is called Multi-Head Attention.

3.4 Training Criterion for all NNLMs in this thesis 23

However, simply removing the attention mask causes the information about current word
to leak, i.e., the model now predicts P(wt |w1:t−1,wt ,wt+n). To prevent seeing the current
word that the model is to predict, approaches like BERT (Devlin et al., 2018), which mask
the target word, are adopted.

If the objective of the encoder style TLM is to use previous n words and the future m words
to predict the current word wt , then the input to the model is {wt−n:t−1, [mask],wt+1:t+m} and
the output is P(wt |wt−n:t−1, [mask],wt+1:t+m). Unlike the decoder style TLM, which gives n
output distributions after taking n inputs. The encoder style TLM only gives one distribution
for the target word which is changed to [mask] before sending to the model. Therefore, the
training time can be much longer than decoder style Transformer NNLM.

3.4 Training Criterion for all NNLMs in this thesis

The cross entropy criterion is used for training all NNLMs in this thesis. The objective is
to minimise the cross entropy loss. Given the softmax output and parameters θ , the cross
entropy can be computed as,

CE(θ) =− ∑
w j∈V

P̃(w j|context) logP(w j|context,θ) (3.10)

where P̃(w j|context) is the reference probability of word w j in dictionary V , and P(w j|context,θ)
is softmax output from the given model. However, the cross entropy for bi-directional model
cannot be easily converted to PPL, which is discussed in Section 5.6.2.

Since the dataset only contains the correct word, the probability P(w j|context) is one
when w j is the correct word and zero otherwise. Therefore, the cross entropy can be estimated
with training data of N words:

CE(θ) =− 1
N

N

∑
i

logP(wi|context,θ) (3.11)

Note that exp(CE(θ)) is equivalent to PPL in Equation 2.22, so that minimising CE(θ) is
the same as minimising PPL.

For generalisation purposes, the L2 regularization term is added to the loss function,
which leads to the following equation to minimise:

Loss(θ) = CE(θ)+
λ

2N ∑
θ

θ
2 (3.12)

24 Neural Network Language Models

where λ is the hyperparameter for L2.

3.5 Neural Network Language Models in ASR

Sometimes a NNLM can be too complex or costly to be applied to the search procedure in
decoding process. Multi-pass decoding is often used as a solution (Young, 1996), where a
lattice is generated first with an accurate acoustic model and a simple LM such as a bi-gram
LM, and then rescored by a more complex LM. A lattice is a compact graph, where each node
in a word lattice corresponds to a time instant, and the arcs connecting to a node contains
word hypotheses with associated scores from acoustic model and language model. The lattice
generated can be pruned so that the search space for the latter LM can be reduced.

After having a word lattice which is generated by the ASR system based on an acoustic
model and an n-gram model, NNLMs are often used to rescore the n-gram model score.
Lattice rescoring can be used if the model can be approximated to a finite-state model similar
to an n-gram. Since for some LMs such as RNNLM and TLM which requires a long history
context and the history representation in the lattice is complicated, n-best rescoring can also
be a reasonable choice.

An n-best list is created by extracting the most likely paths in the lattice after interpolating
an acoustic score and a n-best language model score. The score is defined as the log
probability. The language model score of the n-best hypotheses for each utterance are
then rescored by a NNLM and combined with the original acoustic scores. Often there is
a language model scale factor γ which is tuned based on the dev set. The final score is
computed by:

Acoustic Score + γ×LM Score (3.13)

The hypothesis with the highest final score after the language model rescoring process will
then be selected and used to compute WER.

Chapter 4

Pre-trained Language Models

Using models such as skip-gram (Mikolov et al., 2013b) or GloVe (Pennington et al., 2014)
to train the word embeddings with a large amount of data, and using the embeddings as
the initialisation for the NNLMs has been found useful (Kim, 2014) in many NLP tasks.
However, these methods only initialise the first layer of the NNLM. The remaining layers of
the model still require effort to train. Another issue is that the embeddings do not incorporate
contextual information. For example, The embedding for the word bank is the same for the
investment bank and a river bank.

From 2018 onwards, pre-trained models such as Open AI GPT (Radford et al., 2018) or
BERT (Devlin et al., 2018) have made the pre-trained methods more powerful. These new
methods pre-train all layers in a deep model with a large amount of text from the Internet, and
their final output hidden states can give more semantic information than previous methods.

Three pre-trained models will be reviewed, including their structures and the tasks on
which they were pre-trained.

4.1 GPT

Open AI released its Generative Pre-Training (GPT) model in 2018. It uses the BooksCorpus
dataset (Zhu et al., 2015) which contains over 7,000 unique unpublished books on a wide
range of topics.

GPT uses the decoder style transformer structure mentioned in the previous chapter.
Instead of using word level information, GPT uses a Byte Pair Encoding (BPE) (Sennrich
et al., 2016) technique to transfer words into subword units. The vocabulary has 4,000 units.

The training procedure of this model can be split into two stages, namely the unsupervised
pre-training stage and the supervised fine-tuning stage.

26 Pre-trained Language Models

The first stage is unsupervised in the sense that the data are not labelled according to
the discriminative task in the fine-tuning state and no matter what the task is, the first stage
remains the same. The task in fine-tuning stage can be classification, semantic similarity and
multiple choices. The GPT model contains 12 transformer layers, and 12 attention heads.
The embeddings size is 768.

The second stage is fine-tuning stage. Generally in this stage the data is labelled so that
it is called supervised. With input tokens x1:m and a corresponding label y, the fine-tuning
objective becomes:

L2(θ) = ∑
(x,y)

logP(y|x1:m) (4.1)

For some tasks, there is improved performance by using auxiliary objective during fine-tuning
stage, i.e.

L3(θ) = L2(θ)+λ ∗L1(θ) (4.2)

where L1(θ) is the unsupervised pre-training objective of the language model. In this project,
the pre-training objective and the fine-tuning objective are both to predict the next token
given the history.

In 2019, OpenAI released an updated version of GPT called GPT-2 (Radford et al., 2019),
which is larger in size. The position of the Layer Norm is moved to the bottom of the
Feed Forward sublayers.

4.2 Transformer XL

When using decoder style transformer language model reviewed above, the model only
takes information from a fixed length context. The training is performed with a fixed-length
segment of the pre-defined number of words or characters. Hence, the model may miss useful
information when predicting the first few words or characters. For example, in Figure 3.8,
predicting word wt+1 only uses word wt during training.

Transformer-XL (Dai et al., 2019) takes the information from the previous training
step to the next training step. In particular, instead of computing hidden outputs of each
Transformer layer from scratch, Transformer-XL reuses the hidden outputs from the previous
step. Reusing hidden states adds a recurrent connection between different steps. With these
techniques, predicting wt+1 is able to see more history words.

4.3 BERT 27

For training step i the model uses segment si = xi,1, . . . ,xi,L and step i+1 uses segment
si+1 = xi+1,1, . . . ,xi+1,L where x is the character embeddings. Segments si and si+1 are
consecutive. Transformer-XL computes the n-th layer hidden state for segment si+1 as
follows:

h̃n−1
i+1 = Concat(SG(hn−1

i),hn−1
i+1)

qn
i+1,k

n
i+1,v

n
i+1 = hn−1

i+1 Wq, h̃n−1
i+1 Wk, h̃n−1

i+1 Wv

hn
i+1 = Transformer−Layer(qn

i+1,k
n
i+1,v

n
i+1)

(4.3)

where SG(·) is a function to stop gradient backpropagation. hn−1
i is the hidden representation

in layer n−1 from the previous segment.

�x1 �x2 �x3 �x4 �x5 �x6 �x7 �x8

Fixed (No gradient)
From step !i

New Segment
Step !i + 1

Fig. 4.1 Transformer-XL training procedure. Red Lines represents extra information the
model receives from previous segment.

Another modification in Transformer-XL is that it uses relative positional encoding rather
than absolute positional encoding. The hypothesis is that only the relative position is more
important than absolute position. The relative positional matrix is a sinusoid matrix and is
added when calculating the attentions.

4.3 BERT

BERT stands for Bidirectional Encoder Representations from Transformers (Devlin et al.,
2018). The first significant difference between BERT and previous two pre-trained models is
that it uses the encoder part of the standard Transformer (Vaswani et al., 2017). This means
when calculating the attention, there is no attention mask involved. For predicting word wt

the model has the ability to see both the left and the right context. The pre-trained model

28 Pre-trained Language Models

used in this project is BERTBASE, which has exactly the same size as the GPT. BooksCorpus
(Zhu et al., 2015) and English Wikipedia are used to pre-train BERT.

