
PROBABILISTIC PROGRAMMING IN JULIA:
NEW INFERENCE ALGORITHMS

KAI XU ENGINEERING DEPARTMENT UNIVERSITY OF CAMBRIDGE

INTRODUCTION
Probabilistic Programming (PP) provides a very
flexible framework to define probabilistic models
and to learn models from data. This frees re-
searchers from programming probablistic models
and inference algorithms by hand and enables
them to focus more on designing a suitable model
by their insights.

In PP, Bayesian inference is automated and
inference is done by general inference algorithms
such as Monte Carlo Markov Chain (MCMC)
algorithms, which together make it possible to
learn any model defined by users.

This project is aimed to produce a new inference
algorithm, Hamiltonian Monte Carlo (HMC)
under a PP framework called Turing.jl currently
under developed in the Engineering Department.

Detailed objectives are listed below.

1. Implement HMC in Julia
2. Implement common distributions in Julia
3. Implement PP framework for HMC
4. Evaluate HMC against other inference algo-

rithms in Turing.jl and other PPLs

CONTACT INFORMATION
Email kx216@cam.ac.uk
Phone +44 770 771 9899

AUTOMATING INFERENCE
Models in Turing.jl are defined using three syn-
tax param, observe and predict, where param
defines the prior distribution, observe defines
the likelihood of data and predict defines the
parameters to sample.

Inference is then automated by

1. Transform the defined model to the poste-
rior distribution of model parameters;

2. Run inference algorithms on the posterior
distribution

Metaprogramming
Keywords param, observe and predict are
marcos in Julia, which can be expanded to a
section of code. Here the model defined can be
transformed to a function f() representing the
posterior distribution P (θ|D) in Equation 1.

Hamiltonian Monte Carlo
HMC is then used to generate samples of model
parameters from the posterior function f(),
where the gradient information is used to accel-
erate the process of sampling.

The plot in Figure 1 compares HMC against nor-
mal Metropolis-Hasting when sampling from a
multivariate Gaussian.

Figure 1: Samples from Gaussian using HMC and MH

EXAMPLE 1 - UNIVARIATE GAUSSIAN

A univariate Gaussian with conjugate priors and
dataD = {1, 1.6, 1, 1.1, 0.9, 1.3, 0.6} can be defined
and learnt by the code below.

D = [1,1.6,1,1.1,0.9,1.3,0.6]
@model gauss begin
@param σ ∼ InverseGamma(2, 3)
@param µ ∼ Normal(0,

√
σ)

for x in D
@observe x ∼ Normal(µ,

√
σ)

end
@predict µ σ

end
samples = sample(gauss, HMC(500))

The traces of µ and σ are shown in Figure 2.

Figure 2: Trace of µ and σ

REFERENCES

[1] David JC MacKay. Information theory, inference and
learning algorithms. Cambridge university press,
2003.

PROGRESS AND NEXT STEP

By the day of poster session, HMC sampler has
been implemented in Julia and a wrapper of com-
mon distributions is also available. Some hand-
written models were used to test these two com-
ponents. In addition, the student is also contribut-
ing to the documentation work.

The next step for the project is to implement the
compiler for HMC in the PP framework. When
this is done, it will be embedded into Turjing.jl,
working with existing inference algorithms. More
evaluations on the performance of HMC and Tur-
ing.jl will be conducted.

EXAMPLE 2 - BAYESIAN NEURAL NETWORK

PP framework can also be used to train neural
networks by interpreting the loss function as like-
lihood and the regularisation term as prior.

To train a Bayesian neural network (BNN) with
structure in Figure 3, learning the exclusive-or
function, the program on the right can be used.

Figure 3: Structure of the Bayesian neural network

xs = [[0;0]; [0;1]; [1;0]; [1;1]]
ts = [0; 1; 1; 0]
@model bnn begin
weights = TArray(Float64, 9)
@param σ ∼ InverseGamma(2, 3)
for w in weights
@param w ∼ Normal(0,

√
σ)

end
for i in 1:4
y = nn(xs[i], weights)
@observe ts[i] ∼ Bernoulli(y)

end
@predict weights

end
samples = sample(bnn, HMC(500))

BAYESIAN INFERENCE
Bayesian inference uses Bayes’ rule to compute
the posterior distribution of model parameters by
incorporating prior knowledge to the likelihood
of data, which is given by

P (θ|D) =
P (D|θ)P (θ)∫
θ
P (D|θ)P (θ)

∝ P (D|θ)P (θ) (1)

, where D is the data set, θ is the model parame-
ter, P (θ) is the prior, P (D|θ) is the likelihood of
data and P (θ|D) is the posterior distribution.