To prevent the model from seeing the current word, BERT replaces the word it is going to
predict with a special symbol [mask]. For example, if a tokenised sequence is {x1,x2,x3,x4}
and the objective is to predict P(x3|x1,x2,x4). BERT changes the original sequence to {x1,x2,

[mask], x4}, so that without any mask the model is able to predict the current token with
bi-directional context.

The pre-trained model is trained on two tasks. One is the called Mask LM. The goal is to
predict 15% of subwords in each sentence. Since some tasks do not have the special symbol
[mask] during fine-tuning, among the 15% target subwords, 80% of them are replaced by
[mask] before sending to the model, 10% are replaced by a random subword, and the final
10% stay the same. The goal of the second task is to classify if the two input sentences are
consecutive and they are in the right order.

Chapter 5

Experiments

5.1 Setup

5.1.1 Data

The dataset used in this project is the Augmented Multi-party Interaction (AMI) corpus
(Carletta et al., 2006), which consists of 100 hours of recorded meetings. The recordings in
AMI are synchronised and collected in special instrumented meeting rooms. High quality
transcriptions are generated as part of the corpus. This corpus was created because meetings
are fairly common in daily life. Moreover, the discussions in meetings often need to be
written down for documentation to ease the search in the future. However, it may be expensive
to write down everything in the meeting manually. Thus, an accurate ASR system would be
helpful in this situation.

The reason for choosing the AMI corpus in the project is that the AMI meeting transcrip-
tion task is a standard ASR task. It also has a reasonably small training set, which allows
more experiments to be conducted efficiently. The vocabulary used for this corpus contains
13077 words. After normalisation, the text data is summarised in Table 5.1.

Data set Train Dev Eval
words 911K 108K 102K

Duration (hours) 80 10 10

Table 5.1 Summary of AMI dataset

The same corpus has also been used in Sun’s MEng thesis (Sun, 2019). The final results
in WER can be compared to the results in his work directly.

30 Experiments

5.1.2 ASR System For Generating 50-Best list

The acoustic model in the ASR system is a context-dependent TDNN model containing
4 ResNet blocks. The input feature vector is a mel-scaled log filer bank (FBANK) vector
with first order differential, which has 80 dimensions. All hidden layers in this model uses
1000 hidden nodes and the output is a distribution of 8435 tri-phone states. Minimum
Phone-Error-Rate (Povey and Woodland, 2002) is used as the training criterion. The 50-best
list for LM rescoring in this thesis is extracted by the scores from the TDNN acoustic model
and a tri-gram LM trained on AMI and Fisher corpora. HTK 3.5.1 and PyHTK (Zhang et al.,
2019) are used to implement this ASR system.

5.2 Resources for Experiments

5.2.1 Scripts

For the FFLM, the code is written from scratch based on the implementation details shown
by Bengio et al. (2003). The code for TLM can be used to train both decoder-style TLM and
encoder-style TLM. The structure of decoder style TLM is based on Vaswani et al. (2017) by
removing the components connected to the encoder part of the original Transformer since it
was used for machine translation. The training procedure for encoder style TLM is influenced
by the Mask LM task described in Devlin et al. (2018). However, the Mask LM task was
modified in this project so that every word in the dataset is masked once and each of the
masked word is given an output distribution. Every NNLM trained only on AMI corpus can
be either a forward or a backward model.

Unlike other types of NNLMs which do not use any source code, the RNNLM extended
the source code provided by Guangzhi Sun1. The provided code is a forward RNNLM, so it
is later extended to a backward NNLM and the output format is modified in order to combine
with other NNLMs.

There are two main codes for combining different NNLMs. The EM algorithm used for
finding weights to compute combined PPL does not rely on any other source code, whilst
the CMA-ES (will be described later) for finding weights that directly minimises WER are
based on the example script given by Qiujia Li2.

All scripts used for this thesis can be found on Github3.

1Final year MEng student at Cambridge; Github link: https://github.com/BriansIDP/CULM
2First year PhD in Engineering at Cambridge
3https://github.com/Xianrui-Zheng/NNLM

5.3 Experiments for individual NNLMs 31

5.2.2 Packages

The n-gram model trained on AMI corpus for testing PPL uses SRILM4 package. All codes
for training NNLMs are written using the Pytorch deep learning Python package. Other main
Python packages used are cma, matplotlib and Pandas. Pre-train models are downloaded
from pytorch_transformers package. All NNLMs presented in this section were trained
on a single Tesla K80 GPU via Microsoft Azure 5. The NIST Sclite scoring tool is used for
finding WER in this project.

5.3 Experiments for individual NNLMs

This section introduces the data arrangement for each NNLM trained from scratch, together
with some PPL results. WER results can be found in the next section when different NNLMs
are compared with each other.

Given a dataset, each line is a sentence without sentence boundary symbol. For each
dataset, the first step for all NNLM to process the data is to add a sentence separator (special
symbol <eos>) at the end of each line, and then all lines are joined together to form a single
string. The output is a list which contains all words (including <eos>) from the string in
order. This list will be referred to as data list.

5.3.1 Experiments for FFLM

In order to predict the first word, n-1 <eos> are added to the beginning of the data list to serve
as the context for the first word. Then a context window slices through the data list to find
all possible n-grams, regardless whether they repeat or not. Then the n-grams are shuffled.
Mini-batches are created in order to improve the efficiency of the training procedure when
using the GPU. The mini-batch size is the number of n-grams fed into the model together.
For example, if the data list contains the following elements in order:

[! , ! , ! , <eos>, ! , ! , ! , ! , <eos>!w1 w2 w3 w4 w5 w6 w7]

[<eos>, <eos>, !] [<eos>, ! , !] [! , ! , !] w1 w1 w2 w1 w2 w3
[! , ! , <eos>] [! , <eos>, !] [<eos>, ! , !] w2 w3 w3 w4 w4 w5
[! , ! , !] [! , ! , !] [! , ! , <eos>] w4 w5 w6 w5 w6 w7 w6 w7

Then all possible lists of tri-gram are:

[! , ! , ! , <eos>, ! , ! , ! , ! , <eos>!w1 w2 w3 w4 w5 w6 w7]

[<eos>, <eos>, !] [<eos>, ! , !] [! , ! , !] w1 w1 w2 w1 w2 w3
[! , ! , <eos>] [! , <eos>, !] [<eos>, ! , !] w2 w3 w3 w4 w4 w5
[! , ! , !] [! , ! , !] [! , ! , <eos>] w4 w5 w6 w5 w6 w7 w6 w7

4http://www.speech.sri.com/projects/srilm/
5https://azure.microsoft.com/

32 Experiments

where the first two elements in each list is the context, and the last element is the target to be
predicted. If the mini-batch size is three, then at each time step during training procedure,
three tri-grams are selected randomly without replacement. Shuffling is only done for training
and the tri-grams will be selected for evaluation. Among the above tri-grams, if w2 is the same
as w6 and w3 is the same as w7, then there would be at least two tri-grams that are identical
after slicing the context window. Therefore, if three words often occur in consecutive order
in a dataset, they would be sent to the model more frequently than other tri-grams.

Adding the direct connection between the linear transformation of embeddings and the
output of the hidden layer helps to improve the performance:

Connect N-gram nhid Mins Train PPL Dev PPL Eval PPL
3 256 27.89 54.48 81.43 74.07

P 3 256 51.17 56.77 81.09 73.94
Table 5.2 tri-gram FFLM with 1 hidden layer. Connect represents direct connection, nhid is
the number of hidden units in a feed-forward hidden layer and Mins is the training time in
minutes with a single K80 GPU.

All other FFLM experiments would have the direct connection. The next experiment is
to see if adding one extra hidden layer helps. Although the training PPL drops, both the dev
PPL and eval PPL increase.

Layer N-gram nhid Mins Train PPL Dev PPL Eval PPL
2 3 256 52.16 56.02 83.63 76.30

Table 5.3 Tri-gram FFLM with 2 hidden layers, the output size of the first hidden layer is
256.

With the one layer FFLM, the effect of using different n-gram is investigated:
The best result from all FFLM uses 5-gram and having more order leads to over-fitting

problem. Fine-tuning the regularisation terms may be able to further improve the perfor-
mance.

Layer N-gram nhid Mins Train PPL Dev PPL Eval PPL
1 5 256 70.57 52.97 79.94 72.53

Table 5.4 5-gram right-to-left FFLM

5.3 Experiments for individual NNLMs 33

2 3 4 5 6 7

N-gram

50

60

70

80

90

P
P

L

FFLM

Dev

Eval

Train

(N-gram = 5, PPL = 78.77)

(N-gram = 5, PPL = 71.41)

(N-gram = 7, PPL = 44.66)

Fig. 5.1 1 layer FFLM with 256 hidden layer size. The points indicate the lowest PPLs

5.3.2 Experiment for RNNLM

Since RNNLM requires a continuous sequence of words, no shuffling is done to the data list.
In order to predict the first word at the beginning of the data, an extra <eos> symbol is added
to provide the required input for the model.

Mini-batches are created differently for RNNLM compared to FFLM. For predicting the
first word with RNNLM, one <eos> symbol is added to the beginning of the data list. If the
length of the data list is set to L, and the pre-defined mini-batch size is m such that m > 1,
the list is trimmed so that the new list has length L̂ which is an integer multiple of m. The
maximum number of words from the dataset to be trimmed is m−1 words. The next step is
to form m streams of length L̂

m . An example could be helpful, if the mini-batch size is three
and a data list is the following:

[! , <eos>, ! , ! , <eos>, ! , ! , ! , ! , <eos>!w1 w2 w3 w4 w5 w6 w7]

[<eos>, ! , <eos>, ! , ! , <eos>, ! , ! , ! !w1 w2 w3 w4 w5 w6]

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

which has length 11 after adding an extra <eos> at the beginning, the data list will then be
trimmed and has length nine (which is a integer multiple of mini-batch size three).

[! , <eos>, ! , ! , <eos>, ! , ! , ! , ! , <eos>!w1 w2 w3 w4 w5 w6 w7]

[<eos>, ! , <eos>, ! , ! , <eos>, ! , ! , ! !w1 w2 w3 w4 w5 w6]

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

The three columns form three streams, and each row is a mini-batch for RNNLM

[! , <eos>, ! , ! , <eos>, ! , ! , ! , ! , <eos>!w1 w2 w3 w4 w5 w6 w7]

[<eos>, ! , <eos>, ! , ! , <eos>, ! , ! , ! !w1 w2 w3 w4 w5 w6]

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

34 Experiments

which are fed into the RNNLM model in order. When row i ∈ {1,2} serves as input, row
i+1 is the target prediction. Assuming the BPTT step size is k, the gradient will accumulate
for k mini-batches to be sent to the model until it updates the parameters. The reason to keep
the words in each stream in order is that consecutive words from each stream are required to
be sent to the RNNLM.

During training time, some data is missing due to the trimming, while no trimming is
required for evaluation time since the mini-batch size in evaluation procedure is always one.
Therefore, all words in a dataset can be predicted during evaluation time.

Two types of RNNLM are examined, one uses GRUs and the other one uses an LSTM
layer. As shown in Table 5.5, the LSTM has better performance and the later experiments
will continue with LSTM only. More LSTM layers are considered, but no improvement is
found.

Type Mins Train PPL Dev PPL Eval PPL
GRU 27.19 36.74 64.57 57.34

LSTM 31.03 29.01 63.97 56.55
Table 5.5 Comparison between 1 layer LSTM and 1 layer GRU with the same hyper-
parameters. BPTT is set to 12, hidden unit size is 768 and embedding size is 256

The reason for using truncated BPTT is that the vanishing gradient problem can be further
mitigated. Varying the step size for BPTT also influences the performance of RNNLM.

12 16 32 64 80 96

BPTT

30

35

40

45

50

55

60

65

P
P

L

RNNLM (LSTM)

Dev

Eval

Train

(BPTT = 32, PPL = 61.71)

(BPTT = 32, PPL = 55.36)

(BPTT = 64, PPL = 27.29)

Fig. 5.2 1 layer LSTM with 768 hidden units. The points indicate the lowest PPLs

5.3 Experiments for individual NNLMs 35

5.3.3 Experiments for TLM

Unless specified, all experiments for the TLM uses decoder style TLM.
There are three possible ways to arrange training data for the TLM, which are discussed

as follows:

Method One

Method one is similar to the method used for training RNNLM. The difference is that each
batch contains not only one word from each stream, but also a word sequence with pre-
defined sequence length. With the same example for the RNNLM and the sequence length
set to 2, the mini-batch changes to

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

<eos>
!  

<eos>
w1

!
!  

<eos>

w2
w3

!
!  
!

w4
w5
w6

where the blue square indicates the input mini-batch and the red square indicates the output
targets. For stream two, the LM uses w2 to predict w3 and uses both w2 and w3 to predict
<eos>.

Method Two

Since consecutive segments do not need to link together, shuffling can be done. After finding
all input segments within each stream, which is packed with the target segments, the order of
those packs can change within or across streams.

Method Three

Method one and two both split the stream into disjoint segments during training time. The
consequence is that for each mini-batch, the first target word in each segment is predicted
given only its previous word. If the training procedure changes to the method shown in
Figure 5.3, all target words would have the contexts of the same length.

The segments are no longer disjoint within each stream, since the second word in the
previous segment becomes the first word in the second segment and the third word in the
previous segment becomes the second word in the first segemnt etc. This is also the way
Transformer use to give prediction at evaluation time.

The PPL tested by all three datasets in AMI corpus are nearly the same with method one
and two. When using method three to train the model, the training procedure takes much

36 Experiments

�⋮ �⋮ �⋮ �⋮

�wt

�wt−4 �wt−3 �wt−2 �wt−1
Step �i Step �i + 1

�⋮ �⋮ �⋮ �⋮

�wt+1

�wt−3 �wt−2 �wt−1 �wt

Fig. 5.3 Predict each word with the context of the same length

longer to complete. By considering the trade-off between using augmented data to train the
model and efficiency, later experiments only use method one during training.

Experiments show that individually pre-trained Transformer layers help to speed up
convergence. Each layer is pre-trained before adding subsequent layers on its top. If the
network has n layers, for each i ∈ [1, . . . ,n−1], layer i is trained for 1 epoch and then another
layer will be added on the top of layer i.

For a TLM with one layer only, increasing sequence length does not improve the model
performance, as shown in Figure 5.4:

However, the performance is better with longer sequence lengths when the model is
deep. One possible explanation can be that the model would be better at using the history
information if it is deep. As shown in Figure 5.5, the PPL drops rapidly when the number of
layers increases from one to four. The downside with a deep model is that the training time
becomes significantly longer than models with only one or two layers. In decoder-style TLM
experiments, the layer norm and positional encoding are not found useful. One plausible
hypothesis is that the positional encoding is useful only when the sequence length is set
to be a much larger number (512 was set in (Dai et al., 2019; Devlin et al., 2018; Radford
et al., 2018), but these models were trained on much larger datasets). However, for encoder
style TLM, further experiments show that the positional encoding is necessary even when

5.3 Experiments for individual NNLMs 37

16 32 64 80 100

Sequence length

55

60

65

70

75

80

85

90

P
P

L

TLM

Dev

Eval

Train

(Sequence Length = 16, PPL = 81.18)

(Sequence Length = 32, PPL = 80.26)

(Sequence Length = 32, PPL = 52.94)

Fig. 5.4 1 layer decoder style Transformer with various sequence length

the sequence length is small. Since the encoder style TLM is a bi-directional model, extra
encoding is needed to distinguish which direction a word embedding comes from.

1 2 3 4 5 6 7 8

Layer

40

50

60

70

80

90

P
P

L

TLM

Dev

Eval

Train

(Layer = 8, PPL = 68.40)

(Layer = 8, PPL = 61.82)

(Layer = 7, PPL = 36.68)

Fig. 5.5 Decoder style transformer with sequence length set to 80 words.

38 Experiments

5.4 Comparison Between Different Individual LMs

5.4.1 Differences of PPL

Model Direction Mins Train PPL Dev PPL Eval PPL
tri-gram-s => - 44.67 91.08 81.53

FFLM => 71.89 48.89 78.77 71.41
FFLM <= 70.57 52.97 79.94 72.53

RNNLM => 51.24 30.06 61.71 55.36
RNNLM <= 51.21 31.01 62.17 55.21

TLM => 118.39 37.26 66.37 59.63
TLM <= 116.47 40.60 69.52 61.48

Table 5.6 Comparison of the best result from each model; => represents forward model and
<= represents backward model; Mins indicates the total length of training time in minutes;
FFLM: 1 hidden layer with 256 hidden units; RNNLM: 1 layer LSTM with 32 BPTT steps
and 768 hidden units; tri-gram-s: tri-gram model trained on AMI corpus. Transformer: 8
layers without positional encoding and layernorm, 8 attention heads, 768 hidden units for
linear layers

Forward LMs are left-to-right models and backward LMs are right-to-left models. For
backward LMs, the data list from each dataset is reversed before turning them into mini-
batches. The difference of PPL between forward and backward NNLMs of the same type is
much smaller than that between different types of NNLMs. For tri-gram model, Kneser-Ney
Smoothing is used since it works better than other smoothing techniques (Goodman, 2001).

Among all forward and backward models, RNNLM performs the best in terms of PPL,
but decoder style Transformer still has the potential to improve its performance by increasing
the sequence length. However, the training time for Transformer is the longest since it has
more layers than the other two NNLMs.

5.4.2 Variation of Log Probabilities

Forward Models

By randomly selecting an example of 11 consecutive words from the dev set, Figure 5.6
shows the log2 probabilities of those words predicted by different forward language models.

All models give high probabilities to words that appear frequently in the training set,
such as <eos>, OF and THE. The overall fluctuation from different LMs seems to be similar,
but there are some local variations. Every model provides the highest log2 probabilities for

5.5 Combination of Different LMs 39

IN
THE

DAY

W
IT

H

SORT OF

M
ORE

SPECIF
IC

PROPOSALS

<
eo

s >

YEAH

Words

−16

−14

−12

−10

−8

−6

−4

−2

0

L
og

2
P

ro
b

ab
il
it

ie
s

tri-gram-s

FFLM

RNNLM

TLM

Fig. 5.6 the log2 probabilities of 11 consecutive words randomly selected from dev set

some words. In particular, RNNLM gives considerably higher log2 probability for word
PROPOSALS. Therefore, interpolating their outputs would be a sensible way to reduce the
PPL.

Backward Models

The variation among backward models is generally bigger than that among forward models.
An example is shown in Figure 5.7, the trend in the middle for the three NNLMs are quite
different, especially for Transformer. Similar observations are also found with other samples
of consecutive words.

Based on Figures 5.6 and 5.7, it is clear that all models considered can predict words
better than the others in some occasion. The next section will discuss possible combination
methods.

5.5 Combination of Different LMs

This project uses the interpolation method to combine many language models. Each model
will be used for n-best LM rescoring for speech recognition, and the outputs are linearly
combined in order to find the 1-best result. Different ways are considered for finding the
interpolation weights.

40 Experiments

IN
THE

DAY

W
IT

H

SORT OF

M
ORE

SPECIF
IC

PROPOSALS

<
eo

s >

YEAH

Words

−16

−14

−12

−10

−8

−6

−4

−2

0

L
og

2
P

ro
b

ab
il
it

ie
s

FFLM

RNNLM

TLM

Fig. 5.7 the log2 probabilities of the same 11 consecutive words in Figure 5.6, but predicted
by backward models

5.5.1 Minimize Dev PPL by Combining Word Probabilities

Each forward language model will predict the probability of each word given history. As-
suming there are K models, using the conditional probabilities of all words in dev set, the
combined probabilities of each word can be written as:

P(wi|w1:i−1) =
K

∑
j=1

λ jP(wi|w1:i−1;m j) (5.1)

where m j represents model j and λ j is the interpolation weight for model j, then:

P(w1:N) =
N

∏
i=1

P(wi|w1:i−1)

=⇒ logP(w1:N) =
N

∑
i=1

logP(wi|w1:i−1)

=
N

∑
i=1

log{
K

∑
j=1

λ jP(wi|w1:i−1;m j)} (5.2)

5.5 Combination of Different LMs 41

The objective is to maximise logP(w1:N) with respect to λ j. Since ∑
K
j=1 λ j = 1, the

Lagrange multiplier L is used to add this constraint. The updated objective with the constraint
applied becomes the following:

y =
N

∑
i=1

log{
K

∑
j=1

λ jP(wi|w1:i−1;m j)}−L(
K

∑
j=1

λ j)

=⇒ ∂y
∂λ j

=
N

∑
i=1

P(wi|w1:i−1;m j)

∑
K
j=1 λ jP(wi|w1:i−1;m j)

−L = 0

=⇒ λ jL =
N

∑
i=1

P(wi|w1:i−1;m j)

∑
K
j=1 λ jP(wi|w1:i−1;m j)

=⇒ L = N

=⇒
N

∑
i=1

P(wi|w1:i−1;m j)

∑
K
j=1 λ jP(wi|w1:i−1;m j)

= N

=⇒ λ
(t+1)
j =

1
N

N

∑
i=1

λ
(t)
j P(wi|w1:i−1;m j)

∑
K
ℓ=1 λ

(t)
ℓ P(wi|w1:i−1;mℓ)

(5.3)

This is an iterative process, which is called EM algorithm (Dempster et al., 1977). Since
the goal is to maximise the log joint probability in Equation 5.2, the stopping criterion can be
when the increase in log joint probability is less than 10−6.

Combination of Forward Models

Based on Equation 5.3, the combination of all forward models is straightforward. The initial
weights are set to 1

number of models for every model. The EM algorithm is applied to find the
weights for each model such that the combined dev PPL is minimised, and then these weights
are applied to eval set to find the combined eval PPL. As shown in Table 5.7, RNNLM and
TLM get most of the weight, but adding FFLM and tri-gram to the combination still helps to
further reduce the PPL.

Combine Forward and Backward Models

The joint probability of all words in a dataset can be decomposed into a product of all forward
probabilities or all backward probabilities, i.e.

P(w1:N) =
N

∏
i=1

P(wi|w1:i−1) =
N

∏
i=1

P(wi|wi+1:N) (5.4)

42 Experiments

Models Combined Dev PPL Eval PPL
Baseline 61.71 55.36

RNNLM + TLM 58.30 52.46
FFLM + RNNLM + TLM 58.09 52.31

FFLM + RNNLM + TLM + tri-gram-s 57.75 51.99
Table 5.7 Combination of forward models. Weights for the first line are 0.613, 0.389, weights
for the second line are 0.084, 0.559, 0.357 and weights for the third line are 0.039, 0.545
0.342, 0.075. Baseline is the best single model without combination (RNNLM).

When trying to combine backward probabilities and forward probabilities, Equation 5.3
may no longer be valid. For example, when there is one forward model and one backward
model, the combination cannot by done by simply interpolating the forward probability and
the backward probability of each word, i.e.:

logP(w1:N) ̸=
N

∑
i=1

log(λ1P(wi|w1:i−1;m1)+λ2P(wi|wi+1:N ;m2)) (5.5)

This would result in a non-valid log joint probability, which leads to a non-valid PPL that
is much lower than the PPL for each model before combination.

Model non-valid Dev PPL non-valid Eval PPL
FFLM 24.32 23.47

RNNLM 19.13 18.06
TLM 38.65 33.62

Table 5.8 Combining the forward and backward models of the same type in Table 5.6

The average of non-valid log probabilities for each word after interpolating forward
and backward models of the same type is higher than the average of the combination of all
the forward models. For the same 11 words selected for plotting Figures 5.6 and 5.7, the
non-valid log2 probabilities are also higher on average.

5.5.2 Minimize Dev PPL by Combining Sentence Probabilities

Instead of combining log2 probabilities of words, it is possible to combine log2 probabilities
of sentences. A further assumption needs to be made, which says that the words in the current
sentence do not relate to any word in other sentences. With this extra assumption, the joint

5.5 Combination of Different LMs 43

IN
THE

DAY

W
IT

H

SORT OF

M
ORE

SPECIF
IC

PROPOSALS

<
eo

s >

YEAH

Words

−14

−12

−10

−8

−6

−4

−2
L

og
2

P
ro

b
ab

il
it

ie
s

FFLM

RNNLM

TLM

Fig. 5.8 Non-valid log2 probabilites of 11 words

probability of all words in a dataset is equal to the products of the sentence probabilities. If
there are N words and Z sentences in a dataset, then

P(w1:N) =
Z

∏
i=1

P(si) (5.6)

where si indicates sentence i. Each sentence probability P(si) is computed by forward model
as

P(si) =
length(si)

∏
j=1

P(si
j|si

1: j−1) (5.7)

and a backward model as

P(si) =
length(si)

∏
j=1

P(si
j|si

j+1:length(si)) (5.8)

where si
j is the jth word in sentence i, and length(si) is the number of words in sentence i

including one <eos> symbol. For a forward model, the first word in a sentence is predicted
given the <eos> symbol. All words in the sentence are used to predict the <eos> symbol at
the end of that sentence. For a backward model, to prevent using words from other sentences,

44 Experiments

instead of predicting the <eos> at the end of the sentence, the <eos> at the beginning of the
sentence is predicted. The <eos> at the end of the sentence is used to predict the last word of
that sentence.

Both forward and backward models give valid sentence probabilities of the same form.
Therefore they can be combined together to get a valid log joint probability. The derivation
of finding the weights for combining sentences is as follows:

logP(w1:N) =
Z

∑
i=1

logP(si)

=
Z

∑
i=1

log{
K

∑
j=1

λ jP(si;m j)}

=⇒ λ
(t+1)
j =

1
Z

Z

∑
i=1

λ
(t)
j P(si;m j)

∑
K
ℓ=1 λ

(t)
ℓ P(si;mℓ)

(5.9)

To avoid including any context from other sentences when predicting the words in the
current sentence, a sentence boundary reset is done when training the NNLMs. Different
NNLMs have different ways to do sentence boundary reset.

Sentence Boundary Reset for FFLM

For a n-gram FFLM, the context is the n-1 words immediately before the target word. In order
to prevent the context from containing words in previous sentences for forward model, or
containing words from future sentences for backward model, an algorithm can be constructed
to search for the index of the <eos> symbol that is closest to the target word in each context.
Then every word from the beginning of the context to that idx is converted to <eos>. For
example, if the context is [<eos>, w1, <eos>, w2] and the target word is w3, the closest <eos>
symbol to w3 is the one between w1 and w2. After the sentence boundary reset operation,
this context is converted to [<eos>, <eos>, <eos>, w2], so that the prediction of w3 is based
only on the information from the current sentence.

Sentence Boundary Reset for RNNLM

At each time step, the embedding of the current word is concatenated with the hidden vector
from the last time step, which carries the history information. For each stream, if the current
word is <eos>, the sentence reset can be done by setting the hidden vector to be a vector of
zeros. Then the information from the previous sentences no longer exists.

5.5 Combination of Different LMs 45

Sentence Boundary Reset for TLM

Two possible ways can be used to do sentence boundary reset for TLM. The first method is
similar to sentence reset for FFLM. When using the training method shown in Figure 5.3, the
goal is to predict a word rather than to predict a sequence. If the input is wt−n:t , the target is
wt+1. The closest <eos> symbol can be found, e.g. wi, then wt−n:i are set to <eos>.

As discussed before, the training is much slower if the target is a word rather than a
sequence. The method currently used for training decoder style Transformer is able to give
prediction for n words if there are n words in the input. Therefore, to preserve the ability
for giving a sequence of predictions, the sentence reset needs to be done by modifying the
attention mask. When predicting target words, the attention mask sets the attention scores
between words which are not in the same sentence to zero. If a input sequence is [w1, w2,
<eos>, w3] and the target sequence is [w2, <eos>, w3, w4]. Without a sentence boundary
reset, the attention mask is a lower triangular matrix that masks future words (Figure 3.7).
The mask that can do sentence reset is the following:

Fig. 5.9 right mask with sentence reset, blue positions have attention score zero

The mask for target word w3 is the third row of the matrix in Figure 5.9. Only one element
is white means that w3 is predicted given only <eos>. Likewise, the fourth row of the
matrix corresponding to w4 shows that after sentence boundary resetting, the attention score
connecting w4 and w1 and w2 is zero.

PPL after Sentence Boundary Resetting

Using the methods mentioned above, the PPLs after sentence boundary resetting are shown
in Table 5.9.

Compared to Table 5.6, the RNNLM and Transformer have higher PPL in all three sets
after using the sentence boundary reset. This shows that these models can gather information
from other sentences better than models like 5-gram FFLM. Since the models with sentence
boundary reset assume that different sentences are independent, the sentence probabilities

46 Experiments

Model Direction Train PPL Dev PPL Eval PPL
FFLM => 47.39 78.92 71.40
FFLM <= 49.38 79.48 71.88

RNNLM => 33.15 68.23 61.24
RNNLM <= 35.29 68.60 60.78

TLM => 41.36 71.66 63.52
TLM <= 44.65 71.68 63.70

Table 5.9 NNLMs in Table 5.6 with sentence boundary reset

from forward and backward models can be combined and then a valid combined PPL can be
obtained.

869 888

Sentence

−120

−100

−80

−60

−40

−20

0

L
og

2
P

ro
b

ab
ili

ti
es

FFLM

Forward

Backward

869 888

Sentence

−120

−100

−80

−60

−40

−20

0

L
og

2
P

ro
b

ab
ili

ti
es

RNNLM

Forward

Backward

869 888

Sentence

−120

−100

−80

−60

−40

−20

0

L
og

2
P

ro
b

ab
ili

ti
es

TLM

Forward

Backward

Fig. 5.10 Sentence probabilities from forward and backward models of the same type, all
with sentence reset. 20 consecutive sentences are selected from the dev set

Since the sentences in forward models start from the first word to the <eos> symbol at
the end, and in backward models a sentence start from the last word to the <eos> symbol
at the beginning, it is worth checking if the sentence probabilities of forward and backward
models align together. Figure 5.10 shows that the forward and backward models of the same
type yield very similar trend, especially for TLM.

5.5 Combination of Different LMs 47

Combining Forward and Backward NNLMs of the Same Type

After combining sentence probabilities instead of word probabilities, the PPLs are higher for
all three models compared to the non-valid PPLs in Table 5.8. Table 5.10 shows that forward
model for all three types of NNLMs are more important than backward models.

Model Dev PPL Eval PPL Forward Weight Backward Weight
FFLM-C 44.37 42.59 0.58 0.42

RNNLM-C 38.12 36.14 0.58 0.42
TLM-C 67.86 60.39 0.51 0.49

Table 5.10 PPL after combining sentence probabilities from forward and backward models
of the same type in Table 5.9. The suffix ‘-C’ indicates the combination of the forward and
backward models of the same type. Forward weight indicates the interpolation weight for
forward model and backward weight is the weight for backward model.

After combining the sentence probabilities of forward and backward NNLMs of the same
type, the next combination is to combine the sentence probabilities across different types
of NNLMs. Table 5.11 shows that EM algorithm decides to put most of the weights on
RNNLM-C (77%) and the least weight on FFLM-C (4%). These weights can be used in
n-best LM rescoring task to interpolate the scores from different LMs.

FFLM-C 0.04
RNNLM-C 0.77

TLM-C 0.19
Dev 37.62
Eval 35.66

Weights

Combined PPL

Table 5.11 PPL of the combination of all three models in Table 5.10

5.5.3 LM Rescoring Experiments for Speech Recognition

Two 50-best lists are generated for dev and eval set for computing WER. There are 13088
utterances in dev set and 12640 utterances in eval set. Each utterance has at most 50
hypotheses extracted from the lattice that was generated by an acoustic model and a tri-gram
language model trained on AMI and Fisher. For each hypothesis the acoustic score is fixed
while the language model score is replaced. The new language model score is either generated
by a single NNLM or a combined NNLM. The final score of each utterance is computed by
interpolating the original acoustic score and the new language model score.

48 Experiments

Interpolating NNLMs with Sentence Boundary Reset using Weights that Minimise Dev
PPL

The first approach to obtain word error rate is by the following steps:

1. For each utterance, read the hypotheses and save acoustic scores with the corresponding
hypotheses.

2. Each available NNLM gives a score to each hypothesis, the score is the sum of the log
probabilities of all words in the hypothesis including an added <eos> symbol at the
end of the hypothesis for forward model. For backward model, an <eos> symbol is
added to the beginning of each hypothesis and then the hypothesis is reversed before
sending to the model.

3. If more than one NNLM are considered, the scores from all NNLMs are combined
with linear interpolation to give the final LM score for each hypothesis. Weights are
found by minimising the combined dev PPL in the previous section.

4. The acoustic score and the final LM score is linear interpolate, and LM scale γ in
Equation 3.13 is manually tuned on dev set.

Model Direction Dev WER Eval WER LM scale
tri-gram-s => 27.8 28.8 15.0
tri-gram-b => 24.1 25.2 -

FFLM => 23.3 24.2 13.5
FFLM <= 23.4 24.2 13.5

RNNLM => 22.4 23.3 14.5
RNNLM <= 22.5 23.2 14.5

TLM => 22.6 23.4 14.5
TLM <= 22.6 23.5 14.5

Oracle - 13.1 13.4 -
Table 5.12 WER result for all NNLMs in Table 5.9 and the tri-gram models, after rescoring
13088 utterances in dev set and 12640 utterances in eval set. Tri-gram-s is trained only on
AMI corpus while tr-gram-b is trained on AMI and Fisher. Oracle is obtained by using
HResults rather than sclite, which does not include pre-processing for modifying hesitations
and filtering synonym etc. Therefore, the oracle results are not fully comparable with other
numbers, and possibly can have higher WERs.

If 1-best output is extracted from the original lattice, the results is the dev WER and
eval WER for tri-gram-b in Table 5.12. The tri-gram-s trained on AMI corpus performs

5.5 Combination of Different LMs 49

worse than tri-gram-b trained on both AMI and Fisher corpora. The difference between
the performance is limited since the comparison is implemented on the same 50-best list.
Assuming the best choices over the the 50-best list for all utterances are selected, the oracle
results is shown in the last row of Table 5.12, which can be used as a lower bounds for the
WERs after LM rescoring. Similar to PPL, the forward and backward NNLMs of the same
type also achieve very similar results in WER. The models in Table 5.12 are first combined
with another model of the same type but with different direction. Then the resulting models
are combined together with the weights in Table 5.11.

Model Dev WER Eval WER LM scale
Baseline 24.1 25.2 -

RNNLM (=>) 22.4 23.3 14.5
FFLM-C 23.1 24.0 13.5

RNNLM-C 22.2 22.9 14.5
TLM-C 22.2 23.0 14.5

All NNLM-C 22.1 22.8 14.0
Table 5.13 Combine models of the same type with the weights in Table 5.10 and Table 5.11.
All NNLM-C is the combination of FFLM-C, RNNLM-C and TLM-C. Baseline is the 1-best
result scored by tri-gram-b.

As shown in Table 5.13, the combination of forward and backward NNLMs of the same
type achieves lower WER than any single model that belongs to the corresponding type. The
reduction varies from 0.2% to 0.4% in WER. A further 0.1% absolute reduction in both dev
WER and eval WER is achieved by combining across different types of NNLMs, comparing
to the best NNLM before combining across different types (RNNLM-C).

Interpolation Weights using CMA-ES

Having realised that the weights for each NNLM found to minimise dev PPL may not be
the weights that also minimise WER, a second approach to interpolate LMs is considered.
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier,
2001) has the ability to determine interpolation weights such that the a black-box objective
function is minimised. Instead of using weights that minimise dev PPL, CMA-ES can be
used to serve as an optimisation algorithm which finds the weights to interpolate language
model scores such that the dev WER is minimised. This method samples a sets of weights
from a normal distribution in each iteration and updates the mean and covariance function
based on the WER results obtained.

50 Experiments

FFLM (=>) 0.12
FFLM (<=) 0.01

RNNLM (=>) 0.21
RNNLM (<=) 0.27

TLM (=>) 0.23
TLM (<=) 0.07

Dev 22.0
Eval 22.8

WER

Weights

Table 5.14 Weights found for each NNLM by CMA-ES and the final WER result, the LM
scale is 16.1.

Comparing to the weights found by minimising dev PPL, the distribution of weights that
directly minimises dev WER is less sharp. Although the weights found by CMA-ES achieve
better result in dev WER, the result for eval WER does not show improvement. There is an
increase of 0.1% in absolute value for eval insertion error using weights from CMA-ES. The
conclusion is that both methods for finding interpolation weights for different LMs achieve
similar performance. Using EM algorithm to find weights is much more efficient, if the final
log probability is valid.

FFLM (=>) 0.11
FFLM (<=) 0.04

RNNLM (=>) 0.38
RNNLM (<=) 0.04

TLM (=>) 0.35
TLM (<=) 0.07

Dev 21.9
Eval 22.7

Weights

WER

Table 5.15 Allowing forward NNLMs in Table 5.14 to include history from previous sentences.
Interpolation weights are found by CMA-ES.

However, since the PPL is not needed when using CMA-ES to find the weights for each
NNLM, all forward NNLMs can now use the 1-best history, which are the past sentences
with the highest rank after speech recognition LM rescoring. Some changes to the rescoring
pipeline is needed. The 1-best history generated by each NNLM is saved and is available for
the corresponding NNLM when rescoring the next sentence. The reason for not allowing
backward NNLMs to see future sentences is that such procedure cannot be applied in real

5.6 Fine-Tuning Pre-trained Models 51

time in an ASR system. After allowing the forward models in Table 5.14 to see information
in previous sentences, the WER is shown in Table 5.15.

A further 1% absolute reduction in WER is achieved in both Dev WER and Eval WER
after allowing forward NNLMs to see the future history. The result has shown that removing
sentence boundary reset for forward NNLMs can improve the rescoring performance. No
further improvement is observed by including tri-gram-b into the combination.

5.6 Fine-Tuning Pre-trained Models

Two pre-trained models are considered in experiments, which are GPT and BERT. One output
layer is added on the top of these two models to transform the pre-trained hidden states to the
distribution of the output dictionary.

5.6.1 GPT

Since GPT also uses decoder structure, the same training procedure and data arrangement
for the 8-layer Transformer model shown before can be used in the fine-tuning process (the
fine-tuned GPT language model will be called GPT-LM). However, the input should no
longer be a word sequence. It needs to be converted into subword sequence by the same BPE
algorithm. And the input dictionary is the same as the original GPT model, while the output
dictionary is the tokenised version of the word dictionary from the AMI corpus.

The pre-trained model is trained without any special symbol to indicate where the
sentence boundaries are. Therefore, instead of adding <eos> to the sentence boundary, a
period is added to the end of each sentence and also the beginning of the dataset. This is
because period should be the most common sentence boundary symbol in normal texts.

To fine-tune these models, the final linear layer will be removed from the pre-trained
model and then a fully connected layer will be added, which projects the hidden states to
in-domain (AMI) vocabulary. The hidden states generated by the GPT model are considered
to be of high quality and there is a massive number of parameters waiting to be updated
when fine-tuning all layers. Therefore only the added output layer will be trained on the
AMI corpus during the fine-tuning process. It may be difficult to do sentence reset since
the original GPT model is trained with history across sentence boundaries, which makes
the sentence boundary reset challenging in fine-tuning stage. Two possible ways can be
considered. The first one is to add attention mask in each of the 12 Transformer layers in
the pre-trained GPT model, and fine-tune all layers during fine-tuning. The second one is to
predict one target word at each time step so that words from other sentences can be change to

52 Experiments

<eos> before sending to the model. However, these two methods largely increase the amount
of time needed for fine-tuning the GPT model. Therefore, no sentence boundary reset is
implemented with GPT pre-trained model. Although there are multiple meetings in the AMI
corpus, GPT-LM can use the attention mechanism to decide whether to rely on the 1-best
history or not.

The fine-tuned GPT-LM gives sub-word probabilities rather than word probabilities. To
ensure that the PPL is comparable to the models in the previous section, the PPL is computed
by:

PPL = P(w1:N̂)
− 1

N

= 2−
1
N ∑

N̂
i=1 log2 P(ŵi|ŵ1:i−1)

(5.10)

where ŵi indicates the ith sub-word, N̂ is the total number of sub-words after tokenising
N words from the original dataset. The PPL and WER are shown in Table 5.16.

Model Dev PPL Eval PPL Dev WER Eval WER
Baseline 68 61 22.4 23.3
GPT-LM 56 50 21.6 22.4

Table 5.16 GPT LM after fine-tuning the last output layer; Baseline is the best single model
(forward RNNLM). LM scale is set to 15.0 for fine-tuned GPT-LM

This result is better than every NNLM without combination shown before, and also better
than any combination of NNLMs trained only on AMI corpus (0.3% absolute reduction
in WER in both dev and eval WER comparing to Table 5.15). the which proves that the
hidden states from pre-trained models are useful in the current task. The GPT model achieves
23.0% WER in dev set even without fine-tuning. After interpolating the fine-tuned GPT with
FFLM-C, RNNLM-C and Transformer-C, further reduction in WER can be achieved, where
the results are shown in Table 5.17.

Model Dev WER Eval WER
GPT-LM + FFLM-C + RNNLM-C + TLM-C 21.1 21.9

Table 5.17 GPT + FFLM-C + RNNLM-C + Transformer-C; The weights are 0.55, 0.02, 0.25
and 0.18; LM scale factor is 14.8, both weights and LM scale are found by CMA-ES

A further 0.5% absolute reduction in dev WER and 0.6% in eval WER are achieved.
Even when interpolating with such a powerful model like GPT-LM which was pre-trained
on much larger datasets, the LMs that are the interpolations of the forward and backward

5.6 Fine-Tuning Pre-trained Models 53

models can still contribute to further WER reduction. This result emphasises that different
NNLMs are highly complementary and a combination of NNLMs improves the performance
significantly. Further combinations also include forward NNLMs train on AMI corpus that
do not do sentence boundary reset, but no improvement is found in combined dev WER
compared to Table 5.17.

5.6.2 BERT

BERT is an encoder style Transformer, which means that the model is able to see future
information. The output of the softmax layer is no longer a conditional probability given
previous words. For a bi-directional model, the output probability becomes:

P(wi|w1:i−1,wi+1:N) (5.11)

However, the model that can see bi-directional context may no longer be able to calculate
a valid PPL. This is because the PPL requires the P(w1:N), which can be decomposed by a
uni-directional model as follows:

P(w1:N) =
N

∏
i=1

P(wi|w1:i−1) (5.12)

which is the product of all softmax outputs from a uni-directional. The probability P(wi|w1:i−1)

cannot be simply replaced by the output from a bi-directional model. With bi-directional
model, P(w1:N) may be computed by:

P(w1:N) = (
N

∏
i=1

P(wi|w1:i−1,wi+1)P(w1:i−1,wi+1:N))
1
N (5.13)

Since for each i, P(wi|w1:i−1,wi+1)P(w1:i−1,wi+1:N) = P(w1:N) . Another way to compute
the joint probability is by using the sum rule:

P(w1:N) =
N

∏
i=1

(∑
wi+1:N

P(wi|w1:i−1,wi+1)P(wi+1:N |wi+1:N)) (5.14)

Since

∑
wi+1:N

P(wi|w1:i−1,wi+1)P(wi+1:N |wi+1:N) = ∑
wi+1:N

P(wi,wi+1:N |w1:i−1)

= P(wi|w1:i−1)

(5.15)

54 Experiments

Neither of the two methods is straightforward. They are all computationally intensive
and optimisation is required. Previous work (Chen et al., 2017b) shows that by multiplying
a tunable constant α to the hidden states before entering softmax layer, the bi-directional
RNNLM out-performs uni-directional RNNLM in AMI dataset in terms of WER. The paper
calls the PPL from bi-directional model pseudo PPL and claims that α can smooth and flatten
the distribution so that the bi-directional RNNLM is less affected by the errors made in
ASR system. The paper also shows that the combination of a uni-directional RNNLM and
bi-directional RNNLM achieves a better result than a single uni-directional model, regardless
of using the smoothing constant or not. Therefore, the fine-tuned BERT LM (BERT-LM)
will be combined with other uni-directional model to see if any reduction in WER can be
achieved.

In the experiments, 1
8 of the words in the training data are randomly selected without

replacement for each epoch. Then 32 consecutive words before and after the selected words
will be used as the context. The selected words are then replaced by the special symbol
[mask] and the model uses the contexts to predict the masked words.

However, although the pseudo PPLs from the bi-directional model are very low (20.58 for
dev and 17.8 for eval), the dev WER is 25.7% and no improvement is found by interpolation
this BERT-LM with GPT-LM. One hypothesis is that BERT-LM can take past sentences
and future sentences into consideration, but future sentence is not available during speech
recognition LM rescoring. Therefore, the pre-trained BERT is fine-tuned again. Since the
model only has one target word for a given sequence of inputs. Any word in the input
sequence that belongs to a future sentence after the current sentence with the target word is
now set to <eos>. This future sentence boundary resetting helps to make the training and
rescoring consistent in terms of the input information.

After fine-tuning with future sentence boundary reset, there is a 1.3% absolute reduction
in word error rate in dev WER in comparison to the the dev WER of BERT-LM without
future sentence boundary reset. The dev WER is now 24.5% and eval WER is 25.3%.

Combining GPT-LM and other NNLMs with BERT-LM reduces an extra 1% in both
dev WER and eval WER (shown in Table 5.18). This finding is also consistent with the
findings in Chen et al. (2017b), which shows that although bidirectional model may get a
higher WER then uni-directional models, they help to reduce the WER after combining with
uni-directional models.

Comparing to the best result in Sun (2019), which is 22.0% in dev WER, the result in
this project has achieved a further 1% absolute reduction in dev WER.

5.7 Sensitivity of the Correctness of History 55

FFLM (=>) 0.01
FFLM (<=) 0.01

RNNLM (=>) 0.20
RNNLM (<=) 0.09

TLM (=>) 0.14
TLM (<=) 0.09

GPT-LM (=>) 0.39
BERT-LM (<=>) 0.07

Dev 21.0
Eval 21.8

WER

Weights

Table 5.18 Combination of all fine-tuned LMs and NNLMs that are trained on AMI corpus
only. All forward NNLMs do not have sentence boundary reset. LM scale is 15.1.

5.7 Sensitivity of the Correctness of History

Currently GPT-LM, BERT-LM and all other NNLMs that do not do sentence boundary reset
use 1-best history during LM rescoring. Since each NNLM generates its own 1-best history,
the quality of the history information is not consistent. This section investigates how the
quality of the 1-best history affects the LM rescoring performance on the 50-best list. Instead
of using different history, all models will be provided with the same reference history when
predicting the current sentence.

The change in WERs after using reference history for individual NNLM is shown in
Table 5.19.

Model Dev WER Eval WER LM Scale
FFLM 23.3 (23.3) 24.3 (24.3) 13.7

RNNLM 22.2 (22.2) 22.9 (22.9) 14.8
TLM 22.4 (22.5) 23.2 (23.3) 13.9

GPT-LM 21.4 (21.6) 22.3 (22.4) 15.0
BERT-LM 24.4 (24.5) 25.3 (25.3) 11.1

Table 5.19 WER using 1-best history (inside the parenthesis) and using reference history
(outside the parenthesis). All models are forward NNLMs except the bidirectional BERT.

The results show that all three Transformer based NNLMs (forward TLM, GPT-LM and
BERT-LM) show some reduction in dev WER after using reference history, which may be
because these models have the ability to use longer history, therefore they are more sensitive
to the quality of the history. The final combined result also shows a further 1% absolute
reduction in WER after using reference history (shown in Table 5.20).

56 Experiments

FFLM (=>) 0.01
FFLM (<=) 0.01

RNNLM (=>) 0.20
RNNLM (<=) 0.09

TLM (=>) 0.14
TLM (<=) 0.09

GPT-LM (=>) 0.39
BERT (<=>) 0.07

Dev 20.9 (21.0)
Eval 21.7 (21.8)

Weights

WER

Table 5.20 Combination of all NNLMs with history reference used for all NNLMs that can
use history. LM scale is 15.1.

Chapter 6

Conclusion and Future Work

This thesis focuses on combining NNLMs to reduce the speech recognition WER by rescoring
the 50-best list. Individual NNLMs are first investigated. Results show that the RNNLM and
the TLM perform better than the FFLM in terms of PPL and WER. This shows that these
two models can better consider the history information.

The combination of NNLMs starts from combining forward NNLMs. An absolute
decrease of around four points (dev PPL reduces from 61.71 to 57.75 and eval PPL reduces
from 55.36 to 51.99) is observed in both dev and eval PPL. When trying to combine both
forward and backward models of the same type, sentence boundary reset is conducted for
each model in order to preserve a valid PPL. By assuming different sentences are independent,
the n-best rescoring process does not require the information from other sentences, which
has the potential to rescore multiple utterances at the same time. Although the performances
of the forward and backward NNLMs of the same type are very similar, the combination
largely reduces both PPL and WER.

Different ways for finding the weights to interpolate language model have been considered.
The first method is to use weights which minimises the dev PPL and the second method is to
use weights which directly minimises dev WER. Experiments show that both methods yield
similar results in terms of both dev and eval WER.

More experiments have been implemented to fine-tune pre-trained models and then
fine-tuned LMs are combined with NNLMs trained only on AMI corpus. Both GPT-LM and
BERT-LM do not have sentence boundary reset for past sentences, so only one utterance
from each meeting can be rescored at a time. The best result achieved in this thesis is the
interpolation of the fine-tuned GPT-LM, BERT-LM, forward NNLMs (without sentence
boundary reset) and backward NNLMs (with sentence boundary reset). The best result
without using reference history is 21.0 for dev WER and 21.8 for eval WER, which has more
than 3% absolute reduction in WERs compared to the baseline tri-gram WERs.

58 Conclusion and Future Work

Other methods to combine different LMs can be investigated in the future such as training
different NNLMs together instead of training them separately. A simple approach would be
concatenating the last hidden states from different NNLMs and sending it to a softmax layer.

Future experiments can investigate methods that can compute a valid PPL or ways that
can directly compare bi-directional methods with uni-directional models other than using
WER. Possible changes can be conducted to improve the performance of BERT, such as
multiplying a constant α to the un-normalised output probabilities (Chen et al., 2017a,b).
Since using the reference history further reduces WERs for some models, it may be because
of the model over-fits to the true text, which may be inconsistent to the n-best shortlist. In
that case error sampling technique may be considered such as scheduled sampling (Bengio
et al., 2015), which replace the true label by a sample label.

The 50-best list is fairly small, even for a small corpus like AMI. Larger n-best lists can
be considered. Moreover, since the FFLM is basically an n-gram model, lattice rescore can
be applied easily on this NNLM. By using history clustering methods (Liu et al., 2014), the
number of distinct states for the RNNLM during lattice rescoring can be dramatically reduced.
Hence it is also possible to do lattice rescoring for the RNNLM efficiently. Although it may
still be expensive to do exact lattice rescoring for the TLM that considers a long history, a
better n-best list can be extracted from lattice rescored by the RNNLM, and do the n-best
rescoring with the combined model in this thesis.

Due to time constrain, the experiments are only implemented on AMI corpus. Other
datasets such as WikiText corpus (Merity et al., 2016) can also be used to train the NNLMs.
Other speech corpora such as Switchboard (Godfrey et al., 1992) or LibriSpeech (Panayotov
et al., 2015), which have much longer hours of recordings, should also be investigated.
With more data, the TLMs can use much longer sequence length and the effect of layer
normalisation and positional encoding can be verified. Other than the three types of NNLM
investigated in this thesis, more architectures can be combined together and investigation of
how they alter the WER can be conducted.

References

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Bahl, L. R., Souza, P. V. D., Gopalakrishnan, P. S., Nahamoo, D., and Picheny, M. A. (1991).
Context dependent modelling of phones in continuous speech using decision trees. In In
Proceedings DARPA Speech and Natural Language Processing Workshop, pages 264–270.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing
Systems, pages 1171–1179.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137–1155.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., Kadlec, J., Karaiskos,
V., Kraaij, W., Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska, A., McCowan, I., Post,
W., Reidsma, D., and Wellner, P. (2006). The AMI Meeting Corpus: A Pre-announcement.
In Renals, S. and Bengio, S., editors, Machine Learning for Multimodal Interaction,
volume 3869, pages 28–39. Springer Berlin Heidelberg, Berlin, Heidelberg.

Chen, S. F. and Goodman, J. (1998). An Empirical Study of Smoothing Techniques for
Language Modeling. Harvard Computer Science Group Technical Report TR-10-98.

Chen, X., Liu, X., Ragni, A., Wang, Y., and Gales, M. J. (2017a). Future word contexts
in neural network language models. In 2017 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 97–103. IEEE.

Chen, X., Ragni, A., Liu, X., and Gales, M. (2017b). Investigating bidirectional recurrent
neural network language models for speech recognition.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R.
(2019). Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context.
arXiv:1901.02860 [cs, stat].

60 References

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(4):357–366.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Gales, M. and Young, S. (2007). The Application of Hidden Markov Models in Speech
Recognition. Foundations and Trends® in Signal Processing, 1(3):195–304.

Godfrey, J. J., Holliman, E. C., and McDaniel, J. (1992). SWITCHBOARD: Telephone
speech corpus for research and development. In [Proceedings] ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages
517–520. IEEE.

Good, I. J. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3-4):237–264.

Goodman, J. T. (2001). A bit of progress in language modeling extended version. Machine
Learning and Applied Statistics Group Microsoft Research. Technical Report, MSR-TR-
2001-72.

Graff, D., Wu, Z., MacIntyre, R., and Liberman, M. (1997). The 1996 broadcast news speech
and language-model corpus. In Proceedings of the DARPA Workshop on Spoken Language
Technology, pages 11–14.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. the Journal of
the Acoustical Society of America, 87(4):1738–1752.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T., and Kingsbury, B. (2012). Deep Neural Networks for Acoustic
Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE
Signal Processing Magazine, 29(6):82–97.

Irie, K., Zeyer, A., Schlüter, R., and Ney, H. (2019). Language Modeling with Deep
Transformers. arXiv:1905.04226 [cs].

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Trans. Acoustics, Speech, and Signal Processing,
35:400–401.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

References 61

Kneser, R. and Ney, H. (1995). Improved backing-off for M-gram language modeling. In
1995 International Conference on Acoustics, Speech, and Signal Processing, volume 1,
pages 181–184 vol.1.

Kombrink, S., Mikolov, T., Karafiát, M., and Burget, L. (2011). Recurrent neural network
based language modeling in meeting recognition. In Twelfth Annual Conference of the
International Speech Communication Association.

Kreyssig, F. L., Zhang, C., and Woodland, P. C. (2018). Improved TDNNs using deep
kernels and frequency dependent Grid-RNNs. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4864–4868. IEEE.

Liu, X., Wang, Y., Chen, X., Gales, M. J., and Woodland, P. C. (2014). Efficient lattice
rescoring using recurrent neural network language models. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4908–4912.
IEEE.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models.
arXiv preprint arXiv:1609.07843.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs].

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In INTERSPEECH.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119.

Mikolov, T. and Zweig, G. (2012). Context dependent recurrent neural network language
model. In 2012 IEEE Spoken Language Technology Workshop (SLT), pages 234–239,
Miami, FL, USA. IEEE.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic dependences in
stochastic language modelling. Computer Speech & Language, 8(1):1–38.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An ASR corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE.

Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network architecture
for efficient modeling of long temporal contexts. In Sixteenth Annual Conference of the
International Speech Communication Association.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

62 References

Povey, D. and Woodland, P. C. (2002). Minimum phone error and I-smoothing for improved
discriminative training. In 2002 IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 1, pages I–105. IEEE.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language un-
derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/research-covers/languageunsupervised/language understanding paper. pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI Blog, 1(8).

Saon, G., Sercu, T., Rennie, S., and Kuo, H.-K. J. (2016). The IBM 2016 English Conversa-
tional Telephone Speech Recognition System. In Interspeech 2016, pages 7–11.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany.
Association for Computational Linguistics.

Sun, G. (2019). Cross-Utterance Language Models. MEng thesis, University of Cambridge.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM neural networks for language
modeling. In Thirteenth Annual Conference of the International Speech Communication
Association.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1995). Phoneme
recognition using time-delay neural networks. Backpropagation: Theory, Architectures
and Applications, pages 35–61.

Wen, T.-H., Heidel, A., Lee, H.-Y., Tsao, Y., and Lee, L.-S. (2013). Recurrent neural
network based personalized language modeling by social network crowdsourcing. In Proc.
Interspeech.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

Woodland, P., Gales, M., Pye, D., and Young, S. (1997a). The development of the 1996 HTK
broadcast news transcription system. In DARPA Speech Recognition Workshop, pages
73–78. Morgan Kaufmann Pub.

Woodland, P. C., Gales, M. J., Pye, D., and Young, S. J. (1997b). Broadcast news transcription
using HTK. In 1997 IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pages 719–722. IEEE.

References 63

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2019). XLNet:
Generalized Autoregressive Pretraining for Language Understanding. arXiv:1906.08237
[cs].

Young, S. (1996). Large vocabulary continuous speech recognition: A review. IEEE signal
processing magazine, 13(5):45–57.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J.,
Ollason, D., and Povey, D. (2015). The HTK book (for HTK version 3.5). University of
Cambridge, 2015.

Young, S., Odell, J., and Woodland, P. (1994). Tree-Based State Tying for High Accuracy
Modelling. In HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held
at Plainsboro, New Jersey, March 8-11, 1994.

Young, S. J. and Woodland, P. C. (1994). State clustering in hidden Markov model-based
continuous speech recognition. Computer Speech & Language, 8(4):369–383.

Yu, H., Tomokiyo, T., Wang, Z., and Waibel, A. H. (2000). New developments in automatic
meeting transcription. In INTERSPEECH.

Zhang, C., Kreyssig, F. L., Li, Q., and Woodland, P. C. (2019). PyHTK: Python Library
and ASR Pipelines for HTK. In ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6470–6474.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S.
(2015). Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE International Conference on
Computer Vision, pages 19–27.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis Outline
	1.2 Contribution

	2 Automatic Speech Recognition (ASR)
	2.1 Acoustic Modelling with Hidden Markov Model
	2.1.1 Context-Dependent Acoustic Modelling
	2.1.2 Training Criterion

	2.2 N-gram Language Models
	2.2.1 Katz Smoothing
	2.2.2 Kneser-Ney Smoothing

	2.3 Decoding Process
	2.4 Evaluation Metrics for Language Models
	2.4.1 Perplexity (PPL)
	2.4.2 Word Error Rate (WER)

	3 Neural Network Language Models
	3.1 Feed-Forward Neural Network Language Model
	3.2 Recurrent Neural Network Language Model
	3.2.1 LSTM
	3.2.2 GRU
	3.2.3 Truncated Back Propagation Through Time

	3.3 Transformer Language Model
	3.3.1 Decoder Style Transformer NNLM
	3.3.2 Encoder Style TLM

	3.4 Training Criterion for all NNLMs in this thesis
	3.5 Neural Network Language Models in ASR

	4 Pre-trained Language Models
	4.1 GPT
	4.2 Transformer XL
	4.3 BERT

	5 Experiments
	5.1 Setup
	5.1.1 Data
	5.1.2 ASR System For Generating 50-Best list

	5.2 Resources for Experiments
	5.2.1 Scripts
	5.2.2 Packages

	5.3 Experiments for individual NNLMs
	5.3.1 Experiments for FFLM
	5.3.2 Experiment for RNNLM
	5.3.3 Experiments for TLM

	5.4 Comparison Between Different Individual LMs
	5.4.1 Differences of PPL
	5.4.2 Variation of Log Probabilities

	5.5 Combination of Different LMs
	5.5.1 Minimize Dev PPL by Combining Word Probabilities
	5.5.2 Minimize Dev PPL by Combining Sentence Probabilities
	5.5.3 LM Rescoring Experiments for Speech Recognition

	5.6 Fine-Tuning Pre-trained Models
	5.6.1 GPT
	5.6.2 BERT

	5.7 Sensitivity of the Correctness of History

	6 Conclusion and Future Work
	References

